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Paradigm Shift 
• When designing complex artefacts separation of concerns is a 

good design principle. 
– Buildings 
– Vehicles 
– Distributed Systems 

 

• Obtained through engineering principles,  
good architectures, design rules etc  
 

• Often the main objective for these design principles is to save 
human resources (engineering time) 
 
 
 



Paradigm Shift 
• In many areas the main objective today is to save 

natural resources rather than human 
– Often energy / emissions related 

• Crosscutting concerns  
– Traditional separation-based approaches  

to break down 
– Interaction and interference 

• Requires integration of multiple  
sub-systems both during design and operation 
– Integration-Based Design 
– Codesign 
– Cross-layer design 



• Smart/green/low-energy  
buildings 

• Green cars 
• Server farms 
• Battery-driven computing and  

communication devices 
• Cross-layer design and optimization  

in networks 
• Embedded Systems 

• Resource-aware design nothing new! 
 

Some Examples 



Paradigm Shift 
• Eventually we will find new  

ways of organizing our work 
• Revolutionary paradigm shifts 

have occurred before  



CPS Research Agenda 

• Model-Driven Engineering 
• Modeling Tools 
• Uncertainty 

Managagement 
------------------------------ 
• Emergent behavior 
• Distributed analysis and  

synthesis of controllers 

 



Model-Driven Engineering  

• The vision 
• Automated process from model to cyber-

physical system 
– Functionally correct 
– Dependable 
– Secure 
– Resource-efficient 
– Timeliness 
– ………… 



Model-Driven Engineering for Software 

In the software domain: 
• Software abstraction layers tailored for 

different analysis and design tasks 
• Property-preserving model translations and 

refinement mechanisms 
• ”The model is the software” 

– Often realistic 
– Automatic Code Synthesis 

• UML 



Model-Driven Engineering for HW+SW 

In the software + hardware domain: 
• SysML + architecture modeling languages such as 

EAST-ADL, AADL, Modelisar, … 
• Allows limited hardware modeling 
• Used for modeling the hardware in which the 

software executes 
• Not used for modeling the physical world that the 

system interact with 
– Too limited behavior models 

• Not for CPS 



Model-Driven Engineering for CPS 
• The model is not the system 
• Approximations rather than abstractions 

– E.g. reduced models, linearized models, truncated 
models, ….. 

• Properties not necessarily maintained 
• Models have a limited validity range 
• Models expire 

– Requirements change 
– The model and the reality deviate with time due 

to e.g., aging, wear, …. 



Golomb on Modeling 
• ”Mathematical Models: Uses and 

Limitations” – Simulation, Apr 70 

 Don’t apply a model until you understand 
the simplifying assumptions on which it is 
based and can test their applicability.  

 Distinguish at all times between the model 
and the real world. You will never strike oil   
by drilling through the map! 
 

 The purpose of notation and terminology 
should be to enhance insight and facilitate 
computation – not to impress or confuse 
the uninitiated 
 
 

Solomon Wolf Golomb 
(1932)  mathematician and 
engineer and a professor of 
electrical engineering at the 
University of Southern 
California.  



Model-Driven Engineering for CPS 
• Most applications of formal methods 

only concern the discrete-event or 
discrete-time parts of the CPS (the 
”controller” part) 

• Long and complicated tool chains 



CPS Research Agenda 

• Model-Driven Engineering 
• Modeling Tools 
• Uncertainty Managagement 
  

 



Modeling Tools 
• Frameworks that allow seamless integration of  tools 
• Or multi-domain/multi-MoC tools 

– Ptolemy II 
– Simulink  

• S-functions allow extensions 
– SimScape  equation-based 
– SimEvents  discrete-event simulation 
– StateFlow  FSM 
– TrueTime  rt kernels + networks 

• Equation-based DAE languages have  many advantages for the 
physical parts 
– Modelica, SimScape, Acumen, .. 
– However physical system modeling is difficult 

• Large threshold 
• Problems with high index, initializations, efficient code 



• The most mature equation-based DAE 
language  

• Several commercial tools, e.g. Dymola 
• Two open source tools 

– OpenModelica 
– JModelica 

• Discrete-time and discrete-event parts 
designed based on  
synchronous language ideas 
– Well-defined semantics based on  

clock inference 
• Automatic code generation 

Modelica 



JModelica 
• Java + C + Python 
• JastAdd 

– AspectJ 
– Reference attribute  

grammars 

• Optimica 
– Language extension 

for representing 
optimization problems 

• Lund University + Modelon 
 



Functional Mock-Up Interface (FMI) 

• Model exchange standard  
– Open source 
– Non-proprietary 
– cp. S-functions 

• Model exchange 
 

• Co-simulation 
 

Tool 

 Solver 

FMU 

 Model 

Tool 

 

FMU 

 

 

Model 

Solver 



TrueTime 

• Co-simulation of controller task 
execution, network transmissions,  
and continuous-time plant  
dynamics 
 

• Simulink using S-functions 
 



CPS Research Agenda 

• Model-Driven Engineering 
• Modeling Tools 
• Uncertainty Managagement 
  

 



Manage uncertainty 
• Resource-sharing in our implementation 

platforms 
– Cores sharing caches 
– Threads sharing cores 
– Applications sharing computers 
– Communication links sharing  
– media 

• Inherent in the physical domain 
• Modeling, analysis, simulation, verification, 

…… 
 

 



Automatic Control and CPS 

1. Implementation of feedback control systems 
on resource-constrained HW platforms 
– Control and scheduling co-design 
– Temporal robustness (jitter and delays) 
– Event-based control and Self-triggered control 
– Will not talk about this 

2. Control of computer systems 
– The main topic of my lecture 
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Control of Computer Systems 

• Apply control as a techniques to manage uncertainty and 
achieve performance and robustness in computer and 
communication systems. 

• Applications in 
– Internet 
– Servers and data centers, i.e., the cloud 
– Cellular phone systems 
– Embedded systems 



Control of Computer Systems 

Alternative names: 
• Dynamic/adaptive resource management 

– Control as means for managing limited resources 
– Adaptivity from a CS point of view 

• Feedback computing/scheduling 
• Autonomous/autonomic computing 
• Reconfigurable computing 



Why? 
• System complexity increases 



Complexity 

29 



Why? 
• System complexity increases 
• Complete information about all use cases and their resource 

requirements is often not available at design-time 
• Green computing  power consumtion constraints 

increasingly important 
• Increased hardware density  thermal constraints 

increasingly important 
• Hardware platforms increasingly complex  increasing 

difficulties in providing good off-line estimates of resource 
consumption 

• Hardware variability increases 
• Increased requirements on dependability 
• Hardware increasingly often support adaptivity 
• Increased requirements on predictability in the cloud 



Control of Computer Systems 
• Active research area since around 2000 
• However, feedback has been applied in ad hoc ways 

for long without always understanding that it is 
control, e.g. TCP/IP 

• Control of computing systems can benefit from a lot 
of the classical control results 
– However, several new challenges 
– First principles-based modeling not so natural 
– Complex dynamics no longer the problem 

 



Some Examples 
Example 1: A multi-mode embedded system where the resource 
requirements for all the tasks in all the modes are known at design 
time 

– Use schedulability analysis to ensure that the deadlines are met in all 
modes and then use a mode-change protocol that ensures that all 
deadline also are met during the transition between the modes 

 
Example 2: An embedded system with a constant set of hard-RT 
applications/tasks but where the WCET analysis possible on the 
selected hardware is too pessimistic and leads to too low resource 
utilization or where the age- or process-induced variability is too large 

– Measure the actual resource consumption and adjust, e.g. the task 
rates in order ensure that the schedulability condition is fulfilled 



Some Examples 
Example 3: Open embedded systems where the number of 
applications and their characteristics change dynamically (e.g, 
smartphones)  

– Measure resource consumption and decide how much 
resources that should be allocated to each application in order 
to maximize QoS/QoE while minimizing power consumption and 
avoiding thermal hotspots 

 
Example 4: A distributed embedded system where one for 
dependability reasons must be able to ensure system 
functionality also in case of single-node failures 

– Detect node failures and then adapt the task mapping and the 
schedules so that the system performance is still acceptable 



Some Examples 
Example 5: An FPGA-based system with multiple 
modes that is too large to fit in a single FPGA or 
where the power consumption will be too high  

– Use run-time reconfiguration to change the FPGA 
function dynamically 

Example 6: A cloud deployed web-service 
application where the incoming load varies a lot 
over time  

– Dynamically add or remove virtual machines to match 
the load (elasticity control/auto-scaling) 

 



Computer Internals 

• Execution/service 
times 

• Queuing delays 
• Discrete Event 

Dynamic System 
– Tasks/requests arrive 

(queued) and depart 
(dequeued) 

 



(Cloud) Server Systems 
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Modeling and Control Formalisms 
• Discrete Event Formalisms 

– Automata theory (e.g., Supervisory Control Theory) 
– Petri nets 
– Often problem with scalability 
– Queuing theory 

• Continuous-Time Formalisms 
– Liquid (”flow”) models + continuous-time control 
– Queues = tanks, computations = flows 
– Average values assuming large number of 

requests/jobs 
– Sometimes event-driven sampling and control 

 



The Feedback Principle 



The Feedforward Principle 



Example: Feedforward Based Cruise 
Controller 



Example: Feedback-Based Cruise 
Controller 



Example: Feedback + Feedforward 
Based Cruise Controller 



Common Feedback Controllers 

• Proportional Controller (P) 
 
 

• Proportional and Integral Controller (PI) 
 
 

• Proportional, Integral and Derivative 
Controller (PID) 



Example: Queuing System 



Example: Queue Length Control 



Queue Length Control: Simulation 



Queue Length Control: Model 



Queue Length Control: Model 



Queue Length Control: Control Signal 



Queue Length Control: Linearization 



Queue Length Control: P-control 



Queue Length Control: P-Control 



Queue Length Control: PI-control 



Queue Length Control: PI-control 



PI-control on Real Queue 



Adaptation Mechanisms 

• Open Loop Adaptation 
 
 
 
 

– Feedforward 
– Assumes perfect information (model) of the 

system 
– Assumes that there are no external disturbances 

System 
Adaptation 
Mechanism Trigger 

event Actuators 



Adaptation Mechanisms 

• Closed Loop Adaptation 
 
 
 
 

– Feedback 
– Adaptation Mechanism == Controller 
– Requires sensors 
– May cause unstabilities 

 

System Adaptation 
mechanism 

Disturbances 

Sensors Actuators 

Feedback Loop 



Adaptation Formulations 
• Often formulated as an optimization-problem or as a 

control-problem 
• Optimization Formulations: 

 
 
                                                  or  
 
 

 
 

– Performed off-line, online when some change has 
occurred or periodically, off-line+on-line, … 

– ILP, Bin-packing, MILP, QP, NLP (B&B, GA, CP …) 
– Centralized or distributed 

maximize/minimize resource-consumption objective  
s.t. perfomance constraint 

maximize/minimize performance objective  
s.t. resource consumption constraint 



Adaptation Formulations 

• Control Formulations: 
– System modelled as (linear) dynamic system 
– Classical linear control design  

techniques 
• PID 
• LQG 
• …. 

– Designed to obtain a stable closed loop system 
with desired dynamic performance 
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Adaptation Formulations 
• Combined Optimization and Control Formulations: 

– Model-Predictive Control (MPC) 
• Optimization problem solved each sample 
• Only the first control signal is used (receding horizon principle) 
• Optimization problem ban be solved off-line (explicit MPC / 

multiparametric programming)  piecewise affine mapping 

– Feedforward + feedback structures 

System Adaptation 
Controller 

Disturbances 

Sensors 

Feedback Loop 

+ 

Optimization 
Feedforward 

∆ 



Actuators 

• Change the applications / threads 
– For example: 

• Accept or reject decision 
• Change the rates of periodic processes 
• Change between alternative versions (service/quality levels) 
• Anytime formulations 

– Often requires support from the applications 
• Change the mapping of the application onto the 

execution platform 
– Priority 
– Schedule 
– Processor allocation 



Actuators 
• Change the execution platform 

– Number of processors (virtual or physical) 
• DPM techniques 

– Speed of processors 
• DVFS 
• Change the bandwidth of the VM or bandwidth server  

– Functionality (hardware-based systems) 
• Micro-code in soft-cores 
• FPGA netlist 

 



Sensors 
• What we can (or would we like to) measure? 

– Application performance 
• Obtained QoS 
• Throughput 
• Latency 

– OS / CPU level 
• CPU cycles / task 
• CPU utilization 
• Deadline miss ratio 

– Power and temperature 
• Power consumption for each unit 
• Temperature of each heat source (core, coprocessor, 

memory controller, ….) 



Problems of Feedback 

Feedback can introduce new problems: 
• The feedback mechanism itself consumes resources 
• Harder to provide formal guarantees about the system  not suitable for 

safety-critical hard real-time application, or? 
 

 



What about Safety-Critical Systems? 
• In many cases control systems 
• Due to the feedback errors in the  

space domain are natural 
• Control system designed using 

– Numerous approximations 
• Model reduction, linearization, ….. 

– Verified through extensive simulations 
– Large safety margins when selecting, e.g., sampling 

periods 
• Why is it then so unthinkable to use feedback also 

at the implementation level?  
 



Problems of Feedback 

Feedback can introduce new problems: 
• The feedback mechanism itself consumes resources 
• Harder to provide formal guarantees about the system  not suitable for 

safety-critical hard real-time application, or? 
• Adds to the complexity 
• May complicate the design process (modeling, V&V, …) 
• Requires tuning 
• Sensors and actuators are necessary 
• Models are necessary 

– Of the system 
– Of the feedback mechanism itself 

• Feedback may cause instability 
– In my mind stability is much overrated 

 



Problems of Feedback 

Feedback can introduce new problems: 
• The feedback mechanism itself consumes resources 
• Harder to provide formal guarantees about the system  not suitable for 

safety-critical hard real-time application, or? 
• Adds to the complexity 
• May complicate the design process (modeling, V&V, …) 
• Requires tuning 
• Sensors and actuators are necessary 
• Models are necessary 

– Of the system 
– Of the feedback mechanism itself 

• Feedback may cause instability 
– In my mind stability is much overrated 

• Feedback may introduce measurement noise 
– Only when you measure physical entities! 
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ACTORS 

• Adaptivity and Control of Resources in  
Embedded Systems 

• EU FP7 STREP project  
– 2008-2011 
– Coordinated by Ericsson (Johan Eker) 
– Lund University, TU Kaiserslautern, Scuola Superiore 

Sant’Anna di Pisa, EPFL, AKAtech, Evidence 

• Media applications (soft real-time) for smart phones  
• Control applications 

CPU 



ACTORS: Key Ingredients 
1. Data-Flow Programming 

– CAL Actor Language 
 

 
 
 
 

 
2. Adaptive Resource Management of service-level aware 

applications 
– Soft real-time media applications 
– Control applications 

 
 
 



Service Level-Aware Applications 
• Application knob  

– Decides the QoS achieved and the amount resources 
required 

– High SL  high QoS & high resource usage 
– Low SL  low QoS & low resource usage 

• Discrete 
– ”application modes” – the case in ACTORS 

• Continuous 
– e.g., sampling rate in a controller 

 



Service level example 

• SL: Resolution and/or frame rate of a 
video stream 

• QoS and required CPU for encoding and 
decoding depends on the SL 

SL1: 640x480 SL2: 800x600 SL3: 1024x768 
CPU: 30% CPU: 60% CPU: 90% 



ACTORS: Key Ingredients 
 
3. Reservation-Based CPU Scheduling 

 
 
 
 

– SCHED_EDF 
• Partitioned multi-core EDF scheduler 
• Hard CBS reservations  
• Each reservation may contain 

several threads 
• Hierarchical scheduler with SCHED_EDF tasks  executing on a higher 

level than ordinary Linux tasks 

4. Multicore Linux Platforms 
– ARM 11, x86 

 
 

10 % 

45 % 25 % 

20 % • Periodic Bandwidth Servers 
• Constant Bandwidth Server 

Period 

Budget 

Virtual processors (VPs) 



ACTORS: Dataflow Modeling 
• Data flow programming with actors (Hewitt, Kahn, etc) 

– Associate resources with streams 
– Clean cut between execution specifics and algorithm design 
– Strict semantics with explicit parallelism provides foundation for 

analysis and model transformation 

• CAL Actor Language (UC Berkeley, Xilinx) http://opendf.org 
– Part of MPEG/RVC 

http://opendf.org/


CAL (Cal Actor Language) 
• A language for writing dataflow actors 

– designed at UC Berkeley in 2002/3 (Janneck & Eker) 
– compilers to hardware and software 
– standardized by MPEG/ISO in 2009 
– (subset RVC-CAL) 



 78 

dataflow 
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actors & actions 

Actions 

State 
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input/output 

actor ID () In ==> Out :  
 
    action In: [a] ==> Out: [a] end 
end 

actor Add () Input1, Input2 ==> Output: 
 
    action [a], [b] ==> [a + b] end 
end 

actor ID () In ==> Out :  
 
    action [a] ==> [a] end 
end 

actor AddSeq () Input ==> Output: 
 
    action [a, b] ==> [a + b] end 
end 



 81 

nondeterminism 

actor Merge () Input1, Input2 ==> Output: 
 
    action Input1: [x] ==> [x] end 
    action Input2: [x] ==> [x] end 
end 

actor Split () Input ==> Output1, Output2: 
 
    action [x] ==> Output1: [x] end 
    action [x] ==> Output2: [x] end 
end 

... and so is this. 

This actor is non-deterministic... 



 82 

guarded actions 

actor SplitPred (P) Input ==> Y, N: 
 
    action [a] ==> Y: [a] 
    guard P(a) end  
 
    action [a] ==> N: [a] 
    guard not P(a) end  
end 

actor Select () S, A, B ==> Output: 
 
    action S: [sel], A: [v] ==> [v] 
    guard sel end  
 
    action S: [sel], B: [v] ==> [v] 
    guard not sel end 
end 
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actors with state 

actor Sum () Input ==> Output: 
 
    sum := 0; 
 
    action [a] ==> [sum]  
    do 
        sum := sum + a; 
    end 
end 

refers to state 
at the end 
of the action execution 
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State dependent guards & action schedules 

actor PingPongMerge ()  
      Input1, Input2 ==> Output: 
 
    s := 0; 
 
    action Input1: [x] ==> [x]  
    guard s = 0 
    do  
        s := 1; 
    end 
 
    action Input2: [x] ==> [x] 
    guard s = 1 
    do  
        s := 0; 
    end 
end 

actor PingPongMerge ()  
      Input1, Input2 ==> Output: 
     
    A: action Input1: [x] ==> [x] end 
 
    B: action InputB: [x] ==> [x] end 
 
    schedule fsm s1: 
        s1 (A) --> s2; 
        s2 (B) --> s1; 
    end 
end 
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priorities (when order matters) 

actor ProcessStream () In, Config ==> Out: 
 
    c := initialConfig(); 
 
    action Config: [newC] ==>  
    do 
        c := newC; 
    end 
     
    action In: [data]  
           ==> [compute(data, c)] end 
end 

actor ProcessStream () In, Config ==> Out: 
 
    c := initialConfig(); 
 
    config:  action Config: [newC] ==>  
             do 
                 c := newC; 
             end 
     
    process: action In: [data]  
                    ==> [compute(data, c)] end 
 
    priority 
        config > process; 
    end 
end 

how to enforce firing of one action  

over another? 

intuition: 

   among the enabled actions, 

   one with highest priority is 

   fired 

NOTE: behavior is  

            timing-dependent! 
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building a simple network: Sum 

actor Z (v) In ==> Out: 
 
  A: action ==> [v] end 
  B: action [x] ==> [x] end 
 
  schedule fsm s0:  
    s0 (A) --> s1; 
    s1 (B) --> s1; 
  end 
end 

actor Add () A, B ==> Out: 
  action [a], [b] ==> [a + b] end 
end 

network Sum () In ==> Out: 
 
entities 
  add = Add(); 
  z = Z(v=0); 
 
structure 
  In --> add.A; 
  z.Out --> add.B; 
   
  add.Out --> z.In; 
 
  add.Out -- > Out; 
end 

Z(v=0) 

Add 

Sum 

B 

A 

Out Out 

Out 

In 

In 



   
   

     
 
 

     
    

 
   

   
 

 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

     
     

   
   

     
 
 

     
    

 
   

   
 

 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

     
     

 
CAL History 

(Picture by Janneck, Jörn & Marco Mattavelli) 

http://en.scientificcommons.org/j%C3%B6rn_w_janneck


   
   

     
 
 

     
    

 
   

   
 

 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

     
     

   
   

     
 
 

     
    

 
   

   
 

 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

     
     

More Results 
› CAL Actor Language 

› Standardized as part of MPEG-B RVC-CAL (ISO 23001-4) 
› Ptolemy spin-off  

› Other demos 
› AMR-WB encoder, HW/SW partition support demo, 3D video, crypto library 

› Documentation 
– 8+ PhD theses (EPFL, U Maryland, EPFL, Åbo) 
– 20-30 Master’s Theses 
– Tons of papers. 

› http://www.hooklee.com/Research/RVC_CAL_Bibliography.html 

› Groups 
› EPFL, INSA/Rennes, LTH & Halmstad, Turku/Åbo, U of Surrey 

› Tools 
– OpenDF (Xilinx -> Lund University)  
– ORCC (Open RVC-CAL Compiler - Orcc) 
– Caltoopia  
– Ptolemy II  

http://www.hooklee.com/Research/RVC_CAL_Bibliography.html
http://orcc.sourceforge.net/


Synchronous Dataflow (SDF) [Lee87]  

• Actors consume and produce a fixed number 
of tokens in each firing 

• Allows for extensive compile-time analysis 
– Static scheduling (no risk of deadlock) 
– Static allocation of buffers (no unbounded buffering) 
– Possible to reason about performance metrics 

• Possible to generate tight code 



SDF Example 

A D 

E 

C 

B F 

1 

2 

2 2 

1 

5 

1 

1 

5 

2 

1 1 

2 

1 

Token rates are shown 
at input/output ports 

There may be sources and 
sinks 

There may be cycles, 
but initial tokens (delays) 

are required to avoid deadlock 

The “dots” are 
duplicators 

1 1 

1 



Cyclo-Static Dataflow (CSDF) 

E 
C 

1,2 1,3,1 2,1 1 

The token rates varies 
periodically 

Also statically schedulable 



Dynamic dataflow (DDF) [Lee95]  

• Data dependent action firing 
• Not statically schedulable 



ACTORS: Model Transformations 
• Merging of actors within statically schedulable 

regions 
– Faster execution on single processors 

• Splitting of actors  
– Express fine-grained parallelism 
– FPGA platforms 



ACTORS Applications 

• Eventually, the ACTORS resource management 
approach should be applicable to arbitrary 
applications 

• Initially, only CAL applications 
• Two types: 

– Static CAL applications 
– Dynamic CAL applications 



Adaptivity & Control of 
Resources in Embedded  Systems 

Static CAL Applications 

Dataflow graph can be mapped to a static 
precedence graph (DAG) 
– Task activation graph 

“SDF-like” dataflow graphs 
E.g. control applications 
Schedulability theory can be applied 
– Assuming WCET estimates 
– Generates reservation parameters  
 



Adaptivity & Control of 
Resources in Embedded  Systems 

Dynamic CAL Applications 

Dataflow graph cannot be mapped to a static 
precedence graph 
Best-effort scheduling 
E.g. multimedia applications 



Adaptivity & Control of 
Resources in Embedded  Systems 

CAL Run-Time System 
The execution environment for CAL applications 
Provides system actors for interfacing to environment 
Dynamic CAL applications 
– Run-time thread 

• While (1) { 
Select actor(); 
Execute actor(); 
} 

 



ACTORS: Key Ingredients 
 
3. Reservation-Based CPU Scheduling 

 
 
 
 

– SCHED_EDF 
• Partitioned multi-core EDF scheduler 
• Hard CBS reservations  
• Each reservation may contain 

several threads 
• Hierarchical scheduler with SCHED_EDF tasks  executing on a higher 

level than ordinary Linux tasks 

4. Multicore Linux Platforms 
– ARM 11, x86 

 
 

10 % 

45 % 25 % 

20 % • Periodic Bandwidth Servers 
• Constant Bandwidth Server 

Period 

Budget 

Virtual processors (VPs) 



Overview 

SCHED_EDF hierarchical scheduler  
• Partitioned multi-core scheduler 
• Hard CBS Reservations 
   - one or several threads 
 

Resource Manager 
•  C++ framework 
•  DBus IPC to application 
•  Control groups API to scheduler 

•  CAL Dataflow Applications 
•  Dataflow run-time system  

•  Legacy applications through  
    wrapper 

• All threads within one VP 

DBus 
interface 

Control 
Groups 

interface 

Cores 



Static Information 

Service Level QoS BW  Requirement BW distribution Timing Granularity 

0 100 240 60-60-60-60 20 ms 

1 75 180 45-45-45-45 20 ms 

2 40 120 30-30-30-30 20 ms 

Appl. Importance 

Appl 1 10 

Appl 2 20 

Appl 3 100 

Default 10 

From applications to RM at registration: 
      - Service Level Table 
 
 
 
 
 
 
     
     -  Thread IDs and how they should be grouped 

From system administrator to RM at startup: 
   - Application Importance  



Dynamic Inputs 

Used Budget (Bandwidth): 
• average used budget 

Exhaustion Percentage: 
• percentage of server periods in which the  
  budget was exhausted 

Happiness: 
• boolean indicator of whether the QoS  
  obtained  corresponds to what could be  
  expected at the current service level 



Outputs 

Service Level 

Reservation Parameters: 
• Budget 
• Period 
• Affinity 
  - RM may migrate VPs 



Dataflow Analysis 

• Static partitioning 
• Automatic analysis for SDF/CSDF actors 
• Automatic merging of SDF/CSDF actors to 

improve run-time performance 

Partition 1 

Partition 2 

Partition 3 

Partition 4 



• One thread per partition executing its actors using round-robin 
• One thread per “system actor” (IO, time) 
• The threads from the same partition are executed by the same 

virtual processor 
• If possible the VPs are mapped to different physical cores in order 

to enable parallel execution  

IO 

Thread 

CAL Run-Time System 

Thread 

VP 

VP 

Core 1 

Core 2 



Resource Manager Functionality 
• Assign service levels 

– When applications register or unregister 
– Formulated as a ILP problem 

• Importance as  weight 

– glpk solver  

• Mapping & bandwidth distribution 
– Map reservations to cores 
– Distribute the total BW to the reservations 

Two Approaches: 
• Spread out the VPs and balance the load 
• Pack the VPs in as few cores as possible 

– Allow turning off unused cores 

– Bin packing 
 

• At most 90% of each core is used for SCHED_EDF tasks 
 
 



Resource Manager Functionality 
 

• Separate service level assignment and BW 
Distribution  
– The best service level assignment may lead to an 

unfeasible BW distribution 
– Approach 1: 

• New SL assignment that generates the next best 
solution  

• New BW Distribution 

– Approach 2: 
• Compress the individual VPs 

 



Resource Manager Tasks 
• Bandwidth adaptation 

– Adjust the servers bandwidth dynamically based on measured resource usage and 
obtained happiness 
 
 
 
 
 
 
 
 

– If the application is unhappy the bandwidth is increased until the application is happy 
again 

 

Changes the AB so that the 
UB lies sufficiently close: 
 
 
 

EP 

EPSP 

 
 
 

Changes what is 
meant by sufficiently 
close based on EP: 



Multiple bandwidth adaptation strategies 
Strategy 1: 

A VP may never consume more bandwidth 
than what was originally assigned to it 
BW controller may reduce the BW if not used 

Strategy 2: 
A VP may use more resources than  
originally assigned to it 

If there are free resources available, or 
If there are VPs of less important applications that  
use more BW than originally allocated to them 
In the latter case the less important applications  
are compressed 
All applications are always guaranteed to obtain their originally assigned values 
(can never be compressed beyond that) 
 

Resource Manager Tasks 

108 

May only be reused 
by ordinary Linux tasks  

May also be reused 
by SCHED_EDF tasks  



RM Support Software 
• GUI 

• VP to core assignment 
• AB, UB, and EP 
• Service Level Table 
• Event history 
• Itself an application under the control 

of the RM 

• Load Generator 
• Generates artificial load for testing 

• Application Wrapper 
• Wrapper for non-Actors aware 

applications 
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MPEG-4 Video Decoding Example 

• MPEG-4 SP decoder implemented in CAL 
• Connected to an Axis network camera 
• Service level changes results in commands  

from the decoder to the camera to 
reduce the frame rate and/or  
resolution 



MPEG-4 Video Decoding Demonstrator 

Application 
unhappy 

More important 
application 
started. SL 
decreased 

Application 
terminated. SL 
increased again 



Feedback Control Demonstrator 

• Industrial robot balancing 
an inverted pendulum 

• Pendulum controller in CAL 
• Service level changes correspond to 

changes in sampling period 

• Ball and Beam Processes 
• Controller in CAL 

• Service level changes correspond to 
changes in sampling period 

• MPEG-4 Video Decoder 
• Service level changes correspond to 

changes in resolution/frame rate 

 



Feedback Control Demonstrator 





Drawbacks 
• ILP does not scale well 
• Requires a lot of information from the 

applications 
• More natural if the applications select their 

service levels and the resource manager 
adjust the vp size 

 
 The game-theory inspired approach 



Content 
• Cyber-Physical Systems – My Personal View 
• Control of Computer Systems 

– Motivation and Background 
– A simple queue length control example 

• Resource Management for Multi-Core Embedded 
Systems 
– The ACTORS Resource Manager 

• Video demo 
– Game-Theory Resource Manager 

• The Cloud 
– Problems and Challenges 
– Brownout-inspired resource management for web-service 

applications 
• A CPS Story 

 
 

 



Towards decentralization 
• The resource manager allocates resources 

and applications choose their service levels 
based on current performance 



Matching function 
Measures how well the resources assigned 
to the application (vp size) matches the 
resource requirements (SL) of the 
applications 

The matching is scarce 

The matching is abundant 

The matching is perfect 



The matching is scarce 
  - increase vp or 
  - decrease SL 

The matching is abundant 
 - decrease vp or 
 - increase SL 

The matching is perfect 



Application weights 

• 𝜆𝑖 ∈  0. . 1  
• 𝜆𝑖 = 0 means that only the application 

should adjust 
• 𝜆𝑖 = 1 means that only the resource 

manager should adjust 



Matching Function 
• Application executes a series of jobs 

– Execution time 𝐶𝑖 = 𝑎𝑖𝑠𝑖 

– Response time for each job  𝑅𝑖 =  𝐶𝑖
𝑣𝑖

= 𝑎𝑖𝑠𝑖
𝑣𝑖

 

– Want this to be equal to the deadline 𝐷𝑖  
– Hence 

 
 

– Can be measured from job start and stop times  
– Depends on service level and virtual processor 

speed 

𝑓𝑖 =
𝐷𝑖
𝑅𝑖
− 1 =

𝐷𝑖𝑣𝑖
𝑎𝑖𝑠𝑖

 − 1 = 𝛽𝑖
𝑣𝑖
𝑠𝑖
− 1 



Resource Manager  
At each step: 
• Measure 𝑓𝑖  for all the applications 

– The applications report the start and stop of each job by writing to 
shared memory 

– RM reads from shared memory and calculates the response time 
• Updates the virtual processors: 

𝑣𝑖 𝑘 + 1 =  𝑣𝑖 + 𝜀𝑅𝑅 𝑘 −𝜆𝑖𝑓𝑖 𝑘 + �𝜆𝑗𝑓𝑗 𝑘 𝑣𝑖 𝑘
𝑛

𝑗=1

 

𝜀𝑅𝑅 𝑘 =  
1

𝑘 + 1
 



Service Level Adjustment 
• Should set 𝑠𝑖 so that 𝑓𝑖 becomes 0 
• Naive approach: 𝑠𝑖 𝑘 + 1 =  𝛽𝑖𝑣𝑖(𝑘 + 1)  

– Assumes knowledge of 𝛽𝑖 
• Instead estimate 𝛽𝑖 

𝛽𝑖 = (1 + 𝑓𝑖 𝑘 )
𝑠𝑖(𝑘)
𝑣𝑖(𝑘)

 

• Gives 

𝑠𝑖 𝑘 + 1 = (1 + 𝑓𝑖 𝑘 )
𝑣𝑖 𝑘 + 1
𝑣𝑖 𝑘

𝑠𝑖(𝑘) 

– Continuous service levels 
– Robustified 

 



Game Theory 

• Provides convergence results and results 
about stationary values 

• For example 
– A stationary point satisfies the following condition 

• The matching function is zero 
OR 
• The service level is the smallest possible AND the 

matching function is negative 

 

 



Implementation 

• Using SCHED_DEADLINE 
– New EDF+CBS scheduling policy in Linux 
– Developed by Evidence within ACTORS 

 



Evaluation 
• Convergence of virtual processors 
• Four applications 

λ1 = 0.1, λ2 = 0.3, λ3 = 0.2 and λ4 = 0.5 
 
 
 
 
 

• Resources assigned proportinally to the 
normalized weights 



Evaluation 
• Multicore 
• 12 identical 

apps 
• Different 

weights 
– 1 – high 
– 12 – low 
– 2-11 – medium 

• Resources 
proportional to 
the service 
levels 
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• As soon as you use any networked computing 
unit (laptop, smart phone, sensor device, …) 
the likelihood that the computations will be 
performed in a data center somewhere in the 
cloud, rather than locally, is very large 

• News, mail, photos, tickets, books, clothes, 
maps, social media, television, music, banking, 
administrative systems, technical software, 
……. 
 



The Datacenter 



What's inside? 

Rack or blade-mounted servers 
 

A modern Amazon data center consists of 50-80.000 physical servers 
Each server typically has 4-8 cores 

 

 



What's inside? 

Networking 



What's inside? 

Power supplies 



What's inside? 

Cooling 



What runs in the cloud? 
• Everything that can execute on physical 

hardware can in principle do so on virtual 
hardware in the cloud 
– But constraints on latency, throughput, IO, … 

• Two major classes: 
– Web service applications: 

• E-Commerce 

– Massively parallel applications 
• Map/Reduce programming model (HADOOP), MPI 
• Google, Facebook, Twitter, ….. 

 

 



Problems with the Cloud 

• Low level of determinism and predictability 
– No hard performance guarantees 



Problems with the Cloud 

• Low level of determinism and predictability 
– No hard performance guarantees 

• Data centers consume a lot of energy 



Cloud Energy Consumption 

Facebook in Luleå, Sweden will consume 1 TWh/year – approx 
40.000 family houses 



Problems with the Cloud 

• Low level of determinism and predictability 
– No hard performance guarantees 

• Data centers consume a lot of energy 
• Data centers have low utilization 



Datacenter Utilization 

5000 google servers over 6 months 
Source: “The Datacenter as a computer”, Barroso et al 



Problems with the Cloud 

• Low level of determinism and predictability 
– No hard performance guarantees 

• Data centers consume a lot of energy 
• Data centers have low utilization 

 
            Room for better resource management  
            techniques  
             
 



Content 

• Motivation and Background 
– A simple queue length control example 

• Resource Management for Multi-Core Embedded 
Systems 
– The ACTORS Resource Manager 

• Video demo 
– Game-Theory Resource Manager 

• The Cloud 
– Problems and Challenges 
– Brownout-inspired resource management for web-

service applications 
 

 



From Embedded to the Cloud 

• Apply the game-theoretic resource manager 
to cloud applications 

• Focus on state-free, request-based 
applications 



Problem: Unexpected Events 

• 25% of end-users leave if load time > 4s* 
• 1% reduced sale per 100ms load time* 
• 20% reduced income if 0.5s longer load time** 

 
* Amazon   ** Google 



Standard Practice 

• Overprovisioning 
– Economically impractical 



Brownouts 
 We borrow from the concept of  

brownouts in power grids 
 A brownout-compliant application can 

degrade user performance when needed to 
face unexpected conditions 



Brownout 



Brownout 



Brownouts 
 We borrow from the concept of  

brownouts in power grids 
 A brownout-compliant application can 

degrade user performance when needed to 
face unexpected conditions 

 We assume that the reply to a request 
consists of a mandatory and an optional part 

 During overload and/or lack of resources the 
percentage of requests that also receives the 
optional part can be decreased 



Brownout Examples 

• E-commerce systems 
with recommendations 

• Content adaptation in  
web server applications 

• ...... 



Always Service Optional Part 



Never Service Optional Part 



With Brownout 



Brownout Control Loop 

• Measured variable: Response time (average or 95% 
percentile) 

• Control signal: Dimmer value (percentage of requests 
for which also the optional parts are calculated) 

• Setpoint: 2 seconds 



Brownout Controllers 

• Adaptive PI and/or PID controllers 
• Adaptive deadbeat controller 
• Feedforward + feedback controller 

– Assumes knowledge of average service time for 
mandatory and optional parts 

 



Brownout Resource Management 



Resource Management Details 

• Applications sends value of matching function 
 
 
• Resource manager computes size of virtual machine 

 
 

• Proven to be fair and converge using game theory 



Evaluation 
• Applications 

– RUBiS: eBay-like prototype auction website 
• Added a recommender 

– RUBBoS: Slashdot-like bulletin board website 
• Added a recommender 
• Marked comments as optional 

– Effort in lines of code: 
 

 



Evaluation 
• Hardware 

– One physical machine 
– Two AMD Opteron 6272 processors 
– 16 cores / processor 

• Hypervisor 
– Xen 
– Each VM contains  Apache web server, PHP 

interpreter, MySQL server, and brownout controller 
• Client load generator 

– Custom built – httpmon 
– Closed loop model 

• Clients with think time 



Experimental Results 

• RUBiS flash crowds 



Experimental Results 

Four cores 
used 



Load Balancing 
• Multiple replicas 

– Support scaling 
– Robust towards faults 

• Load balancing 



Existing Load Balancers 
• Dynamic load balancers often measure 

response times and decide based on that 
– FRF, FRF-EWMA, 2RC, Predictive ... 

• Does not work well in the presence of 
brownout control 
– the replica controllers keep the response times 

close to the setpoint 

 



Brownout-Aware Load Balancing 

• New load balancing schemes have been 
developed that make use of the dimmer values 

• Piggyback the dimmer values to the replies going 
back to the load balancer 

𝜃𝑛 

𝜃1 



Challenges 
• Modeling of resources and of workload 

– Very difficult to predict peaks 
• Scalability 

– What work for 500 servers will most likely not work 
for 50 000 servers 

• Everything will break down all the time 
– Netflix chaos monkey 

• Difficult to isolate the phenomenon under study 
• Only industry have real data centers 

– Very industry-driven area 
– Google, Microsoft, ….. 



Process Automation Comparison 

• Compare with process  
industry in the 1940-50s 
– Manual control 

• Next step PI(D) + 
– Feedforward, cascade, ratio 

selector logic, split-range, mid- 
range, …… 

– Controller patterns 
• Flow control, temperature control, ….. 

• Now  
– MPC control + optimization-based long-term planning 
– But still PI(D) at the lowest level 

 



Process Automation Comparison 
• Lessons: 

– Keep it simple (”KISS”) 
– Start with classical, e.g. PID, control techniques 
– Add optimization control on top of  this if required 

• Differences: 
– Flexibility and generality 
– Behavior not governed by laws of nature 

• Maybe one have to constrain the flexibility in 
order to achieve determinism 



The Future Distributed Cloud 
• 5G opens up for new application classes 

– Mission-critical applications, e.g., closed loop control 
– Requirements on low latency and high availability –> 

predictability 

• Network and cloud convergence 
– Boundary between the network and datacenters disappears 
– Telco cloud, mobile cloud, infinite cloud 
– Computations to be dynamically deployed in all types of nodes, incl base stations and 

remote data centers 
– The Resource Management Problem: To decide how much and what type of resources 

to allocate and where and when to deploy them. 



Feedback Computing 
• Control as a technique to manage uncertainty, achieve 

performance and robustness and/or control power and 
temperature in computer and communication systems 

• Autonomic Computing 
 

Embedded Systems Data Centers 

Desktop Systems 

MPSoCs 

Server Systems 

The Cloud 
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CPS Software: Emperor’s New Clothes or Not? 

Karl-Erik Årzén, Lund University, Sweden 

An Embedded Controls Point of View 



HC Andersen 



CPS Software: Emperor’s New Clothes or Not? 
An Embedded Controls Point of View 



Emperor’s New Clothes - YES 
• Close interaction with the physical 

environment has always been crucial both in 
embedded systems and control 

• Same thing with limited computing resources 
• Networks is also nothing new 

– Distributed embedded systems 
– NoC 
– Networked Control 
– …….. 

• CPS is mostly a matter of scale  



Emperor’s New Clothes - NO 
• Traditional embedded systems 

– Too simplified view of physical part 
– Generator of events with deadlines 

• Periodic, aperiodic, …… 
– Too strong emphasis on worst-case design and 

hard guarantees 
• Traditional control 

– Too simplified view of cyber part 
• Periodic execution 
• Zero or constant latencies 
• Parallel 

 
 
 



The Emperor’s New Clothes – CPS Version 



A King 



Or Queen  



Embedded Systems Coat 



Control Coat 



Internet of Things Coat 



System-of-Systems Coat 





CPS Coat 
 The Universal Coat of All Colors 



Questions? 



Further Information 
• ACTORS Resource Manager 

– E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K-E. Årzén, V. 
Romero, C. Scordino: "Resource Management on Multi-core Systems: 
the ACTORS approach“, IEEE Micro, 31:3, pp. 72-81, May 2011 

• Game-Theoretical Resource Manager 
– Georgios Chasparis, Martina Maggio, Karl-Erik Årzén, Enrico Bini: 

"Distributed Management of CPU Resources for Time-Sensitive 
Applications". In 2013 American Control Conference, Washington DC, 
USA, June 2013 

– Martina Maggio, Enrico Bini, Georgios Chasparis, Karl-Erik Årzén: "A 
Game-Theoretic Resource Manager for RT Applications". In 25th 
Euromicro Conference on Real-Time Systems, ECRTS13, Paris, France, 
July 2013 

– Georgios Chasparis, Martina Maggio, Enrico Bini, Karl-Erik Årzén: 
“Design and Implementation of Distributed Resource Management for 
Time Sensitive Applications”, Accepted for publication in Automatica 



Further Information 
Cloud Brownout 
• Cristian Klein, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-

Rodriguez: "Introducing Service-level Awareness in the Cloud". In 2013 
ACM Symposium on Cloud Computing, Santa Clara, CA, October 2013 

• Cristian Klein, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-
Rodriguez: "Brownout: Building more Robust Cloud Applications", 36th 
International Conference on Software Engineering (ICSE), Hyderabad, 
India, 2014 

• Martina Maggio, Cristian Klein, Karl-Erik Årzén “Control strategies for 
predictable brownouts in cloud computing”, IFAC World Congress, Cape 
Town, South Africa, August 2014 

• Jonas Dürango, Manfred Dellkrantz, Martina Maggio, Cristian Klein, 
Alessandro Vittorio Papadopoulos, Francisco Hernández-Rodriguez, Erik 
Elmroth, Karl-Erik Årzén, “Control-theoretical load-balancing for cloud 
applications with brownout”, CDC 2014 

• Cristian Klein, Alessandro Vittorio Papadopoulos, Manfred Dellkrantz, 
Jonas Dürango, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-
Rodriguez, Erik Elmroth, “Improving Cloud Service Resilience using 
Brownout-Aware Load-Balancing”, In 33rd IEEE Symposium on Reliable 
Distributed Systems (SRDS), 2014 
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So What Next? 

• CPS, Systems of systems, IoT, Smart X, …. Has 
been around for some time 

• What will be the next area? 
 

Autonomous Systems 



• 1.8 Billion SEK  (200 million USD) over 10 years 
• Four Swedish universities (Chalmers, KTH, 

Lund, Linköping) 
• Knut and Alice Wallenberg Foundation 
• Content: 

– Autonomous physical artefacts 
• Vehicles, robots, …… 

– Autonomous ”Cyber” Systems 
– Software for autonomous systems 



• Open positions 
– 26 PhD student positions 
– 21 industrial PhD student positions 
– 9 senior recruitments 

• www.wasp-sweden.se 
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