
Dynamic Resource Management for
Multicore Linux Platforms

EMSIG Autumn PhD School 2015, Lyngby, Denmark

Karl-Erik Årzén
Lund University
Lund, Sweden

Karl-Erik Årzén
• Private life:

– Born 4 Oct 1957 in Malmö
• Professional life:

– E-77, Lund University, Sweden
– PhD 87 – AI for Control
– ABB Corporate Research
– Professor in Automatic Control 2000
– Co-PI of the Linneaus Center LCCC
– Vice director of the ELLIIT SRA
– Member of the Program

Management Group of WASP
– Chair of IVA Syd

• Research Interests
– Embedded Control
– Feedback Computing
– Cloud Control

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

Cyber-Physical Systems

Computing

Communication

Control Physical
 World CPS

Paradigm Shift
• When designing complex artefacts separation of concerns is a

good design principle.
– Buildings
– Vehicles
– Distributed Systems

• Obtained through engineering principles,
good architectures, design rules etc

• Often the main objective for these design principles is to save
human resources (engineering time)

Paradigm Shift
• In many areas the main objective today is to save

natural resources rather than human
– Often energy / emissions related

• Crosscutting concerns
– Traditional separation-based approaches

to break down
– Interaction and interference

• Requires integration of multiple
sub-systems both during design and operation
– Integration-Based Design
– Codesign
– Cross-layer design

• Smart/green/low-energy
buildings

• Green cars
• Server farms
• Battery-driven computing and

communication devices
• Cross-layer design and optimization

in networks
• Embedded Systems

• Resource-aware design nothing new!

Some Examples

Paradigm Shift
• Eventually we will find new

ways of organizing our work
• Revolutionary paradigm shifts

have occurred before

CPS Research Agenda

• Model-Driven Engineering
• Modeling Tools
• Uncertainty

Managagement

• Emergent behavior
• Distributed analysis and

synthesis of controllers

Model-Driven Engineering

• The vision
• Automated process from model to cyber-

physical system
– Functionally correct
– Dependable
– Secure
– Resource-efficient
– Timeliness
– …………

Model-Driven Engineering for Software

In the software domain:
• Software abstraction layers tailored for

different analysis and design tasks
• Property-preserving model translations and

refinement mechanisms
• ”The model is the software”

– Often realistic
– Automatic Code Synthesis

• UML

Model-Driven Engineering for HW+SW

In the software + hardware domain:
• SysML + architecture modeling languages such as

EAST-ADL, AADL, Modelisar, …
• Allows limited hardware modeling
• Used for modeling the hardware in which the

software executes
• Not used for modeling the physical world that the

system interact with
– Too limited behavior models

• Not for CPS

Model-Driven Engineering for CPS
• The model is not the system
• Approximations rather than abstractions

– E.g. reduced models, linearized models, truncated
models, …..

• Properties not necessarily maintained
• Models have a limited validity range
• Models expire

– Requirements change
– The model and the reality deviate with time due

to e.g., aging, wear, ….

Golomb on Modeling
• ”Mathematical Models: Uses and

Limitations” – Simulation, Apr 70

 Don’t apply a model until you understand
the simplifying assumptions on which it is
based and can test their applicability.

 Distinguish at all times between the model
and the real world. You will never strike oil
by drilling through the map!

 The purpose of notation and terminology
should be to enhance insight and facilitate
computation – not to impress or confuse
the uninitiated

Solomon Wolf Golomb
(1932) mathematician and
engineer and a professor of
electrical engineering at the
University of Southern
California.

Model-Driven Engineering for CPS
• Most applications of formal methods

only concern the discrete-event or
discrete-time parts of the CPS (the
”controller” part)

• Long and complicated tool chains

CPS Research Agenda

• Model-Driven Engineering
• Modeling Tools
• Uncertainty Managagement

Modeling Tools
• Frameworks that allow seamless integration of tools
• Or multi-domain/multi-MoC tools

– Ptolemy II
– Simulink

• S-functions allow extensions
– SimScape  equation-based
– SimEvents  discrete-event simulation
– StateFlow  FSM
– TrueTime  rt kernels + networks

• Equation-based DAE languages have many advantages for the
physical parts
– Modelica, SimScape, Acumen, ..
– However physical system modeling is difficult

• Large threshold
• Problems with high index, initializations, efficient code

• The most mature equation-based DAE
language

• Several commercial tools, e.g. Dymola
• Two open source tools

– OpenModelica
– JModelica

• Discrete-time and discrete-event parts
designed based on
synchronous language ideas
– Well-defined semantics based on

clock inference
• Automatic code generation

Modelica

JModelica
• Java + C + Python
• JastAdd

– AspectJ
– Reference attribute

grammars

• Optimica
– Language extension

for representing
optimization problems

• Lund University + Modelon

Functional Mock-Up Interface (FMI)

• Model exchange standard
– Open source
– Non-proprietary
– cp. S-functions

• Model exchange

• Co-simulation

Tool

 Solver

FMU

 Model

Tool

FMU

Model

Solver

TrueTime

• Co-simulation of controller task
execution, network transmissions,
and continuous-time plant
dynamics

• Simulink using S-functions

CPS Research Agenda

• Model-Driven Engineering
• Modeling Tools
• Uncertainty Managagement

Manage uncertainty
• Resource-sharing in our implementation

platforms
– Cores sharing caches
– Threads sharing cores
– Applications sharing computers
– Communication links sharing
– media

• Inherent in the physical domain
• Modeling, analysis, simulation, verification,

……

Automatic Control and CPS

1. Implementation of feedback control systems
on resource-constrained HW platforms
– Control and scheduling co-design
– Temporal robustness (jitter and delays)
– Event-based control and Self-triggered control
– Will not talk about this

2. Control of computer systems
– The main topic of my lecture

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

Control of Computer Systems

• Apply control as a techniques to manage uncertainty and
achieve performance and robustness in computer and
communication systems.

• Applications in
– Internet
– Servers and data centers, i.e., the cloud
– Cellular phone systems
– Embedded systems

Control of Computer Systems

Alternative names:
• Dynamic/adaptive resource management

– Control as means for managing limited resources
– Adaptivity from a CS point of view

• Feedback computing/scheduling
• Autonomous/autonomic computing
• Reconfigurable computing

Why?
• System complexity increases

Complexity

29

Why?
• System complexity increases
• Complete information about all use cases and their resource

requirements is often not available at design-time
• Green computing  power consumtion constraints

increasingly important
• Increased hardware density  thermal constraints

increasingly important
• Hardware platforms increasingly complex  increasing

difficulties in providing good off-line estimates of resource
consumption

• Hardware variability increases
• Increased requirements on dependability
• Hardware increasingly often support adaptivity
• Increased requirements on predictability in the cloud

Control of Computer Systems
• Active research area since around 2000
• However, feedback has been applied in ad hoc ways

for long without always understanding that it is
control, e.g. TCP/IP

• Control of computing systems can benefit from a lot
of the classical control results
– However, several new challenges
– First principles-based modeling not so natural
– Complex dynamics no longer the problem

Some Examples
Example 1: A multi-mode embedded system where the resource
requirements for all the tasks in all the modes are known at design
time

– Use schedulability analysis to ensure that the deadlines are met in all
modes and then use a mode-change protocol that ensures that all
deadline also are met during the transition between the modes

Example 2: An embedded system with a constant set of hard-RT
applications/tasks but where the WCET analysis possible on the
selected hardware is too pessimistic and leads to too low resource
utilization or where the age- or process-induced variability is too large

– Measure the actual resource consumption and adjust, e.g. the task
rates in order ensure that the schedulability condition is fulfilled

Some Examples
Example 3: Open embedded systems where the number of
applications and their characteristics change dynamically (e.g,
smartphones)

– Measure resource consumption and decide how much
resources that should be allocated to each application in order
to maximize QoS/QoE while minimizing power consumption and
avoiding thermal hotspots

Example 4: A distributed embedded system where one for
dependability reasons must be able to ensure system
functionality also in case of single-node failures

– Detect node failures and then adapt the task mapping and the
schedules so that the system performance is still acceptable

Some Examples
Example 5: An FPGA-based system with multiple
modes that is too large to fit in a single FPGA or
where the power consumption will be too high

– Use run-time reconfiguration to change the FPGA
function dynamically

Example 6: A cloud deployed web-service
application where the incoming load varies a lot
over time

– Dynamically add or remove virtual machines to match
the load (elasticity control/auto-scaling)

Computer Internals

• Execution/service
times

• Queuing delays
• Discrete Event

Dynamic System
– Tasks/requests arrive

(queued) and depart
(dequeued)

(Cloud) Server Systems

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

Modeling and Control Formalisms
• Discrete Event Formalisms

– Automata theory (e.g., Supervisory Control Theory)
– Petri nets
– Often problem with scalability
– Queuing theory

• Continuous-Time Formalisms
– Liquid (”flow”) models + continuous-time control
– Queues = tanks, computations = flows
– Average values assuming large number of

requests/jobs
– Sometimes event-driven sampling and control

The Feedback Principle

The Feedforward Principle

Example: Feedforward Based Cruise
Controller

Example: Feedback-Based Cruise
Controller

Example: Feedback + Feedforward
Based Cruise Controller

Common Feedback Controllers

• Proportional Controller (P)

• Proportional and Integral Controller (PI)

• Proportional, Integral and Derivative
Controller (PID)

Example: Queuing System

Example: Queue Length Control

Queue Length Control: Simulation

Queue Length Control: Model

Queue Length Control: Model

Queue Length Control: Control Signal

Queue Length Control: Linearization

Queue Length Control: P-control

Queue Length Control: P-Control

Queue Length Control: PI-control

Queue Length Control: PI-control

PI-control on Real Queue

Adaptation Mechanisms

• Open Loop Adaptation

– Feedforward
– Assumes perfect information (model) of the

system
– Assumes that there are no external disturbances

System
Adaptation
Mechanism Trigger

event Actuators

Adaptation Mechanisms

• Closed Loop Adaptation

– Feedback
– Adaptation Mechanism == Controller
– Requires sensors
– May cause unstabilities

System Adaptation
mechanism

Disturbances

Sensors Actuators

Feedback Loop

Adaptation Formulations
• Often formulated as an optimization-problem or as a

control-problem
• Optimization Formulations:

 or

– Performed off-line, online when some change has
occurred or periodically, off-line+on-line, …

– ILP, Bin-packing, MILP, QP, NLP (B&B, GA, CP …)
– Centralized or distributed

maximize/minimize resource-consumption objective
s.t. perfomance constraint

maximize/minimize performance objective
s.t. resource consumption constraint

Adaptation Formulations

• Control Formulations:
– System modelled as (linear) dynamic system
– Classical linear control design

techniques
• PID
• LQG
• ….

– Designed to obtain a stable closed loop system
with desired dynamic performance

))()(1)(()(
dt

tdeTdsse
T

teKtu D
I
∫ ++=

Adaptation Formulations
• Combined Optimization and Control Formulations:

– Model-Predictive Control (MPC)
• Optimization problem solved each sample
• Only the first control signal is used (receding horizon principle)
• Optimization problem ban be solved off-line (explicit MPC /

multiparametric programming)  piecewise affine mapping

– Feedforward + feedback structures

System Adaptation
Controller

Disturbances

Sensors

Feedback Loop

+

Optimization
Feedforward

∆

Actuators

• Change the applications / threads
– For example:

• Accept or reject decision
• Change the rates of periodic processes
• Change between alternative versions (service/quality levels)
• Anytime formulations

– Often requires support from the applications
• Change the mapping of the application onto the

execution platform
– Priority
– Schedule
– Processor allocation

Actuators
• Change the execution platform

– Number of processors (virtual or physical)
• DPM techniques

– Speed of processors
• DVFS
• Change the bandwidth of the VM or bandwidth server

– Functionality (hardware-based systems)
• Micro-code in soft-cores
• FPGA netlist

Sensors
• What we can (or would we like to) measure?

– Application performance
• Obtained QoS
• Throughput
• Latency

– OS / CPU level
• CPU cycles / task
• CPU utilization
• Deadline miss ratio

– Power and temperature
• Power consumption for each unit
• Temperature of each heat source (core, coprocessor,

memory controller, ….)

Problems of Feedback

Feedback can introduce new problems:
• The feedback mechanism itself consumes resources
• Harder to provide formal guarantees about the system  not suitable for

safety-critical hard real-time application, or?

What about Safety-Critical Systems?
• In many cases control systems
• Due to the feedback errors in the

space domain are natural
• Control system designed using

– Numerous approximations
• Model reduction, linearization, …..

– Verified through extensive simulations
– Large safety margins when selecting, e.g., sampling

periods
• Why is it then so unthinkable to use feedback also

at the implementation level?

Problems of Feedback

Feedback can introduce new problems:
• The feedback mechanism itself consumes resources
• Harder to provide formal guarantees about the system  not suitable for

safety-critical hard real-time application, or?
• Adds to the complexity
• May complicate the design process (modeling, V&V, …)
• Requires tuning
• Sensors and actuators are necessary
• Models are necessary

– Of the system
– Of the feedback mechanism itself

• Feedback may cause instability
– In my mind stability is much overrated

Problems of Feedback

Feedback can introduce new problems:
• The feedback mechanism itself consumes resources
• Harder to provide formal guarantees about the system  not suitable for

safety-critical hard real-time application, or?
• Adds to the complexity
• May complicate the design process (modeling, V&V, …)
• Requires tuning
• Sensors and actuators are necessary
• Models are necessary

– Of the system
– Of the feedback mechanism itself

• Feedback may cause instability
– In my mind stability is much overrated

• Feedback may introduce measurement noise
– Only when you measure physical entities!

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

ACTORS

• Adaptivity and Control of Resources in
Embedded Systems

• EU FP7 STREP project
– 2008-2011
– Coordinated by Ericsson (Johan Eker)
– Lund University, TU Kaiserslautern, Scuola Superiore

Sant’Anna di Pisa, EPFL, AKAtech, Evidence

• Media applications (soft real-time) for smart phones
• Control applications

CPU

ACTORS: Key Ingredients
1. Data-Flow Programming

– CAL Actor Language

2. Adaptive Resource Management of service-level aware

applications
– Soft real-time media applications
– Control applications

Service Level-Aware Applications
• Application knob

– Decides the QoS achieved and the amount resources
required

– High SL  high QoS & high resource usage
– Low SL  low QoS & low resource usage

• Discrete
– ”application modes” – the case in ACTORS

• Continuous
– e.g., sampling rate in a controller

Service level example

• SL: Resolution and/or frame rate of a
video stream

• QoS and required CPU for encoding and
decoding depends on the SL

SL1: 640x480 SL2: 800x600 SL3: 1024x768
CPU: 30% CPU: 60% CPU: 90%

ACTORS: Key Ingredients

3. Reservation-Based CPU Scheduling

– SCHED_EDF
• Partitioned multi-core EDF scheduler
• Hard CBS reservations
• Each reservation may contain

several threads
• Hierarchical scheduler with SCHED_EDF tasks executing on a higher

level than ordinary Linux tasks

4. Multicore Linux Platforms
– ARM 11, x86

10 %

45 % 25 %

20 % • Periodic Bandwidth Servers
• Constant Bandwidth Server

Period

Budget

Virtual processors (VPs)

ACTORS: Dataflow Modeling
• Data flow programming with actors (Hewitt, Kahn, etc)

– Associate resources with streams
– Clean cut between execution specifics and algorithm design
– Strict semantics with explicit parallelism provides foundation for

analysis and model transformation

• CAL Actor Language (UC Berkeley, Xilinx) http://opendf.org
– Part of MPEG/RVC

http://opendf.org/

CAL (Cal Actor Language)
• A language for writing dataflow actors

– designed at UC Berkeley in 2002/3 (Janneck & Eker)
– compilers to hardware and software
– standardized by MPEG/ISO in 2009
– (subset RVC-CAL)

 78

dataflow

 79

actors & actions

Actions

State

 80

input/output

actor ID () In ==> Out :

 action In: [a] ==> Out: [a] end
end

actor Add () Input1, Input2 ==> Output:

 action [a], [b] ==> [a + b] end
end

actor ID () In ==> Out :

 action [a] ==> [a] end
end

actor AddSeq () Input ==> Output:

 action [a, b] ==> [a + b] end
end

 81

nondeterminism

actor Merge () Input1, Input2 ==> Output:

 action Input1: [x] ==> [x] end
 action Input2: [x] ==> [x] end
end

actor Split () Input ==> Output1, Output2:

 action [x] ==> Output1: [x] end
 action [x] ==> Output2: [x] end
end

... and so is this.

This actor is non-deterministic...

 82

guarded actions

actor SplitPred (P) Input ==> Y, N:

 action [a] ==> Y: [a]
 guard P(a) end

 action [a] ==> N: [a]
 guard not P(a) end
end

actor Select () S, A, B ==> Output:

 action S: [sel], A: [v] ==> [v]
 guard sel end

 action S: [sel], B: [v] ==> [v]
 guard not sel end
end

 83

actors with state

actor Sum () Input ==> Output:

 sum := 0;

 action [a] ==> [sum]
 do
 sum := sum + a;
 end
end

refers to state
at the end
of the action execution

 84

State dependent guards & action schedules

actor PingPongMerge ()
 Input1, Input2 ==> Output:

 s := 0;

 action Input1: [x] ==> [x]
 guard s = 0
 do
 s := 1;
 end

 action Input2: [x] ==> [x]
 guard s = 1
 do
 s := 0;
 end
end

actor PingPongMerge ()
 Input1, Input2 ==> Output:

 A: action Input1: [x] ==> [x] end

 B: action InputB: [x] ==> [x] end

 schedule fsm s1:
 s1 (A) --> s2;
 s2 (B) --> s1;
 end
end

 85

priorities (when order matters)

actor ProcessStream () In, Config ==> Out:

 c := initialConfig();

 action Config: [newC] ==>
 do
 c := newC;
 end

 action In: [data]
 ==> [compute(data, c)] end
end

actor ProcessStream () In, Config ==> Out:

 c := initialConfig();

 config: action Config: [newC] ==>
 do
 c := newC;
 end

 process: action In: [data]
 ==> [compute(data, c)] end

 priority
 config > process;
 end
end

how to enforce firing of one action

over another?

intuition:

 among the enabled actions,

 one with highest priority is

 fired

NOTE: behavior is

 timing-dependent!

 86

building a simple network: Sum

actor Z (v) In ==> Out:

 A: action ==> [v] end
 B: action [x] ==> [x] end

 schedule fsm s0:
 s0 (A) --> s1;
 s1 (B) --> s1;
 end
end

actor Add () A, B ==> Out:
 action [a], [b] ==> [a + b] end
end

network Sum () In ==> Out:

entities
 add = Add();
 z = Z(v=0);

structure
 In --> add.A;
 z.Out --> add.B;

 add.Out --> z.In;

 add.Out -- > Out;
end

Z(v=0)

Add

Sum

B

A

Out Out

Out

In

In

CAL History

(Picture by Janneck, Jörn & Marco Mattavelli)

http://en.scientificcommons.org/j%C3%B6rn_w_janneck

More Results
› CAL Actor Language

› Standardized as part of MPEG-B RVC-CAL (ISO 23001-4)
› Ptolemy spin-off

› Other demos
› AMR-WB encoder, HW/SW partition support demo, 3D video, crypto library

› Documentation
– 8+ PhD theses (EPFL, U Maryland, EPFL, Åbo)
– 20-30 Master’s Theses
– Tons of papers.

› http://www.hooklee.com/Research/RVC_CAL_Bibliography.html

› Groups
› EPFL, INSA/Rennes, LTH & Halmstad, Turku/Åbo, U of Surrey

› Tools
– OpenDF (Xilinx -> Lund University)
– ORCC (Open RVC-CAL Compiler - Orcc)
– Caltoopia
– Ptolemy II

http://www.hooklee.com/Research/RVC_CAL_Bibliography.html
http://orcc.sourceforge.net/

Synchronous Dataflow (SDF) [Lee87]

• Actors consume and produce a fixed number
of tokens in each firing

• Allows for extensive compile-time analysis
– Static scheduling (no risk of deadlock)
– Static allocation of buffers (no unbounded buffering)
– Possible to reason about performance metrics

• Possible to generate tight code

SDF Example

A D

E

C

B F

1

2

2 2

1

5

1

1

5

2

1 1

2

1

Token rates are shown
at input/output ports

There may be sources and
sinks

There may be cycles,
but initial tokens (delays)

are required to avoid deadlock

The “dots” are
duplicators

1 1

1

Cyclo-Static Dataflow (CSDF)

E
C

1,2 1,3,1 2,1 1

The token rates varies
periodically

Also statically schedulable

Dynamic dataflow (DDF) [Lee95]

• Data dependent action firing
• Not statically schedulable

ACTORS: Model Transformations
• Merging of actors within statically schedulable

regions
– Faster execution on single processors

• Splitting of actors
– Express fine-grained parallelism
– FPGA platforms

ACTORS Applications

• Eventually, the ACTORS resource management
approach should be applicable to arbitrary
applications

• Initially, only CAL applications
• Two types:

– Static CAL applications
– Dynamic CAL applications

Adaptivity & Control of
Resources in Embedded Systems

Static CAL Applications

Dataflow graph can be mapped to a static
precedence graph (DAG)
– Task activation graph

“SDF-like” dataflow graphs
E.g. control applications
Schedulability theory can be applied
– Assuming WCET estimates
– Generates reservation parameters

Adaptivity & Control of
Resources in Embedded Systems

Dynamic CAL Applications

Dataflow graph cannot be mapped to a static
precedence graph
Best-effort scheduling
E.g. multimedia applications

Adaptivity & Control of
Resources in Embedded Systems

CAL Run-Time System
The execution environment for CAL applications
Provides system actors for interfacing to environment
Dynamic CAL applications
– Run-time thread

• While (1) {
Select actor();
Execute actor();
}

ACTORS: Key Ingredients

3. Reservation-Based CPU Scheduling

– SCHED_EDF
• Partitioned multi-core EDF scheduler
• Hard CBS reservations
• Each reservation may contain

several threads
• Hierarchical scheduler with SCHED_EDF tasks executing on a higher

level than ordinary Linux tasks

4. Multicore Linux Platforms
– ARM 11, x86

10 %

45 % 25 %

20 % • Periodic Bandwidth Servers
• Constant Bandwidth Server

Period

Budget

Virtual processors (VPs)

Overview

SCHED_EDF hierarchical scheduler
• Partitioned multi-core scheduler
• Hard CBS Reservations
 - one or several threads

Resource Manager
• C++ framework
• DBus IPC to application
• Control groups API to scheduler

• CAL Dataflow Applications
• Dataflow run-time system

• Legacy applications through
 wrapper

• All threads within one VP

DBus
interface

Control
Groups

interface

Cores

Static Information

Service Level QoS BW Requirement BW distribution Timing Granularity

0 100 240 60-60-60-60 20 ms

1 75 180 45-45-45-45 20 ms

2 40 120 30-30-30-30 20 ms

Appl. Importance

Appl 1 10

Appl 2 20

Appl 3 100

Default 10

From applications to RM at registration:
 - Service Level Table

 - Thread IDs and how they should be grouped

From system administrator to RM at startup:
 - Application Importance

Dynamic Inputs

Used Budget (Bandwidth):
• average used budget

Exhaustion Percentage:
• percentage of server periods in which the
 budget was exhausted

Happiness:
• boolean indicator of whether the QoS
 obtained corresponds to what could be
 expected at the current service level

Outputs

Service Level

Reservation Parameters:
• Budget
• Period
• Affinity
 - RM may migrate VPs

Dataflow Analysis

• Static partitioning
• Automatic analysis for SDF/CSDF actors
• Automatic merging of SDF/CSDF actors to

improve run-time performance

Partition 1

Partition 2

Partition 3

Partition 4

• One thread per partition executing its actors using round-robin
• One thread per “system actor” (IO, time)
• The threads from the same partition are executed by the same

virtual processor
• If possible the VPs are mapped to different physical cores in order

to enable parallel execution

IO

Thread

CAL Run-Time System

Thread

VP

VP

Core 1

Core 2

Resource Manager Functionality
• Assign service levels

– When applications register or unregister
– Formulated as a ILP problem

• Importance as weight

– glpk solver

• Mapping & bandwidth distribution
– Map reservations to cores
– Distribute the total BW to the reservations

Two Approaches:
• Spread out the VPs and balance the load
• Pack the VPs in as few cores as possible

– Allow turning off unused cores

– Bin packing

• At most 90% of each core is used for SCHED_EDF tasks

Resource Manager Functionality

• Separate service level assignment and BW
Distribution
– The best service level assignment may lead to an

unfeasible BW distribution
– Approach 1:

• New SL assignment that generates the next best
solution

• New BW Distribution

– Approach 2:
• Compress the individual VPs

Resource Manager Tasks
• Bandwidth adaptation

– Adjust the servers bandwidth dynamically based on measured resource usage and
obtained happiness

– If the application is unhappy the bandwidth is increased until the application is happy
again

Changes the AB so that the
UB lies sufficiently close:

EP

EPSP

Changes what is
meant by sufficiently
close based on EP:

Multiple bandwidth adaptation strategies
Strategy 1:

A VP may never consume more bandwidth
than what was originally assigned to it
BW controller may reduce the BW if not used

Strategy 2:
A VP may use more resources than
originally assigned to it

If there are free resources available, or
If there are VPs of less important applications that
use more BW than originally allocated to them
In the latter case the less important applications
are compressed
All applications are always guaranteed to obtain their originally assigned values
(can never be compressed beyond that)

Resource Manager Tasks

108

May only be reused
by ordinary Linux tasks

May also be reused
by SCHED_EDF tasks

RM Support Software
• GUI

• VP to core assignment
• AB, UB, and EP
• Service Level Table
• Event history
• Itself an application under the control

of the RM

• Load Generator
• Generates artificial load for testing

• Application Wrapper
• Wrapper for non-Actors aware

applications

109

MPEG-4 Video Decoding Example

• MPEG-4 SP decoder implemented in CAL
• Connected to an Axis network camera
• Service level changes results in commands

from the decoder to the camera to
reduce the frame rate and/or
resolution

MPEG-4 Video Decoding Demonstrator

Application
unhappy

More important
application
started. SL
decreased

Application
terminated. SL
increased again

Feedback Control Demonstrator

• Industrial robot balancing
an inverted pendulum

• Pendulum controller in CAL
• Service level changes correspond to

changes in sampling period

• Ball and Beam Processes
• Controller in CAL

• Service level changes correspond to
changes in sampling period

• MPEG-4 Video Decoder
• Service level changes correspond to

changes in resolution/frame rate

Feedback Control Demonstrator

Drawbacks
• ILP does not scale well
• Requires a lot of information from the

applications
• More natural if the applications select their

service levels and the resource manager
adjust the vp size

 The game-theory inspired approach

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

Towards decentralization
• The resource manager allocates resources

and applications choose their service levels
based on current performance

Matching function
Measures how well the resources assigned
to the application (vp size) matches the
resource requirements (SL) of the
applications

The matching is scarce

The matching is abundant

The matching is perfect

The matching is scarce
 - increase vp or
 - decrease SL

The matching is abundant
 - decrease vp or
 - increase SL

The matching is perfect

Application weights

• 𝜆𝑖 ∈ 0. . 1
• 𝜆𝑖 = 0 means that only the application

should adjust
• 𝜆𝑖 = 1 means that only the resource

manager should adjust

Matching Function
• Application executes a series of jobs

– Execution time 𝐶𝑖 = 𝑎𝑖𝑠𝑖

– Response time for each job 𝑅𝑖 = 𝐶𝑖
𝑣𝑖

= 𝑎𝑖𝑠𝑖
𝑣𝑖

– Want this to be equal to the deadline 𝐷𝑖
– Hence

– Can be measured from job start and stop times
– Depends on service level and virtual processor

speed

𝑓𝑖 =
𝐷𝑖
𝑅𝑖
− 1 =

𝐷𝑖𝑣𝑖
𝑎𝑖𝑠𝑖

 − 1 = 𝛽𝑖
𝑣𝑖
𝑠𝑖
− 1

Resource Manager
At each step:
• Measure 𝑓𝑖 for all the applications

– The applications report the start and stop of each job by writing to
shared memory

– RM reads from shared memory and calculates the response time
• Updates the virtual processors:

𝑣𝑖 𝑘 + 1 = 𝑣𝑖 + 𝜀𝑅𝑅 𝑘 −𝜆𝑖𝑓𝑖 𝑘 + �𝜆𝑗𝑓𝑗 𝑘 𝑣𝑖 𝑘
𝑛

𝑗=1

𝜀𝑅𝑅 𝑘 =
1

𝑘 + 1

Service Level Adjustment
• Should set 𝑠𝑖 so that 𝑓𝑖 becomes 0
• Naive approach: 𝑠𝑖 𝑘 + 1 = 𝛽𝑖𝑣𝑖(𝑘 + 1)

– Assumes knowledge of 𝛽𝑖
• Instead estimate 𝛽𝑖

𝛽𝑖 = (1 + 𝑓𝑖 𝑘)
𝑠𝑖(𝑘)
𝑣𝑖(𝑘)

• Gives

𝑠𝑖 𝑘 + 1 = (1 + 𝑓𝑖 𝑘)
𝑣𝑖 𝑘 + 1
𝑣𝑖 𝑘

𝑠𝑖(𝑘)

– Continuous service levels
– Robustified

Game Theory

• Provides convergence results and results
about stationary values

• For example
– A stationary point satisfies the following condition

• The matching function is zero
OR
• The service level is the smallest possible AND the

matching function is negative

Implementation

• Using SCHED_DEADLINE
– New EDF+CBS scheduling policy in Linux
– Developed by Evidence within ACTORS

Evaluation
• Convergence of virtual processors
• Four applications

λ1 = 0.1, λ2 = 0.3, λ3 = 0.2 and λ4 = 0.5

• Resources assigned proportinally to the
normalized weights

Evaluation
• Multicore
• 12 identical

apps
• Different

weights
– 1 – high
– 12 – low
– 2-11 – medium

• Resources
proportional to
the service
levels

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-

service applications
• A CPS Story

• As soon as you use any networked computing
unit (laptop, smart phone, sensor device, …)
the likelihood that the computations will be
performed in a data center somewhere in the
cloud, rather than locally, is very large

• News, mail, photos, tickets, books, clothes,
maps, social media, television, music, banking,
administrative systems, technical software,
…….

The Datacenter

What's inside?

Rack or blade-mounted servers

A modern Amazon data center consists of 50-80.000 physical servers
Each server typically has 4-8 cores

What's inside?

Networking

What's inside?

Power supplies

What's inside?

Cooling

What runs in the cloud?
• Everything that can execute on physical

hardware can in principle do so on virtual
hardware in the cloud
– But constraints on latency, throughput, IO, …

• Two major classes:
– Web service applications:

• E-Commerce

– Massively parallel applications
• Map/Reduce programming model (HADOOP), MPI
• Google, Facebook, Twitter, …..

Problems with the Cloud

• Low level of determinism and predictability
– No hard performance guarantees

Problems with the Cloud

• Low level of determinism and predictability
– No hard performance guarantees

• Data centers consume a lot of energy

Cloud Energy Consumption

Facebook in Luleå, Sweden will consume 1 TWh/year – approx
40.000 family houses

Problems with the Cloud

• Low level of determinism and predictability
– No hard performance guarantees

• Data centers consume a lot of energy
• Data centers have low utilization

Datacenter Utilization

5000 google servers over 6 months
Source: “The Datacenter as a computer”, Barroso et al

Problems with the Cloud

• Low level of determinism and predictability
– No hard performance guarantees

• Data centers consume a lot of energy
• Data centers have low utilization

 Room for better resource management
 techniques

Content

• Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-

service applications

From Embedded to the Cloud

• Apply the game-theoretic resource manager
to cloud applications

• Focus on state-free, request-based
applications

Problem: Unexpected Events

• 25% of end-users leave if load time > 4s*
• 1% reduced sale per 100ms load time*
• 20% reduced income if 0.5s longer load time**

* Amazon ** Google

Standard Practice

• Overprovisioning
– Economically impractical

Brownouts
 We borrow from the concept of

brownouts in power grids
 A brownout-compliant application can

degrade user performance when needed to
face unexpected conditions

Brownout

Brownout

Brownouts
 We borrow from the concept of

brownouts in power grids
 A brownout-compliant application can

degrade user performance when needed to
face unexpected conditions

 We assume that the reply to a request
consists of a mandatory and an optional part

 During overload and/or lack of resources the
percentage of requests that also receives the
optional part can be decreased

Brownout Examples

• E-commerce systems
with recommendations

• Content adaptation in
web server applications

•

Always Service Optional Part

Never Service Optional Part

With Brownout

Brownout Control Loop

• Measured variable: Response time (average or 95%
percentile)

• Control signal: Dimmer value (percentage of requests
for which also the optional parts are calculated)

• Setpoint: 2 seconds

Brownout Controllers

• Adaptive PI and/or PID controllers
• Adaptive deadbeat controller
• Feedforward + feedback controller

– Assumes knowledge of average service time for
mandatory and optional parts

Brownout Resource Management

Resource Management Details

• Applications sends value of matching function

• Resource manager computes size of virtual machine

• Proven to be fair and converge using game theory

Evaluation
• Applications

– RUBiS: eBay-like prototype auction website
• Added a recommender

– RUBBoS: Slashdot-like bulletin board website
• Added a recommender
• Marked comments as optional

– Effort in lines of code:

Evaluation
• Hardware

– One physical machine
– Two AMD Opteron 6272 processors
– 16 cores / processor

• Hypervisor
– Xen
– Each VM contains Apache web server, PHP

interpreter, MySQL server, and brownout controller
• Client load generator

– Custom built – httpmon
– Closed loop model

• Clients with think time

Experimental Results

• RUBiS flash crowds

Experimental Results

Four cores
used

Load Balancing
• Multiple replicas

– Support scaling
– Robust towards faults

• Load balancing

Existing Load Balancers
• Dynamic load balancers often measure

response times and decide based on that
– FRF, FRF-EWMA, 2RC, Predictive ...

• Does not work well in the presence of
brownout control
– the replica controllers keep the response times

close to the setpoint

Brownout-Aware Load Balancing

• New load balancing schemes have been
developed that make use of the dimmer values

• Piggyback the dimmer values to the replies going
back to the load balancer

𝜃𝑛

𝜃1

Challenges
• Modeling of resources and of workload

– Very difficult to predict peaks
• Scalability

– What work for 500 servers will most likely not work
for 50 000 servers

• Everything will break down all the time
– Netflix chaos monkey

• Difficult to isolate the phenomenon under study
• Only industry have real data centers

– Very industry-driven area
– Google, Microsoft, …..

Process Automation Comparison

• Compare with process
industry in the 1940-50s
– Manual control

• Next step PI(D) +
– Feedforward, cascade, ratio

selector logic, split-range, mid-
range, ……

– Controller patterns
• Flow control, temperature control, …..

• Now
– MPC control + optimization-based long-term planning
– But still PI(D) at the lowest level

Process Automation Comparison
• Lessons:

– Keep it simple (”KISS”)
– Start with classical, e.g. PID, control techniques
– Add optimization control on top of this if required

• Differences:
– Flexibility and generality
– Behavior not governed by laws of nature

• Maybe one have to constrain the flexibility in
order to achieve determinism

The Future Distributed Cloud
• 5G opens up for new application classes

– Mission-critical applications, e.g., closed loop control
– Requirements on low latency and high availability –>

predictability

• Network and cloud convergence
– Boundary between the network and datacenters disappears
– Telco cloud, mobile cloud, infinite cloud
– Computations to be dynamically deployed in all types of nodes, incl base stations and

remote data centers
– The Resource Management Problem: To decide how much and what type of resources

to allocate and where and when to deploy them.

Feedback Computing
• Control as a technique to manage uncertainty, achieve

performance and robustness and/or control power and
temperature in computer and communication systems

• Autonomic Computing

Embedded Systems Data Centers

Desktop Systems

MPSoCs

Server Systems

The Cloud

Content
• Cyber-Physical Systems – My Personal View
• Control of Computer Systems

– Motivation and Background
– A simple queue length control example

• Resource Management for Multi-Core Embedded
Systems
– The ACTORS Resource Manager

• Video demo
– Game-Theory Resource Manager

• The Cloud
– Problems and Challenges
– Brownout-inspired resource management for web-service

applications
• A CPS Story

CPS Software: Emperor’s New Clothes or Not?

Karl-Erik Årzén, Lund University, Sweden

An Embedded Controls Point of View

HC Andersen

CPS Software: Emperor’s New Clothes or Not?
An Embedded Controls Point of View

Emperor’s New Clothes - YES
• Close interaction with the physical

environment has always been crucial both in
embedded systems and control

• Same thing with limited computing resources
• Networks is also nothing new

– Distributed embedded systems
– NoC
– Networked Control
– ……..

• CPS is mostly a matter of scale

Emperor’s New Clothes - NO
• Traditional embedded systems

– Too simplified view of physical part
– Generator of events with deadlines

• Periodic, aperiodic, ……
– Too strong emphasis on worst-case design and

hard guarantees
• Traditional control

– Too simplified view of cyber part
• Periodic execution
• Zero or constant latencies
• Parallel

The Emperor’s New Clothes – CPS Version

A King

Or Queen

Embedded Systems Coat

Control Coat

Internet of Things Coat

System-of-Systems Coat

CPS Coat
 The Universal Coat of All Colors

Questions?

Further Information
• ACTORS Resource Manager

– E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K-E. Årzén, V.
Romero, C. Scordino: "Resource Management on Multi-core Systems:
the ACTORS approach“, IEEE Micro, 31:3, pp. 72-81, May 2011

• Game-Theoretical Resource Manager
– Georgios Chasparis, Martina Maggio, Karl-Erik Årzén, Enrico Bini:

"Distributed Management of CPU Resources for Time-Sensitive
Applications". In 2013 American Control Conference, Washington DC,
USA, June 2013

– Martina Maggio, Enrico Bini, Georgios Chasparis, Karl-Erik Årzén: "A
Game-Theoretic Resource Manager for RT Applications". In 25th
Euromicro Conference on Real-Time Systems, ECRTS13, Paris, France,
July 2013

– Georgios Chasparis, Martina Maggio, Enrico Bini, Karl-Erik Årzén:
“Design and Implementation of Distributed Resource Management for
Time Sensitive Applications”, Accepted for publication in Automatica

Further Information
Cloud Brownout
• Cristian Klein, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-

Rodriguez: "Introducing Service-level Awareness in the Cloud". In 2013
ACM Symposium on Cloud Computing, Santa Clara, CA, October 2013

• Cristian Klein, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-
Rodriguez: "Brownout: Building more Robust Cloud Applications", 36th
International Conference on Software Engineering (ICSE), Hyderabad,
India, 2014

• Martina Maggio, Cristian Klein, Karl-Erik Årzén “Control strategies for
predictable brownouts in cloud computing”, IFAC World Congress, Cape
Town, South Africa, August 2014

• Jonas Dürango, Manfred Dellkrantz, Martina Maggio, Cristian Klein,
Alessandro Vittorio Papadopoulos, Francisco Hernández-Rodriguez, Erik
Elmroth, Karl-Erik Årzén, “Control-theoretical load-balancing for cloud
applications with brownout”, CDC 2014

• Cristian Klein, Alessandro Vittorio Papadopoulos, Manfred Dellkrantz,
Jonas Dürango, Martina Maggio, Karl-Erik Årzén, Francisco Hernández-
Rodriguez, Erik Elmroth, “Improving Cloud Service Resilience using
Brownout-Aware Load-Balancing”, In 33rd IEEE Symposium on Reliable
Distributed Systems (SRDS), 2014

Contributors
ACTORS:
• Johan Eker (Ericsson), Giorgio Buttazzo (SSSA), Enrico

Bini (SSSA), Claudio Scordino (Evidence), Gerhard
Fohler (TUKL), Stefan Schorr (TUKL), Vanessa Romero
Segovia (LU), ……

Game-Theoretical RM:
• Martina Maggio (LU), Enrico Bini (LU/SSSA), Georgios

Chasparis (LU/Software Competence Center
Hagenberg)

Cloud Brownout:
• Martina Maggio, Alessandro Papadopoulos, Manfred

Dellkrantz, Jonas Dürango (LU), Cristian Klein
Umeå Univ), ...

So What Next?

• CPS, Systems of systems, IoT, Smart X, …. Has
been around for some time

• What will be the next area?

Autonomous Systems

• 1.8 Billion SEK (200 million USD) over 10 years
• Four Swedish universities (Chalmers, KTH,

Lund, Linköping)
• Knut and Alice Wallenberg Foundation
• Content:

– Autonomous physical artefacts
• Vehicles, robots, ……

– Autonomous ”Cyber” Systems
– Software for autonomous systems

• Open positions
– 26 PhD student positions
– 21 industrial PhD student positions
– 9 senior recruitments

• www.wasp-sweden.se

	Dynamic Resource Management for Multicore Linux Platforms�
	Slide Number 2
	Content
	Cyber-Physical Systems
	Paradigm Shift
	Paradigm Shift
	Some Examples
	Paradigm Shift
	CPS Research Agenda
	Model-Driven Engineering
	Model-Driven Engineering for Software
	Model-Driven Engineering for HW+SW
	Model-Driven Engineering for CPS
	Golomb on Modeling
	Model-Driven Engineering for CPS
	CPS Research Agenda
	Modeling Tools
	Modelica
	JModelica
	Functional Mock-Up Interface (FMI)
	TrueTime
	CPS Research Agenda
	Manage uncertainty
	Automatic Control and CPS
	Content
	Control of Computer Systems
	Control of Computer Systems
	Why?
	Complexity
	Why?
	Control of Computer Systems
	Some Examples
	Some Examples
	Some Examples
	Computer Internals
	(Cloud) Server Systems
	Content
	Modeling and Control Formalisms
	The Feedback Principle
	The Feedforward Principle
	Example: Feedforward Based Cruise Controller
	Example: Feedback-Based Cruise Controller
	Example: Feedback + Feedforward Based Cruise Controller
	Common Feedback Controllers
	Example: Queuing System
	Example: Queue Length Control
	Queue Length Control: Simulation
	Queue Length Control: Model
	Queue Length Control: Model
	Queue Length Control: Control Signal
	Queue Length Control: Linearization
	Queue Length Control: P-control
	Queue Length Control: P-Control
	Queue Length Control: PI-control
	Queue Length Control: PI-control
	PI-control on Real Queue
	Adaptation Mechanisms
	Adaptation Mechanisms
	Adaptation Formulations
	Adaptation Formulations
	Adaptation Formulations
	Actuators
	Actuators
	Sensors
	Problems of Feedback
	What about Safety-Critical Systems?
	Problems of Feedback
	Problems of Feedback
	Content
	ACTORS
	ACTORS: Key Ingredients
	Service Level-Aware Applications
	Service level example
	ACTORS: Key Ingredients
	ACTORS: Dataflow Modeling
	CAL (Cal Actor Language)
	dataflow
	actors & actions
	input/output
	nondeterminism
	guarded actions
	actors with state
	State dependent guards & action schedules
	priorities (when order matters)
	building a simple network: Sum
	
CAL History
	More Results
	Synchronous Dataflow (SDF) [Lee87]
	SDF Example
	Cyclo-Static Dataflow (CSDF)
	Dynamic dataflow (DDF) [Lee95]
	ACTORS: Model Transformations
	ACTORS Applications
	Static CAL Applications
	Dynamic CAL Applications
	CAL Run-Time System
	ACTORS: Key Ingredients
	Overview
	Static Information
	Dynamic Inputs
	Outputs
	Dataflow Analysis
	CAL Run-Time System
	Resource Manager Functionality
	Resource Manager Functionality
	Resource Manager Tasks
	Resource Manager Tasks
	RM Support Software
	MPEG-4 Video Decoding Example
	MPEG-4 Video Decoding Demonstrator
	Feedback Control Demonstrator
	Slide Number 113
	Slide Number 114
	Drawbacks
	Content
	Towards decentralization
	Matching function
	Slide Number 119
	Application weights
	Matching Function
	Resource Manager
	Service Level Adjustment
	Game Theory
	Implementation
	Evaluation
	Evaluation
	Content
	Slide Number 129
	The Datacenter
	What's inside?
	What's inside?
	What's inside?
	What's inside?
	What runs in the cloud?
	Problems with the Cloud
	Problems with the Cloud
	Cloud Energy Consumption
	Problems with the Cloud
	Datacenter Utilization
	Problems with the Cloud
	Content
	From Embedded to the Cloud
	Problem: Unexpected Events
	Standard Practice
	Brownouts
	Brownout
	Brownout
	Brownouts
	Brownout Examples
	Always Service Optional Part
	Never Service Optional Part
	With Brownout
	Brownout Control Loop
	Brownout Controllers
	Brownout Resource Management
	Resource Management Details
	Evaluation
	Evaluation
	Experimental Results
	Experimental Results
	Load Balancing
	Existing Load Balancers
	Brownout-Aware Load Balancing
	Challenges
	Process Automation Comparison
	Process Automation Comparison
	The Future Distributed Cloud
	Feedback Computing
	Content
	CPS Software: Emperor’s New Clothes or Not?
	HC Andersen
	CPS Software: Emperor’s New Clothes or Not?
	Emperor’s New Clothes - YES
	Emperor’s New Clothes - NO
	The Emperor’s New Clothes – CPS Version
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Questions?
	Further Information
	Further Information
	Contributors
	So What Next?
	Slide Number 190
	Slide Number 191
	Slide Number 192

