Test-Driven Modelling of Embedded Systems

Allan Munck: <u>allmun@dtu.dk</u> or <u>amunck@gnresound.com</u>.

EMSIG2015

DTU Compute Department of Applied Mathematics and Computer Science

GN ReSound - Smart Hearing Systems

Control and Releif apps also for Andriod

Case study

Figure 1: Test-Driven Model-Based Systems Engineering

Practical modelling and verification

- Collecting system knowledge in SysML.
- TD-MBSE with UPPAL (figure 3).
- Formal model checking queries, e.g.:
 - A[] not deadlock
 - Streaming.Receive --> Streaming.Done
 - etc.

- Base design: "Efficient" solution.
- Alternative: "Fast" solution.

- E[<=100;2] (max:Streaming.delay)</p>
- simulate 1[<=200]{Streaming.curr}</pre>
- Using UPPAAL plot composer + Matlab

Related work

- Test-Driven Development (TDD) [e.g. Cordemans et al.]
 - Used heavily in the software industry to increase code quality.
 - Not directly applicable to embedded systems that include hardware.
- Model-based test-driven development [Mou et al.]
 - Method proposed but not tested or verified (no experimental data reported).
 - Has limited scope and is probably not feasible for embedded systems.
- Test-driven software modelling [Zhang]
 - Method based on simulations of message sequence charts.
 - Experimental data demonstrates increased productivity and quality on large projects.
- Test-driven UML modelling of software systems [Hayashi et al.]
 - Test-first methodology include both unit and scenario testing.
 - A tool to facilitate the method is provided with somewhat poor usability.

Problem and solutions

- Previous work
 - Special tools required.
 - Too cumbersome to use.

- Only unit or scenario testing.
- Cannot find unintended emergent errors.
- Cannot guarantee design.

No widespread acceptance.
DTU Compute, Technical University of Denmark

- Limited scope.

- Utilizing existing tools as is.
- Easy to use modelling becomes a simple mechanical process.
- Formal and statistical verification.
- Captures unintended behaviour.

- This work is limited to modelling of architecture and behaviour of embedded systems.
- Method easy to adopt.

7

Discussion

- Traces generated by UPPAAL made modelling easy.
- Problem with memory exhaustion.
 - Very long traces for low level modelling.
 - State explosions for large models.
 - No simple long term solution.
 - Formal model checking may have to be abandoned.
- Only behaviour and architectural parameters considered in this work.
 - Architecture: Number of interfaces, coupling, etc. may also benefit from TDA.
 - User interfaces and even stakeholders, use cases, requirements, etc. may also benefit.

Industrial future

- Smart Products:
 - SoS : System of (independent) Systems.
 - CPS : Cyber Physical (sub) Systems.
 - BDS : Big-Data Systems.
 - Millions/Billions of users.
 - Connected via (multiple) clouds.
- No tools available to analyse complete system.
- Proposal:
 - Model and analyse single-user scenarios with UPPAAL.
 - Model and simulate system with <u>thousands of users</u> using SimJava, SystemC, VDM or equivalent language.
 - Vary parameters to obtain simulation results for subsequent estimation/<u>extrapolation</u> of realistic usage.

Figure 1: Characteristics of smart products

Summary

- TD-MBSE and TD-DSE proposed to handle increasing complexity.
- Includes test-driven modelling of behaviour and architecture.
- Methodology tested on an actual industrial case with success.
- Future research to overcome memory exhaustion problems.
- Future research to expand the methodology to include other aspects of modelling.
- Methodology for future industrial cases proposed.

Thank you for listening!

Acknowledgements

- The authors would like to thank all involved stakeholders at GN Resound and at Technical University of Denmark for their interest and involvement in this project.
- We will also like to thank the UPPAAL team for excellent support.
- Finally we wish to thank the Confederation of Danish Industry for sponsoring this project.