
Test-Driven Modelling of
Embedded Systems

Allan Munck: allmun@dtu.dk or amunck@gnresound.com.

EMSIG2015

mailto:allmun@dtu.dk
mailto:amunck@gnresound.com

DTU Compute, Technical University of Denmark 28 October 2015

GN ReSound – Smart Hearing Systems

2

Control and Releif apps also for Andriod

DTU Compute, Technical University of Denmark 28 October 2015

Case study

3

• Analysis of impact of new architecture.

• More than 30 highly interacting use cases.

• Protocol constrains.
• Timing requirements.
• Power constraints/requirements.

Main
System

Memory
System

Radio
System

bus

DTU Compute, Technical University of Denmark 28 October 2015

Methodology

4

Figure 2: Test-Driven Design Space ExplorationFigure 1: Test-Driven Model-Based Systems Engineering

Obtain and
specify

behavioural or
architectural
requirement

Refine
requirement

Model
behavioural
scenario or

architectural
test case

Run new
test case

Interactive
simulation

Create or modify
system behaviour /
system architecture

Clean up
model

Run all
behavioural &
architectural

test cases

Execution
tracesSome test(s) fail

All tests pass Test fails

Test pass

Repeat

TD-MBSE TD-DSE

TD-MBSE
Base

Design

Alternative
Designs

Obtaining
Estimates

Formal
Verification

Property
Estimation

Property
Simulation

Functionality
Impact

Performance
Impact

DTU Compute, Technical University of Denmark 28 October 2015

Practical modelling and verification

• Collecting system knowledge in SysML.

• TD-MBSE with UPPAL (figure 3).

• Formal model checking queries, e.g.:
– A[] not deadlock
– Streaming.Receive --> Streaming.Done
– etc.

• TD-DSE with UPPAAL:
– Base design: “Efficient” solution.
– Alternative: “Fast” solution.

• System templates and many parameters
modified for alternative design to pass tests.

• Obtaining estimate with queries:
– E[<=100;2] (max:Streaming.delay)
– simulate 1[<=200]{Streaming.curr}
– Using UPPAAL plot composer + Matlab

• Both solutions finally subjected to formal
verification and passed all requirements.

• But with different performance.

5

Figure 3: Test case scenario modelling

DTU Compute, Technical University of Denmark 28 October 2015

Related work

• Test-Driven Development (TDD) [e.g. Cordemans et al.]
– Used heavily in the software industry to increase code quality.
– Not directly applicable to embedded systems that include hardware.

• Model-based test-driven development [Mou et al.]
– Method proposed but not tested or verified (no experimental data reported).
– Has limited scope and is probably not feasible for embedded systems.

• Test-driven software modelling [Zhang]
– Method based on simulations of message sequence charts.
– Experimental data demonstrates increased productivity and quality on large projects.

• Test-driven UML modelling of software systems [Hayashi et al.]
– Test-first methodology include both unit and scenario testing.
– A tool to facilitate the method is provided – with somewhat poor usability.

6

DTU Compute, Technical University of Denmark 28 October 2015

Problem and solutions

• Previous work
– Special tools required.

– Too cumbersome to use.

– Only unit or scenario testing.
– Cannot find unintended emergent errors.
– Cannot guarantee design.

– Limited scope.

– No widespread acceptance.

• Our solution
– Utilizing existing tools as is.

– Easy to use – modelling becomes a
simple mechanical process.

– Formal and statistical verification.
– Captures unintended behaviour.

– This work is limited to modelling of
architecture and behaviour of embedded
systems.

– Method easy to adopt.
7

DTU Compute, Technical University of Denmark 28 October 2015

Discussion

• Traces generated by UPPAAL made modelling easy.

• Problem with memory exhaustion.
– Very long traces for low level modelling.
– State explosions for large models.
– No simple long term solution.
– Formal model checking may have to be abandoned.

• Only behaviour and architectural parameters considered in this work.
– Architecture: Number of interfaces, coupling, etc. may also benefit from TDA.
– User interfaces and even stakeholders, use cases, requirements, etc. may also benefit.

8

DTU Compute, Technical University of Denmark 28 October 2015

Industrial future

• Smart Products:
– SoS : System of (independent) Systems.
– CPS : Cyber Physical (sub) Systems.
– BDS : Big-Data Systems.
– Millions/Billions of users.
– Connected via (multiple) clouds.

• No tools available to analyse complete system.

• Proposal:
– Model and analyse single-user scenarios with UPPAAL.
– Model and simulate system with thousands of users

using SimJava, SystemC, VDM or equivalent language.
– Vary parameters to obtain simulation results for

subsequent estimation/extrapolation of realistic usage.

9

Figure 1: Characteristics of smart products

Figure 2: Available techniques

DTU Compute, Technical University of Denmark 28 October 2015

Summary

• TD-MBSE and TD-DSE proposed to handle increasing complexity.
• Includes test-driven modelling of behaviour and architecture.
• Methodology tested on an actual industrial case with success.

• Future research to overcome memory exhaustion problems.
• Future research to expand the methodology to include other aspects of modelling.
• Methodology for future industrial cases proposed.

Thank you for listening!

10

DTU Compute, Technical University of Denmark 28 October 2015

Acknowledgements

• The authors would like to thank all involved stakeholders at GN Resound and at Technical
University of Denmark for their interest and involvement in this project.

• We will also like to thank the UPPAAL team for excellent support.

• Finally we wish to thank the Confederation of Danish Industry for sponsoring this project.

11

	Slide 1
	GN ReSound – Smart Hearing Systems
	Case study
	Methodology
	Practical modelling and verification
	Related work
	Problem and solutions
	Discussion
	Industrial future
	Summary
	Acknowledgements

