
Applying SMC to
Systems of Systems

Axel Legay November 2015

Axel Legay,
Benoît Boyer, Louis-Marie Traonouez, Jean Quilbeuf

Systems of Systems

A System of Systems (SoS) composes Constituent
Systems (CS) that:

• Operate independently
• Are owned and managed by different parties
• Are constantly evolving
• Are geographically distributed
to provide an emergent behavior that no CS alone can
provide.

November 2015Axel Legay

Example of SoS: The Internet

Internet is composed of several interconnected
networks that

• Operate independently
• Are owned and managed by different parties
• Are constantly evolving
• Are geographically distributed
to provide an emergent behavior: worldwide routing of
packets.

November 2015Axel Legay

Type of SoS considered

Architecture of such SoSs is usually managed by a single party.

Evolution of the SoS requires fast decision making.
November 2015Axel Legay

Challenges for SoS

Modeling:
• Constituent systems are modeled in various languages
• Architecture need to compose heterogeneous Constituent Systems

Validation
• SoS are very large systems: exhaustive exploration is doomed to fail

Emergent behavior
• Expected behavior might not show up because composition triggers a

unexpected emergent behavior
• Global behavior hard to infer from behavior of each component
• Handling dynamicity is complex !

November 2015Axel Legay

Methodology

The continuous evolution of an SoS requires iterative analyzes.

November 2015Axel Legay

Outline

1. Modeling SoSs
2. Describing goals
3. Simulating SoS
4. Tool-Chain
5. Case Study: Emergency Response System

November 2015Axel Legay

Modeling SoSs
Architecture and Constituent Systems

Axel Legay November 2015

1

SoS Modelling Approach

• Reuse existing models for constituent systems
Models created during the engineering of CS
Different formats for different analyses

• SoS as a composition of black boxes
Architecture:connections between CS

• Described in UPDM (multiple views, as in UML)
Constituent systems abstracted by their interface

• Follows the FMI standard
• FMU for joint simulation (compiled from
model/code of CS)

November 2015Axel Legay

Modelling Architecture in UPDM
Different Views to describe the SoS

OV-1 OV-2 OV-5

SV-4 SV-1

High level
conceptual view

Operational resource
flow description

Operational activity
model

System Interface
description

System functionality
flow description

November 2015Axel Legay

Illustrative
representation

of the CSs
and their

interactions.

Describe the different
operational nodes
and their connections.

Workflow
distributed

among
operational

nodes

Presents CSs,
their interfaces and

interconnections
(Architecture)

Obtained after analysis
of the previous views

Shows how a
functionality

is obtained as
a flow of
activities

Probablistic Behavior

• Random variables are needed
Models inputs of the system (value of a sensor)
Models unknown timing (time to a failure)

• UPDM extended with a probabilistc sterotype
Applicable to attributes of each component system
in the SV-1 (Architecture) view
Such attributes become random variables

• « observe » function that samples a new value at
each call (automatically generated)
• Several probability distributions are available :
uniform, normal or custom

November 2015Axel Legay

Modeling Constituent Systems

Any modeling framework that can export FMU can be used.

<?xml version="1.0" encoding="UTF8"?>
<fmiModelDescription fmiVersion="1.0" modelName="ModelicaExample" modelIdentifier="ModelicaExample_Friction" ...
 <UnitDefinitions>
 <BaseUnit unit="rad">
 <DisplayUnitDefinition displayUnit="deg" gain="23.26"/>
 </BaseUnit>
 </UnitDefinitions>
 <TypeDefinitions>
 <Type name="Modelica.SIunits.AngularVelocity">
 <RealType quantity="AngularVelocity" unit="rad/s"/>
 </Type>
 </TypeDefinitions>
 <ModelVariables>
 <ScalarVariable name="inertia1.J" valueReference="16777217" description="Moment of inertia" variability="parameter">
 <Real declaredType="Modelica.SIunits.Torque" start="1"/>
 </ScalarVariable>
 ...
 </ModelVariables>
</fmiModelDescription>

Define a variable in the
interface.

Link to the model done
by the exporting tool.

November 2015Axel Legay

Axel Legay November 2015

Describing Goals
GCSL Patterns

2

Goals

Goals express requirements of the SoS.

• Expressed as contracts i.e. (assume, guarantee)

• Attached to a component
-Contract of that particular component

• Or global to the SoS
-Capture a behavior resulting of the composition :
emergent behavior

• Designed with usability in mind
• OCL for quantifiers and atomic properties
• Patterns for expressing temporal properties

November 2015Axel Legay

Modeling Goals

Goals are described in GCSL, that mixes:
• Temporal operators (LTL) through pre-defined patterns (next slide)
• OCL constraints

Values exchanged between Constituent Systems are visible:
• district.firearea is the value firearea sent by the CS
district

Collections of CS are obtained through OCL-like constructs:
• SoS.itsDistricts is a collection of all CS of type district in the

model
• SoS.itsDistricts->forAll(d | <expr>(d)) is true if the

expression <expr> holds for each district d
• SoS.itsDistricts.firearea->sum() is the sum of the the
firearea attributes of all districts

November 2015Axel Legay

Patterns

Patterns express requirements in an intuitive way

• Over 1300s, there is no significant fire in district 5 for at least 99% of the time

at the end of [0,1300], [district5.fireArea < 0.01]

has been true at least [99] % of time

• Include only atomic OCL propositions between [], no nested patterns

Generic patterns independent of the architecture
• On every district, the fire area is below a given threshold:

SoS.itsDistricts->forAll(district | always

[district.fireArea * 1000000 < 1.0])
• Patterns might be quantified, or contain quantifiers

GCSL semantics is defined by transformation to BLTL
• Each pattern is translated to a BLTL pattern
• Quantified expressions are unfolded according to the (static) architecture. For

instance c->forAll(d| f(d)) is replaced by where
 are the elements of the collection c

November 2015Axel Legay

f (d 1)∧ f (d 2)∧...∧ f (d n)
d 1,d 2 , ... , d n

Selected Patterns and their Translation
GCSL Pattern BLTL Translation

November 2015Axel Legay

Axel Legay November 2015

Simulating SoSs
FMI/FMU, Master Algorithm

3

Simulation

The architecture (i.e UPDM model) knows only about the
interface of the Constituent Systems

• FMI (Functional Mockup Interface) standard

For the simulation, each CS is compiled to a FMU (Functional
Mockup Unit) that

• Implements its behavior

• Contains equations describing the behavior of its continuous

time variables

November 2015Axel Legay

Joint simulation

Constituent
Systems

SoS
Specification

UPDM

FMI

Constituent
Systems

Models

SoS
Structure

• FMI standard for component integration
• Constituent system models exported as FMUs from modeling tools
• SoS architecture exported to DESYRE
• FMUs imported in DESYRE
• Simulation run in DESYRE

November 2015Axel Legay

Master Algorithm for Simulation

Challenges

• Correction w.r.t. computing models of arch and Cs

• Convergence of the step (for continuous variable)

• Determinism

• 2 approaches for simulating composition of FMU
• Co-simulation: continuous variable evolution computed

by the FMUs
• Model Exchange: FMUs provide their model to the MA,

which computes everything

• We selected model exchange

November 2015Axel Legay

Master Algorithm for Simulation

Perform discrete updates
until no events remain to be
processed.

Update continuous variables

Update events and time

Waits until a new state is asked

November 2015Axel Legay

Axel Legay November 2015

Tool-Chain

4

Tool chain

• Relies on joint simulation from DESYRE
• Allows analysis of any model supported by DESYRE
• Launches simulations and request new states as needed

• Checks a transformed version of the GCSL patterns
• Contracts attached to the UPDM model
• Automatic transformation to BLTL before an SMC session

• Using the PLASMA Statistical Model Checker

November 2015Axel Legay

Tool-chain

From the modeling to the verification:

• Modeling of Constituent Systems: various tools (anything that exports FMU)

• Modeling of the architecture: IBM Rhapsody, enhanced with a SoS profile

• Defining goals: dedicated GCSL editor. Goals are attached to the architecture

• Tool-net: network allowing exchange of models, patterns and results

• Dashboard:
• Load models from the tool-net
• Parameterize and launch simulations
• Parameterize and launch SMC analyzes

• Simulation handled by DESYRE
• Loading of architecture from the tool-net
• Loading of FMUs from the tool-net

• SMC handled by PLASMA-LAB
• GCSL automatically converted to BLTL
• Interface with DESYRE to control the simulation step-by-step

November 2015Axel Legay

Tool-chain

IBM RhapsodyIBM Rhapsody

Tool-net

Simulation SMCSMC

open_session()
new_simu()

new_simu()

close_session()

DashBoadDashBoad
Analysis Control: Type,
Duration, SMC Parameters…

Collect: UPDM model,
 GCSL Extensions

Publish: Simulation Results,
 Analysis Results

GCSL CompilerGCSL Compiler

GSCL PatternsGSCL Patterns

B-LTL PropertiesB-LTL Properties

Publish SoS Model:
UPDM +
GCSL extensions

FMI executableFMI executable

GCSL Editor GCSL Editor

FMI Compiler/LinkerFMI Compiler/Linker

GCSL (Local & Global SoS Goals)GCSL (Local & Global SoS Goals)
Modeling

architecture

Defining
Goals

Exchanging
models over
the Tool-net

Interface
Plasma-Desyre

for SMC

GCSL Patterns
automatically

transformed to BLTL

November 2015Axel Legay

Axel Legay November 2015

Case Study
Emergency Response System

5

Emergency Response System
Models the reaction of several emergency systems:

• Police

• Firefighters

• Hospitals
to a catastrophic event.

In particular communication protocols and communication
channels are modelled.

The emergent behavior of the SoS should be an appropriate
response.

November 2015Axel Legay

Emergency Response System

Communicate

MeteoCom: Control Centre

WaterCom: Control Centre

Additional Actors
providing add. Resources

& Capabilities

FireCom: Control Centre

FireBrigade_4: FireStation

FireBrigade_1: FireStation

FireBrigade_2: FireStation

FireBrigade_3: FireStation

Hospital_1: Hospital

Hospital_2: Hospital

Hospital_3: Hospital

Communicate/ control

MRS_1: Mobile
Radio System

TDAS: Threat Detection &
Alert System

Control

communicate/ control

MRS_3: Mobile
Radio System

communicate

MRS_2: Mobile
Radio System

PoliceCom: Control Centre

Police_3: PoliceStation

Police_2: PoliceStation

Police_1: PoliceStation

Police_4: PoliceStation
Police_5: PoliceStation

WaterPolice_1: WaterPoliceStation

WaterPolice_2: WaterPoliceStation

Catastrophe &
Emergency CCC

November 2015Axel Legay

Focus on a fire scenario
• Constituent systems (modelled in UPDM):

 Head Quarter, Stations, Cars, Firemen, Districts

• Whenever a fire occurs (determined probabilistically),
• the districts sends a message to the Head Quarter,
• the Head Quarter sends a message to the concerned Station,
• the Station deploys Cars and Firemen

Simulation Output: Evolution of fire areas, for each district, during time

Evolution of the SoS requires a new analysis ...

November 2015Axel Legay

Evaluating the probability of a fire

1: The fire is always smaller than X% of the total area:

2: The fire is smaller than X% of the total area for 90% of the time

X P(1) Time

1 0.98 34 m

10-1 0.95 39 m

10-2 0.96 31 m

10-3 0.93 36 m

10-4 0.60 28 m

10-5 0.35 25 m

X P(2) Time

1 0.95 40 m

10-1 0.98 34 m

10-2 0.96 43 m

10-3 0.97 42 m

10-4 0.97 42 m

10-5 0.99 37 m

SMC parameters:

Simulation time: 10000s

ε = 0.1
δ = 0.01

November 2015Axel Legay

Next iteration

The probability that a fire lasts more than 10% of the time is too high.

This is due to a unwanted emergent behavior

Arises when two fires occur simultaneously.
Need to fix the architecture and reiterate the analysis.

November 2015Axel Legay

Summary

• Modelling SoS
• Reuse models of constituent systems
• UPDM profile for SoS
• Contracts

• Simulation
• FMI/FMU based execution
• Heterogeneous modelling langages

• Verification
• Statistical Model Checking
• Properties automatically obtained from contracts

November 2015Axel Legay

Thank You

www.inria.fr

	Slide 1
	Systems of Systems
	Example of SoS: The Internet
	Type of SoS considered
	Challenges for SoS
	Methodology
	Outline
	Slide 8
	SoS Modelling Approach
	Modelling Architecture in UPDM
	Slide 11
	Modeling Constituent Systems
	Slide 13
	Goals
	Modeling Goals
	Patterns
	Selected Patterns and their Translation
	Slide 18
	Simulation
	Joint simulation
	Master Algorithm for Simulation
	Master Algorithm for Simulation
	Slide 23
	Tool chain
	Tool-chain
	Tool-chain
	Slide 27
	Emergency Response System
	Emergency Response System
	Focus on a fire scenario
	Evaluating the probability of a fire
	Next iteration
	Summary
	Thank You

