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Systems of Systems

A System of Systems (S0S) composes Constituent
Systems (CS) that:

* Operate independently
* Are owned and managed by different parties
* Are constantly evolving

* Are geographically distributed
to provide an emergent behavior that no CS alone can
provide.
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Example of S0S: The Internet

Internet is composed of several interconnected
networks that

* Operate independently
* Are owned and managed by different parties
* Are constantly evolving

* Are geographically distributed
to provide an emergent behavior: worldwide routing of
packets.

Axel Legay November 2015




Type of SoS considered

Systems of Systems Observed Characteristics
s 4

The Thternet
pply Chain Ma

Traffic Management
onpomous Ground

t
ansport

ency Response
Operational Managerial Evolutionary Emergent Geographic
Independence Independence Development Behaviour Distribution

Architecture of such SoSs is usually managed by a single party.

Evolution of the SoS requires fast decision making.
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Challenges for SoS

Modeling:
* Constituent systems are modeled in various languages
* Architecture need to compose heterogeneous Constituent Systems

Validation
* So0S are very large systems: exhaustive exploration is doomed to fail

Emergent behavior

* Expected behavior might not show up because composition triggers a
unexpected emergent behavior

* Global behavior hard to infer from behavior of each component

* Handling dynamicity is complex !
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Methodoloo

SoS
Initiation
Phase

SoS Management Phase (continuous)

= il .. . il .

Sos l ‘Am-l-

Engineering ine potential needs

-- K iF b “

Capability . Analyze (ble architecture changes

Learning i i by

Cycle :
and implement changes

Constituent

Systems Y By By N N N B
Engineering ‘ ‘ ‘ ‘ ‘ ‘ ‘

_ >
TIME

The continuous evolution of an SoS requires iterative analyzes.
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Outline

1. Modeling SoSs

2. Describing goals

3. Simulating SoS

4. Tool-Chalin

5. Case Study: Emergency Response System
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Modeling SoSs

Architecture and Constituent Systems
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SoS Modelling Approach

* Reuse existing models for constituent systems
=Models created during the engineering of CS
= Different formats for different analyses

* So0S as a composition of black boxes
== Architecture:connections between CS

* Described in UPDM (multiple views, as in UML)
== Constituent systems abstracted by their interface

* Follows the FMI standard

* FMU for joint simulation (compiled from

model/code of CS)
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Modelling Architecture in UPDM

Different Views to describe the SoS

High level [ Operational resource Operational activity
conceptual view g floyv description model

lllustrative ¢ Workflow _ =
representation == _| gistributed F the different | ==
oftheCSs |- | among [n@l nodes
and their — | operational [ connections;
; interactions. T —— -
o s S ) = =A_nodes ) ‘ e - -
[ System functionality ] System Interface ]
~___flow description description
[Shows howa [ = —— - 7~ Presents CSs, T =TT
functionality |—__ their interfaces and Bl =—=
is obtained as interconnections pg e b
a flow of = (Architecture) | e
activities o = ==
\- Obtained after analysis | ——= |
-\ of the previous views / S g

. hi&&.——- Axel Legay
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Probablistic Behavior

* Random variables are needed
==Models inputs of the system (value of a sensor)
=Models unknown timing (time to a failure)

* UPDM extended with a probabilistc sterotype

= Applicable to attributes of each component system

In the SV-1 (Architecture) view

=£3Sych attributes become random variables
* « observe » function that samples a new value at
each call (automatically generated)
» Several probability distributions are available :
uniform, normal or custom
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Modeling Constituent Systems

Any modeling framework that can export FMU can be used.

4\ MATLAB Vu

SIMULINK 4

<?xml version="1.0" encoding="UTF8"?>
<fmiModelDescription fmiVersion="1.0" modelName="ModelicaExample" modelldentifier="ModelicaExample_Friction" ...
<UnitDefinitions>
<BaseUnit unit="rad">
<DisplayUnitDefinition displayUnit="deg" gain="23.26"/>
</BaseUnit>
</UnitDefinitions>
<TypeDefinitions>
<Type name="Modelica.Slunits.AngularVelocity">
<RealType quantity="AngularVelocity" unit="rad/s"/>
<[Type>
</TypeDefinitions>
<ModelVariables>
<ScalarVariable name="inertial.J" valueReference="16777217" description="Moment of inertia" variability="parameter">
<Real declaredType="Modelica.Slunits.Torque" start="1"/>
</ScalarVariable>

Define a variable in the
interface.

Link to the model done
by the exporting tool. /

</ModelVariables>
</fmiModelDescription>
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Describing Goals
GCSL Patterns
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Goals

Goals express requirements of the SoS.
* EXpressed as contracts i.e. (assume, guarantee)

* Attached to a component
- Contract of that particular component
* Or global to the SoS
- Capture a behavior resulting of the composition
emergent behavior

* Designed with usability in mind
* OCL for quantifiers and atomic properties
* Patterns for expressing temporal properties
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Modeling Goals

Goals are described in GCSL, that mixes:
* Temporal operators (LTL) through pre-defined patterns (next slide)
* OCL constraints

Values exchanged between Constituent Systems are visible:
* district.firearea isthe value firearea sent by the CS
district

Collections of CS are obtained through OCL-like constructs:

* S0S.1tsDistricts is a collection of all CS of type district in the
model

* S0S.itsDistricts->forAll( d | <expr>(d) ) istrueifthe
expression <expr> holds for each district d

* SoS.itsDistricts.firearea->sum() isthe sum of the the
firearea attributes of all districts

I &Z’Z&&-—- Axel Legay
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Patterns

Patterns express requirements in an intuitive way
* Over 1300s, there is no significant fire in district 5 for at least 99% of the time
at the end of [0,1300], [district5.fireArea < 0.01]
has been true at least [ 99 ] % of time
* Include only atomic OCL propositions between [ ], no nested patterns

Generic patterns independent of the architecture
* On every district, the fire area is below a given threshold:

SoS.itsDistricts->forAll(district | always

[ district.fireArea * 1000000 < 1.0 ] )
* Patterns might be quantified, or contain quantifiers

GCSL semantics is defined by transformation to BLTL
* Each pattern is translated to a BLTL pattern
* Quantified expressions are unfolded according to the (static) architecture. For
instance c->forAll(d| f(d)) isreplaced by f(d,)Af(d,)A...Af(d,)where
d, &ye.thd glements of the collection ¢
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Selected Patterns and their Translation

GCSL Pattern BLTL Translation
always [V] G<r(P)
3 |whenever [¥;] occurs [¥2] holds G<p (W — W)
8 |[W1] occurs at most n times during [a, b] occ(Wy,a,b) <n
12 \whenever [¥] occurs [¥3] occurs within [a,b] Gep—p (U1 = XcglFop_o Vo)
13 |always during [a,b], [¥] has been true at least [e] % |G <p(# Time < aV dur(¥) >
of time (165 * # T'ime))
14 |at [b], [¥] has been true at least [e¢] % of time Fep(dur(¥) > 155 * b)

G-t F<; : time bounded temporal operators (always and eventually)
k : maximum simulation duration

a,b :timingssuchthat a<b <k

occ(W¥4,a, b) is the number of occurrences of W, between a and b
dur(W¥) is the time during which ¥ was true since the beginning
#Time is the time elapsed since the beginning of the simulation
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Simulating SoSs
FMI/FMU, Master Algorithm
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Simulation

The architecture (i.e UPDM model) knows only about the
Interface of the Constituent Systems

* FMI (Functional Mockup Interface) standard

For the simulation, each CS is compiled to a FMU (Functional
Mockup Unit) that

* Implements its behavior
* Contains equations describing the behavior of its continuous
time variables
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Joint simulation

* FMI standard for component integration
* Constituent system models exported as FMUs from modeling tools
e So0S architecture exported to DESYRE
* FMUs imported in DESYRE

e Simulation run in DESYRE

SoS
Specification ~
Constituent
Systems \l\_
y oir] S

Mo I]‘E:L feal- - .

Constituent
Systems
Models

rd
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Master Algorithm for Simulation

Challenges

* Correction w.r.t. computing models of arch and Cs
* Convergence of the step (for continuous variable)
* Determinism

* 2 approaches for simulating composition of FMU
* Co-simulation: continuous variable evolution computed
by the FMUs
* Model Exchange: FMUs provide their model to the MA,
which computes everything

We selected model exchange
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Master Algorithm for Simulation

while (simTime < simFEndTime and not(simStopEvt)) do

while (not(izsSoSFixzPtReached())) do

for all ¢s € csList do
cs.updateDiscrState(simT ime);

end for

end while

or all cs € eslList do
cs.updateContState(simTime);
nd for

evtQueue.updateEvts();
simT ime = eviQueue.getClosestEvtTime();

aitNextActivationkEvt();

end while

. &&’Z&&-——- Axel Legay

Perform discrete updates
until no events remain to be
processed.

Update continuous variables

Update events and time
Waits until a new state is asked

November 2015




Tool-Chain
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Tool chain

* Relies on joint simulation from DESYRE
* Allows analysis of any model supported by DESYRE
* Launches simulations and request new states as needed

* Checks a transformed version of the GCSL patterns
* Contracts attached to the UPDM model
* Automatic transformation to BLTL before an SMC session

* Using the PLASMA Statistical Model Checker
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Tool-chain

From the modeling to the verification:

Modeling of Constituent Systems: various tools (anything that exports FMU)
Modeling of the architecture: IBM Rhapsody, enhanced with a SoS profile
Defining goals: dedicated GCSL editor. Goals are attached to the architecture
Tool-net: network allowing exchange of models, patterns and results

Dashboard:
* Load models from the tool-net
* Parameterize and launch simulations
* Parameterize and launch SMC analyzes

Simulation handled by DESYRE
* Loading of architecture from the tool-net
* Loading of FMUs from the tool-net

SMC handled by PLASMA-LAB
* GCSL automatically converted to BLTL
* Interface with DESYRE to control the simulation step-by-step
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Tool-chain

Model Defining
odeling Goals
architecture IBM Rhapsody

4

-

GCSL Editor

Publish SoS Model:

Tool-net UPDM *

GCSL extensions

Collect: UPDM model,
GCSL Extensions

Exchanging
models over

the Tool-net

Publish: Simulation Results,
Analysis Results

FMI executable

DashBoad
Analysis Control: Type,
) = Duration, SMC Parameters...
FMI Compiler/Linker

open_session()
new_simu()

B-LTL Properties

GCSL Compiler

GSCL Patterns

Interface N GCSL Patterns
Pla?mas- K)/I%Syre — automatically
or -

transformed to BLTL
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Case Study

Emergency Response System
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Emergency Response System

Models the reaction of several emergency systems:
* Police
* Firefighters

* Hospitals
to a catastrophic event.

In particular communication protocols and communication
channels are modelled.

The emergent behavior of the SoS should be an appropriate
response.
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Emergency Responge System

g
®Ka | W
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Focus on a fire scenario

Constituent systems (modelled in UPDM):
Head Quarter, Stations, Cars, Firemen, Districts

Whenever a fire occurs (determined probabilistically),
* the districts sends a message to the Head Quatrter,

* the Head Quarter sends a message to the concerned Station,
* the Station deploys Cars and Firemen

Simulation Output: Evolution of fire areas, for each district, during time

City Fires
0,000301

:

fire areas (km?)
g

[=]

24404E4  2,8E4 3,264 3,664 4E4 4.4E4 4,8E4 S5E4 5,4E4 5,8E4 6,2E4 6,6E4

94378E4
time (s)

7E4 7.4E4 7.6E4
—s—districtl.DistrictFmilmplem.fireArea ——district2. DistrictFmilmplemn.firefirea ——district3.DistrictFmilmplem fireArea ——districtd. DistrictFmilmplemn . fireArea —— district.DistrictFmilmplem.firefrea

8,2E4 8,6E4 9E4

—e—district?.DistrictFmilmplem fireArea ——districtd.DistrictFmilmplemn firedrea ——di

plem.Tire~rea

Evolution of the SoS requires a new analysis ...
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Evaluating the probability of a fire

1: The fire is always smaller than X% of the total area:
always [SoS.itsDistricts.fireArea — sum() > (X /100)%S0S.itsDistricts.area — sum()]

2: The fire is smaller than X% of the total area for 90% of the time

at [ 10000 ], [SoS.itsDistricts.fireArea — sum() >
(X /100)%SoS.itsDistricts.area — sum()] has been true at least [ 10 | % of time

X P@ [fime

SMC parameters:
Simulation time: 10000s

€=0.1
0=0.01
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Next iteration

The probability that a fire lasts more than 10% of the time is too high.

This is due to a unwanted emergent behavior

City Fires
4,36

a

E / /

L3 ] y
E 2 —: ! .I ..l ..r '.r'
E 1 — L yd yd
= - _‘ :

Ay !
4500 4600 4700

) A ATk AR A
4800 4900 5000 5100 5200 5300
time (s)

399508 4100 4200 4300 4400 5400 5500 5600 5700 5800 5800 6029,78

—=—districtl.DistrictFmilmplem.fireArea ——district2.DistrictFmilmplem fireArea ——district3.DistrictFmilmplem.fireArea ——districtd.DistrictFmilmplem.fireArea ——district.DistrictFmilmplem fireArea

nfirefrea —s—district?.DistrictFmilmplemn firefrea ——district8. DistrictFmilmplemn. fireArea —s—district9.DistrictFmilmplem.fireArea

Arises when two fires occur simultaneously.
Need to fix the architecture and reiterate the analysis.

I &Z’Z&ZL——- Axel Legay
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Summary

* Modelling SoS
* Reuse models of constituent systems
* UPDM profile for SoS
* Contracts

* Simulation
* FMI/FMU based execution
* Heterogeneous modelling langages

* Verification
* Statistical Model Checking
* Properties automatically obtained from contracts

Axel Legay November 2015



Thank You
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