Water
Engineering
& Planning

(Waste Water
(Sewage)
Management

| Sas, 505 Management Phase (continuous)

Initiation
Phase

0S
Engineering

informatic ,mathemaﬂcs bty -

Learning

c

Constituent
Systems
Engineering

Surveillance _FMS.

b Datalink

Communications.

Tk Airport Surface

System Wide Information Management
= Control 0 rorsCare
ative Fight Data Processing System and trafficflow management Tower 1 Aot v data ik
3 Wi Genere
1A Trafi Fow Managamert Certre
1455 Corero Conro

Air Traffic
Control

Applying SMC to
Systems of Systems

SEVENTH FRAMEWORK
PROGRAMME

Axel Legay November 2015

Systems of Systems

A System of Systems (S0S) composes Constituent
Systems (CS) that:

* Operate independently
* Are owned and managed by different parties
* Are constantly evolving

* Are geographically distributed
to provide an emergent behavior that no CS alone can
provide.

Axel Legay November 2015

Example of S0S: The Internet

Internet is composed of several interconnected
networks that

* Operate independently
* Are owned and managed by different parties
* Are constantly evolving

* Are geographically distributed
to provide an emergent behavior: worldwide routing of
packets.

Axel Legay November 2015

Type of SoS considered

Systems of Systems Observed Characteristics
s 4

The Thternet
pply Chain Ma

Traffic Management
onpomous Ground

t
ansport

ency Response
Operational Managerial Evolutionary Emergent Geographic
Independence Independence Development Behaviour Distribution

Architecture of such SoSs is usually managed by a single party.

Evolution of the SoS requires fast decision making.

Axel Legay November 2015

Challenges for SoS

Modeling:
* Constituent systems are modeled in various languages
* Architecture need to compose heterogeneous Constituent Systems

Validation
* So0S are very large systems: exhaustive exploration is doomed to fail

Emergent behavior

* Expected behavior might not show up because composition triggers a
unexpected emergent behavior

* Global behavior hard to infer from behavior of each component

* Handling dynamicity is complex !

Axel Legay November 2015

Methodoloo

SoS
Initiation
Phase

SoS Management Phase (continuous)

= il .. . il .

Sos l ‘Am-l-

Engineering ine potential needs

-- K iF b “

Capability . Analyze (ble architecture changes

Learning i i by

Cycle :
and implement changes

Constituent

Systems Y By By N N N B
Engineering ‘ ‘ ‘ ‘ ‘ ‘ ‘

_ >
TIME

The continuous evolution of an SoS requires iterative analyzes.

Axel Legay November 2015

Outline

1. Modeling SoSs

2. Describing goals

3. Simulating SoS

4. Tool-Chalin

5. Case Study: Emergency Response System

I 6&’2&2&-—- Axel Legay November 2015

Modeling SoSs

Architecture and Constituent Systems

&Z’Zé’d!.-—- Axel Legay November 2015

SoS Modelling Approach

* Reuse existing models for constituent systems
=Models created during the engineering of CS
= Different formats for different analyses

* So0S as a composition of black boxes
== Architecture:connections between CS

* Described in UPDM (multiple views, as in UML)
== Constituent systems abstracted by their interface

* Follows the FMI standard

* FMU for joint simulation (compiled from

model/code of CS)

I 6&’2&2&-—- Axel Legay November 2015

Modelling Architecture in UPDM

Different Views to describe the SoS

High level [Operational resource Operational activity
conceptual view g floyv description model

lllustrative ¢ Workflow _ =
representation == _| gistributed F the different | ==
oftheCSs |- | among [n@l nodes
and their — | operational [connections;
; interactions. T —— -
o s S) = =A_nodes) ‘ e - -
[System functionality] System Interface]
~___flow description description
[Shows howa [= —— - 7~ Presents CSs, T =TT
functionality |—__ their interfaces and Bl =—=
is obtained as interconnections pg e b
a flow of = (Architecture) | e
activities o = ==
\- Obtained after analysis | ——= |
-\ of the previous views / S g

. hi&&.——- Axel Legay

November 2015

Probablistic Behavior

* Random variables are needed
==Models inputs of the system (value of a sensor)
=Models unknown timing (time to a failure)

* UPDM extended with a probabilistc sterotype

= Applicable to attributes of each component system

In the SV-1 (Architecture) view

=£3Sych attributes become random variables
* « observe » function that samples a new value at
each call (automatically generated)
» Several probability distributions are available :
uniform, normal or custom

I 6&’2&2&-—- Axel Legay November 2015

Modeling Constituent Systems

Any modeling framework that can export FMU can be used.

4\ MATLAB Vu

SIMULINK 4

<?xml version="1.0" encoding="UTF8"?>
<fmiModelDescription fmiVersion="1.0" modelName="ModelicaExample" modelldentifier="ModelicaExample_Friction" ...
<UnitDefinitions>
<BaseUnit unit="rad">
<DisplayUnitDefinition displayUnit="deg" gain="23.26"/>
</BaseUnit>
</UnitDefinitions>
<TypeDefinitions>
<Type name="Modelica.Slunits.AngularVelocity">
<RealType quantity="AngularVelocity" unit="rad/s"/>
<[Type>
</TypeDefinitions>
<ModelVariables>
<ScalarVariable name="inertial.J" valueReference="16777217" description="Moment of inertia" variability="parameter">
<Real declaredType="Modelica.Slunits.Torque" start="1"/>
</ScalarVariable>

Define a variable in the
interface.

Link to the model done
by the exporting tool. /

</ModelVariables>
</fmiModelDescription>

I &Z’Z&&-——- Axel Legay November 2015

Describing Goals
GCSL Patterns

&Z’Zé&.—-—- Axel Legay November 2015

Goals

Goals express requirements of the SoS.
* EXpressed as contracts i.e. (assume, guarantee)

* Attached to a component
- Contract of that particular component
* Or global to the SoS
- Capture a behavior resulting of the composition
emergent behavior

* Designed with usability in mind
* OCL for quantifiers and atomic properties
* Patterns for expressing temporal properties

I &Z/Z&&-—- Axel Legay November 2015

Modeling Goals

Goals are described in GCSL, that mixes:
* Temporal operators (LTL) through pre-defined patterns (next slide)
* OCL constraints

Values exchanged between Constituent Systems are visible:
* district.firearea isthe value firearea sent by the CS
district

Collections of CS are obtained through OCL-like constructs:

* S0S.1tsDistricts is a collection of all CS of type district in the
model

* S0S.itsDistricts->forAll(d | <expr>(d)) istrueifthe
expression <expr> holds for each district d

* SoS.itsDistricts.firearea->sum() isthe sum of the the
firearea attributes of all districts

I &Z’Z&&-—- Axel Legay

November 2015

Patterns

Patterns express requirements in an intuitive way
* Over 1300s, there is no significant fire in district 5 for at least 99% of the time
at the end of [0,1300], [district5.fireArea < 0.01]
has been true at least [99] % of time
* Include only atomic OCL propositions between [], no nested patterns

Generic patterns independent of the architecture
* On every district, the fire area is below a given threshold:

SoS.itsDistricts->forAll(district | always

[district.fireArea * 1000000 < 1.0])
* Patterns might be quantified, or contain quantifiers

GCSL semantics is defined by transformation to BLTL
* Each pattern is translated to a BLTL pattern
* Quantified expressions are unfolded according to the (static) architecture. For
instance c->forAll(d| f(d)) isreplaced by f(d,)Af(d,)A...Af(d,)where
d, &ye.thd glements of the collection ¢

I &Z/Z&&-—- Axel Legay November 2015

Selected Patterns and their Translation

GCSL Pattern BLTL Translation
always [V] G<r(P)
3 |whenever [¥;] occurs [¥2] holds G<p (W — W)
8 |[W1] occurs at most n times during [a, b] occ(Wy,a,b) <n
12 \whenever [¥] occurs [¥3] occurs within [a,b] Gep—p (U1 = XcglFop_o Vo)
13 |always during [a,b], [¥] has been true at least [e] % |G <p(# Time < aV dur(¥) >
of time (165 * # T'ime))
14 |at [b], [¥] has been true at least [e¢] % of time Fep(dur(¥) > 155 * b)

G-t F<; : time bounded temporal operators (always and eventually)
k : maximum simulation duration

a,b :timingssuchthat a<b <k

occ(W¥4,a, b) is the number of occurrences of W, between a and b
dur(W¥) is the time during which ¥ was true since the beginning
#Time is the time elapsed since the beginning of the simulation

. &Z/lel.-—- Axel Legay November 2015

Simulating SoSs
FMI/FMU, Master Algorithm

6&’2&2&-—- Axel Legay November 2015

Simulation

The architecture (i.e UPDM model) knows only about the
Interface of the Constituent Systems

* FMI (Functional Mockup Interface) standard

For the simulation, each CS is compiled to a FMU (Functional
Mockup Unit) that

* Implements its behavior
* Contains equations describing the behavior of its continuous
time variables

I &L’ZJ&.—- Axel Legay November 2015

Joint simulation

* FMI standard for component integration
* Constituent system models exported as FMUs from modeling tools
e So0S architecture exported to DESYRE
* FMUs imported in DESYRE

e Simulation run in DESYRE

SoS
Specification ~
Constituent
Systems \l_
y oir] S

Mo I]‘E:L feal- - .

Constituent
Systems
Models

rd
I 6&’2&&-—- Axel Legay November 2015

Master Algorithm for Simulation

Challenges

* Correction w.r.t. computing models of arch and Cs
* Convergence of the step (for continuous variable)
* Determinism

* 2 approaches for simulating composition of FMU
* Co-simulation: continuous variable evolution computed
by the FMUs
* Model Exchange: FMUs provide their model to the MA,
which computes everything

We selected model exchange

I &Z’ZJ&.—- Axel Legay November 2015

Master Algorithm for Simulation

while (simTime < simFEndTime and not(simStopEvt)) do

while (not(izsSoSFixzPtReached())) do

for all ¢s € csList do
cs.updateDiscrState(simT ime);

end for

end while

or all cs € eslList do
cs.updateContState(simTime);
nd for

evtQueue.updateEvts();
simT ime = eviQueue.getClosestEvtTime();

aitNextActivationkEvt();

end while

. &&’Z&&-——- Axel Legay

Perform discrete updates
until no events remain to be
processed.

Update continuous variables

Update events and time
Waits until a new state is asked

November 2015

Tool-Chain

&Z’Zé&,—- Axel Legay November 2015

Tool chain

* Relies on joint simulation from DESYRE
* Allows analysis of any model supported by DESYRE
* Launches simulations and request new states as needed

* Checks a transformed version of the GCSL patterns
* Contracts attached to the UPDM model
* Automatic transformation to BLTL before an SMC session

* Using the PLASMA Statistical Model Checker

I &Z’Z&&-——- Axel Legay November 2015

Tool-chain

From the modeling to the verification:

Modeling of Constituent Systems: various tools (anything that exports FMU)
Modeling of the architecture: IBM Rhapsody, enhanced with a SoS profile
Defining goals: dedicated GCSL editor. Goals are attached to the architecture
Tool-net: network allowing exchange of models, patterns and results

Dashboard:
* Load models from the tool-net
* Parameterize and launch simulations
* Parameterize and launch SMC analyzes

Simulation handled by DESYRE
* Loading of architecture from the tool-net
* Loading of FMUs from the tool-net

SMC handled by PLASMA-LAB
* GCSL automatically converted to BLTL
* Interface with DESYRE to control the simulation step-by-step

I &Z’Z&ZL——- Axel Legay November 2015

Tool-chain

Model Defining
odeling Goals
architecture IBM Rhapsody

4

-

GCSL Editor

Publish SoS Model:

Tool-net UPDM *

GCSL extensions

Collect: UPDM model,
GCSL Extensions

Exchanging
models over

the Tool-net

Publish: Simulation Results,
Analysis Results

FMI executable

DashBoad
Analysis Control: Type,
) = Duration, SMC Parameters...
FMI Compiler/Linker

open_session()
new_simu()

B-LTL Properties

GCSL Compiler

GSCL Patterns

Interface N GCSL Patterns
Pla?mas- K)/I%Syre — automatically
or -

transformed to BLTL
I 6’2/262!.——- Axel Legay

November 2015

Case Study

Emergency Response System

&Z’Z&&-——- Axel Legay November 2015

Emergency Response System

Models the reaction of several emergency systems:
* Police
* Firefighters

* Hospitals
to a catastrophic event.

In particular communication protocols and communication
channels are modelled.

The emergent behavior of the SoS should be an appropriate
response.

I 6&’2&2&-—- Axel Legay November 2015

Emergency Responge System

g
®Ka | W

November 2015

Focus on a fire scenario

Constituent systems (modelled in UPDM):
Head Quarter, Stations, Cars, Firemen, Districts

Whenever a fire occurs (determined probabilistically),
* the districts sends a message to the Head Quatrter,

* the Head Quarter sends a message to the concerned Station,
* the Station deploys Cars and Firemen

Simulation Output: Evolution of fire areas, for each district, during time

City Fires
0,000301

:

fire areas (km?)
g

[=]

24404E4 2,8E4 3,264 3,664 4E4 4.4E4 4,8E4 S5E4 5,4E4 5,8E4 6,2E4 6,6E4

94378E4
time (s)

7E4 7.4E4 7.6E4
—s—districtl.DistrictFmilmplem.fireArea ——district2. DistrictFmilmplemn.firefirea ——district3.DistrictFmilmplem fireArea ——districtd. DistrictFmilmplemn . fireArea —— district.DistrictFmilmplem.firefrea

8,2E4 8,6E4 9E4

—e—district?.DistrictFmilmplem fireArea ——districtd.DistrictFmilmplemn firedrea ——di

plem.Tire~rea

Evolution of the SoS requires a new analysis ...

I &Z’Z&&-——- Axel Legay

November 2015

Evaluating the probability of a fire

1: The fire is always smaller than X% of the total area:
always [SoS.itsDistricts.fireArea — sum() > (X /100)%S0S.itsDistricts.area — sum()]

2: The fire is smaller than X% of the total area for 90% of the time

at [10000], [SoS.itsDistricts.fireArea — sum() >
(X /100)%SoS.itsDistricts.area — sum()] has been true at least [10 | % of time

X P@ [fime

SMC parameters:
Simulation time: 10000s

€=0.1
0=0.01

November 2015

Next iteration

The probability that a fire lasts more than 10% of the time is too high.

This is due to a unwanted emergent behavior

City Fires
4,36

a

E / /

L3] y
E 2 —: ! .I ..l ..r '.r'
E 1 — L yd yd
= - _‘ :

Ay !
4500 4600 4700

) A ATk AR A
4800 4900 5000 5100 5200 5300
time (s)

399508 4100 4200 4300 4400 5400 5500 5600 5700 5800 5800 6029,78

—=—districtl.DistrictFmilmplem.fireArea ——district2.DistrictFmilmplem fireArea ——district3.DistrictFmilmplem.fireArea ——districtd.DistrictFmilmplem.fireArea ——district.DistrictFmilmplem fireArea

nfirefrea —s—district?.DistrictFmilmplemn firefrea ——district8. DistrictFmilmplemn. fireArea —s—district9.DistrictFmilmplem.fireArea

Arises when two fires occur simultaneously.
Need to fix the architecture and reiterate the analysis.

I &Z’Z&ZL——- Axel Legay

November 2015

Summary

* Modelling SoS
* Reuse models of constituent systems
* UPDM profile for SoS
* Contracts

* Simulation
* FMI/FMU based execution
* Heterogeneous modelling langages

* Verification
* Statistical Model Checking
* Properties automatically obtained from contracts

Axel Legay November 2015

Thank You

www.inria.fr

	Slide 1
	Systems of Systems
	Example of SoS: The Internet
	Type of SoS considered
	Challenges for SoS
	Methodology
	Outline
	Slide 8
	SoS Modelling Approach
	Modelling Architecture in UPDM
	Slide 11
	Modeling Constituent Systems
	Slide 13
	Goals
	Modeling Goals
	Patterns
	Selected Patterns and their Translation
	Slide 18
	Simulation
	Joint simulation
	Master Algorithm for Simulation
	Master Algorithm for Simulation
	Slide 23
	Tool chain
	Tool-chain
	Tool-chain
	Slide 27
	Emergency Response System
	Emergency Response System
	Focus on a fire scenario
	Evaluating the probability of a fire
	Next iteration
	Summary
	Thank You

