
 1

Plasma:
A new SMC Checker

 Axel Legay

In collaboration with L. Traonouez and S. Sedwards.

 2

Plasma Lab

A PLAtform for Statistical Model Analysis

● A library of statistical model-checking algorithms
(Monte-Carlo, SPRT, rare events, CUSUM, nondeterminism,...)

● Generic analysis for any runnable language or model

● Easily distributed other computation grid

● An API that allows modularity:
extendable with plugins to add new algorithms, new input languages

● Developed in Java 6

 3

Plasma Lab Structure

 4

Model Language:
PRISM

Input language of the model-checker PRISM:

● Textual language for modeling DTMC, CTMC, MDP, PTA

● Guarded commands transitions (systems biology):
[synchro] guard → rate1:(action1) + rate2:(action2)

● System description via modules renaming

● Simulink, SystemC, ...

● And various specification languages

● Your language?

 5

Model Language:
PRISM:

Randomised dining philosophersRandomised dining philosophers

dtmc

formula lfree = p2>=0 & p2<=4 | p2=6 | p2=10;
formula rfree = p3>=0 & p3<=3 | p3=5 | p3=7;

module phil1
p1: [0..10];
[] p1=0 -> 0.2 : (p1'=0) + 0.8 : (p1'=1);
[] p1=1 -> 0.5 : (p1'=2) + 0.5 : (p1'=3);
[] p1=2 & lfree -> (p1'=4);
[] p1=2 & !lfree -> (p1'=2);
[] p1=3 & rfree -> (p1'=5);
[] p1=3 & !rfree -> (p1'=3);
[] p1=4 & rfree -> (p1'=8);
[] p1=4 & !rfree -> (p1'=6);
[] p1=5 & lfree -> (p1'=8);
[] p1=5 & !lfree -> (p1'=7);
[] p1=6 -> (p1'=1);
[] p1=7 -> (p1'=1);
[] p1=8 -> (p1'=9);
[] p1=9 -> (p1'=10);
[] p1=10 -> (p1'=0);

endmodule

module phil2 = phil1 [p1=p2, p2=p3, p3=p1] endmodule
module phil3 = phil1 [p1=p3, p2=p1, p3=p2] endmodule

// labels
label "hungry" = ((p1>0)&(p1<8))|((p2>0)&(p2<8))|((p3>0)&(p3<8));
label "eat" = ((p1>=8)&(p1<=9))|((p2>=8)&(p2<=9))|((p3>=8)&(p3<=9));

 6

Model Language:
Bio
Textual language for biological models:

● Write chemicals reactions with CTMC semantics:
product1 + product2 rate-> product3 + product4

● Use Gillespie algorithm for simulating biological models:
The time and probability of a reaction depends on its rate and
the number of species.

species A=1000,B=1000,C,D,E

A + B -> C
C 10000 -> D
D -> E

species A=1000,B=1000,C,D,E

A + B -> C
C 10000 -> D
D -> E

 7

Properties Language:
BLTL
Bounded Linear Temporal Logic

● LTL with bounded temporal operators

– F<=#50 "eat"

– F<=#1000 ("hungry" & (X<=#1 F<=#1000 "eat"))

 8

Using Plasma Lab GUI
for Simulations

liveness = F<=#1000 ("hungry" & (X<=#1 F<=#1000 "eat"))

 9

Plasma Lab API

Simulink Bio GCSLRML B-LTL

PLASMA Lab UI TerminalMATLAB

Controller API

PLASMA Lab

Model/Simulator Requirement

PLASMA
Lab plugins
PLASMA
Lab plugins

• Creates new
experiments

• Interfaces with PLASMA

• Creates new
experiments

• Interfaces with PLASMA

 10

Plasma Lab API

Controller API

PLASMA Lab

Model/Simulator
Requirement/

Checker

SMC Algorithms

• Decides if the property holds or not
• Property Monitoring during the simulations
• Decides if the property holds or not
• Property Monitoring during the simulations

• Executes a model
• Builds execution traces
• Executes a model
• Builds execution traces

• Estimate the probability
• Confidence Level set by the user
• Request Simulations for Checking

• Estimate the probability
• Confidence Level set by the user
• Request Simulations for Checking

 11

Developing New Plugins

Implement required interfaces from the API

New Simulator

● newPath()
Start a simulation

● simulate()
Simulate one step

New Simulator

● newPath()
Start a simulation

● simulate()
Simulate one step

New Checker

● check(path)
– Check a trace until the

property is decided

– Return the result

New Checker

● check(path)
– Check a trace until the

property is decided

– Return the result

New Algorithm

● run()
– Run the algorithm

– Send the results

New Algorithm

● run()
– Run the algorithm

– Send the results

 12

Creating a New
Algorithm
public class EMSIGSchool implements InterfaceAlgorithmScheduler {

@Override
public void run() {

listener.notifyAlgorithmStarted("EMSIG");

double res = 0.0;
for(int i=0; i<nbSimu; i++) {

InterfaceState path = model.newPath();
res += requirement.check(path);

}

listener.notifyAlgorithmCompleted("EMSIG");
listener.publishResults("EMSIG", new SMCResult(res/nbSimu));

}
}

Start a new traceStart a new trace

Check the trace
and collect the result
Check the trace
and collect the result

Send the results
to the user interface
Send the results
to the user interface

 13

Application1: Dali

● European project

● Application of SMC beyond formal verification
– A trolley to guide an old lady in a commercial center

– Point of interest/repulsion

– Embedded application, beyond software

– Limited ressources

● Hot topic: national press, euronews, ...

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Objectives

• Develop technologies to provide our system with a robust
decision making mechanism that plans the motion of the
AP from a source to a destination.

• The motion is in an environment populated by human
agents and fixed obstacles.

• The objective is to keep in check the probability of
accidents or hazards by offsetting possibly uncooperative
behaviours of the AP.

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Challenges

• To build a mathematical model to reason on the AP in its
environment

• To design a planning algorithm; this algorithm will rely on
the math model

• The resulting algorithm has to be embedded in the trolley
• This requires to model sensors and external environment

as mathematical objects.

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Approach

• A Markovian model that tracks the status of the AP and its
environment

• The model is parametrised with variables representing the
external environments

• 'Social force' model to reason on human motions in
crowded areas

• Social force together with Statistical Model Checking helps
the planing algorithm (motion planer) to predict safe moves
for the AP

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

The social force model

• We need to model human behavior in a crowded
environment

• We have adopted the 'social force model' (SFM)
• The SFM models groups of people having goals, using

repulsive and attractive social forces
• E.g., as the AP gets closer to an object it reduces its

speed and changes its trajectory; if the object is further
than 5m, the AP makes no change to its trajectory.

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Task 3.1: The social force model

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Task 3.1: Mathematical elements of
the social force model

objectives +
hypothesised

trajectory

random
movement

mass

social + physical
forces

reaction
time

actual position

actual velocity

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Two types of planing

Approach:
• We distinguish between local and global planning
• Statistical model checking helps to make the “best and

most natural decision” in highly dynamical environment
(local planning)

• Predictor uses social forces combined with statistical
algorithms

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Planning

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Two types of planning

• The global planning uses 'static' information: it assumes the
existence of a map and uses algorithms from GPS
technology to derive the best path to reach a goal starting
from an initial point

• The local planning uses dynamic information: the algorithm
takes account of the global goal and sensor information

– the objective is to follow the path suggested by the local
planner and avoid collisions

• The local planner is constantly active.
• The global planner is re-activated when overall progress

is too slow or when user objectives change (future work).

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Local planning

• The challenge is to cope with unpredictable moving
objects and environmental changes to avoid collisions

• First level: mathematical (social force) model
― alone, not sufficiently reactive / predictive

• Second level: manage mathematical model with
statistical model checking (SMC) using PLASMA

• PLASMA uses long term predictive simulations to
derive the best path to be followed locally

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Motion planner architecture

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Statistical Model Checking

• Verify temporal properties on paths
― assumes a stochastic model
― estimates probability of property with error bound

• Simulations provided by SFM
• Logic encodes high level objectives

― minimum distance, maximum time, etc.

• e.g.

• Enhances predictive power of SFM

dist. between user x
u
 and others x

i
dist. between user x

u
 and objective w

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Initial information

waypoint

global plan

position + velocity

At each step, we know:
• our position and velocity
• where we want to go
• last position and velocity of others

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

SFM without correction

• SFM uses initial information to predict
future positions and trajectories

• Without correction, agents may get arbitrarily close
― potential for collision

grey areas show possible trajectories
due to random fluctuations of SFM

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

SFM + SMC using hypothesised
alternative directions

• We cannot directly change the trajectories of others
• We can change our own trajectory
• At each step we

― hypothesise alternative initial directions
• initial angular impulses, e.g., {-60, -30, 0, 30, 60} deg.

― perform SMC using hypothesised direction
• check property against multiple simulated paths

― select direction that maximises success
• fewest problems (collisions, stress)
• least perturbation to current trajectory

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Demos

• Simulations of agents and c-Walker moving in various
environments

• Each agent respects the SFM with randomness
• Every agent has a goal to reach in the environment
• The c-Walker has given a path in the environment: global

path
• Objective for the c-Walker: follow the global path with no

collision

11/17/11 WPn - Title 32

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Demo – Without SMC

11/17/11 WPn - Title 33

• The evolution of the system follows just the SFM
• The c-Walker moves according to the forces suggested

by its objective and the SFM alone

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Motion planning with SFM alone

http://www.youtube.com/watch?v=hf0zSomZbSo

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Demo – With SMC

11/17/11 WPn - Title 35

• The c-Walker uses SFM to predict multiple probable
future paths of the agents within the sensor range

• The c-Walker moves according to the forces suggested
by SFM and the movement direction suggested by
PLASMA

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Motion planning with SFM + SMC

http://www.youtube.com/watch?v=uTpZ3VIA1RA

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Demo – With SMC + SFM in
complex environment

• A more realistic demonstration of the motion planner
• A complex environment of

― fixed obstacles
― moving agents

• Algorithm must track and simulate multiple trajectories
in real time

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Motion planning in a complex
environment

http://www.youtube.com/watch?v=-FuEGqSWAJM

EC Grant Agreement n. 288917EC Grant Agreement n. 288917

Performance on typical hardware

• Probability of success (avoiding collisions and reaching
goal)

~ 0.14 with SFM alone

~ 0.70 with SFM + SMC

• Implemented on embedded computing device
(Beagleboard)

― no optimisations yet, but ...

• Ability to re-plan every 500ms
~ 92% of the time for simple scenario

~ 55% of the time for complex scenario

 40

Signals composition

● Product, sum:

● Logical operation
(AND, OR, …)

● Comparison:
(<, <=, >=, >, ...)

● Signals routing:

Signals composition

● Product, sum:

● Logical operation
(AND, OR, …)

● Comparison:
(<, <=, >=, >, ...)

● Signals routing:

Signal
transformation

● Gain:

● Integrator:

Signal
transformation

● Gain:

● Integrator:

Application two:
MATLAB/Simulink
Graphical modeling language for dynamic systems

● Block library for continuous and discrete signals

Sources

● Constant value:

● Inputs:

● Periodic signals:

Sources

● Constant value:

● Inputs:

● Periodic signals:

 41

MATLAB/Simulink

● Stateflow charts for discrete state automata:

● Hierarchical description with subsystem:

● Custom S-function blocks to include C-code:

 42

Fault-Tolerant Fuel
Control System

A hybrid system with continuous and discrete dynamics:

● Robust control of the fuel distribution of a gasoline engine

● 4 sensors: throttle, speed, exhaust gas (EGO), and air
pressure (MAP)

● If a sensor fails, the control system is dynamically
reconfigured for uninterrupted operation

 43

Fault-Tolerant Fuel
Control System

Original modelOriginal model

Manual
switches

 44

Fault-Tolerant Fuel
Control System

Speed sensor failureSpeed sensor failure

EGO sensor failureEGO sensor failure
Speed sensor
repaired
Speed sensor
repaired

EGO sensor
repaired
EGO sensor
repaired

Simulation with manually triggered failuresSimulation with manually triggered failures

 45

Fault-Tolerant Fuel
Control System

Introducing random failuresIntroducing random failures

Replaced
by random
failure
generators

 46

Random failures
generator

Poisson probability
distribution
Poisson probability
distribution

Repair timer
Stateflow chart
Repair timer
Stateflow chart

● Generates random failures according to a Poisson probability
distribution.

● Failures last 1 t.u. and then are automatically repaired.

 47

Poisson distribution
subsystem

Generate failures at regular time intervals:

● Parameterized by the fault mean interval (lambda).

● Select a random number rnd using a C-code random
generator.

● The time of the next failure is: t=-log(rnd)*lambda

● Use a Stateflow chart to update the sensor status.

 48

Poisson distribution
subsystem

static bool init = true;
if(init)
{
 init = false;
 int t = time();
 srand(t);

}
double rnd;
rnd=((double) rand() / (RAND_MAX)) ;
y0[0] = rnd;

C-codeC-code

Stateflow chartStateflow chart

 49

Random failures
generator

 50

SMC Analysis

Compute the probability that fuel distribution is stopped
for at least 1 t.u. :

 51

Plasma/Simulink
Interface
A MATLAB plugin for Plasma Lab:

● Implements the simulator interfaces of Plasma API:

– public class MatLabIdentifier implements InterfaceIdentifier (to show the results)

– public class MatLabSessionFactory implements AbstractModelFactory (to build the model)

– public class MatLabSessionModel extends AbstractModel (newpath, simulate)

– public class MatLabState implements InterfaceState (Type of state)

● Use the matlabcontrol Java API to control Simulink simulations:

– Create a MatlabProxy object

– Call proxy.eval(String), proxy.feval(Sring, Object),
or proxy.returningEval(String, int) to launch MATLAB commands

 52

Plasma/Simulink
Interface

MATLABMATLAB

Matlabcontrol
Proxy

Matlabcontrol
Proxy

Plasma Lab
MATLAB Plugin

Plasma Lab
MATLAB Plugin

Plasma Lab
SMC algorithm
Plasma Lab

SMC algorithm

factory.getProxy()

proxy.eval(String)

proxy.feval(String,Object)

proxy.returningEval(String,int)

 53

Plasma/Simulink
Simulation Trace

● Plasma receives the values of the signals that are logged in Simulink

● Time is discretized:

– According to the sample time of Simulink blocks

– At each occurrence of a discrete event in Stateflow charts

 54

Plasma/Simulink GUIs

Plasma MATLAB plugin
can used:

● From Plasma Lab main GUI

● From Plasma2Simulink GUI,
a small App that can be
installed in MATLAB

Launch
Plasma2Simulink
from MATLAB

 55

Interface

 56

SMC Analysis

Compute the probability that fuel distribution is stopped
for at least 1 t.u. :

Sensor fault rates
(Speed, EGO, MAP)

Failure probability

(3, 7, 8) 0.604

(10, 8, 9) 0.252

(20, 10, 20) 0.07

(30, 30, 30) 0.015

 57

A Pig Shed Case Study

Temperature controller of a pig shed

● Internal temperature is subjected to random variations.
(number of pigs, external temperature)

● Regulate the temperature by activating fan and heater.

● Fan and heater are subjected to random failures.

● Objectives: check and optimize the controller:

– Internal temperature must remain comfortable.
– Minimize heating and cooling costs.

 58

A Pig Shed Case Study

Random
events

Logged
signals

Cost

DiscomfortValue

Discomfort

 59

A Pig Shed Case Study
Quantitative Verification

Monte-Carlo analysis with
● t1 = 12000 t.u.
● Precision 0,01
● Confidence 0,01

Monte-Carlo analysis with
● t1 = 12000 t.u.
● Precision 0,01
● Confidence 0,01

 60

A Pig Shed Case Study
Quantitative Verification

Monte-Carlo analysis with
● t1 = 12000 t.u.
● Precision 0,01
● Confidence 0,01

Monte-Carlo analysis with
● t1 = 12000 t.u.
● Precision 0,01
● Confidence 0,01

 61

A Pig Shed Case Study
Quantitative Verification

Monte-Carlo analysis with
● t1 = 12000 t.u.
● t2 = 25 t.u.
● Precision 0,01
● Confidence 0,01

Monte-Carlo analysis with
● t1 = 12000 t.u.
● t2 = 25 t.u.
● Precision 0,01
● Confidence 0,01

Without failuresWithout failures With failuresWith failures

 62

A Pig Shed Case Study
Optimisation

● Use Monte-Carlo to estimate the expected values of two variables:
– Cost
– DiscomfortValue

● Compute the results for several values of initial parameters:

– THeaterOn between [15,20]
– THeaterOff between [15,20]
– TFanOn between [20,25]
– TfanOff between [20,25]

● With additional constraints:

– TFanOff < TFanOn
– THeaterOn < THeaterOff
– THeaterOn < TFanOn

 63

A Pig Shed Case Study
Optimisation

Select the best values over the the 225 configurations

Without failuresWithout failures With failuresWith failures

 64

Conclusion

● Plasma, a new flexible SMC checker

● New applications

● Integrated inside industry tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

