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The Rare Event problem in SMC

Rare events (computing very small probabilities) are challenging

Require a lot of samples (to see the event at least once)
Relative error explodes

How to overcome the Rare Event problem in SMC?

Importance Sampling: Tackle the problem by reasoning on the model
Importance Splitting: Tackle the problem by reasoning on the property
We focus on the second one.
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Basics of Importance Splitting

Let A be a rare event and (Ak )0≤k≤n be a sequence of nested events:

A0 ⊃ A1 ⊃ ... ⊃ An = A

By Bayes formula,

γ
def
= P(A) = P(A0)P(A1 | A0)P(A2 | A1)...P(An | An−1)

implying that every conditional probability is less rare:

∀k , P(Ak | Ak−1) = γk ≥ γ
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Importance Splitting principles

Write γ as a product of γk
I How do you define conditional probabilities?

Estimate separately each γk .
I How do you estimate in practice these conditional probabilities?

Importance Splitting estimator:

γ̃ =
n∏

k=0

γ̂k

I What about the confidence interval?
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Example: Reaching Level 3 within T
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Confidence Interval based on relative error

(1− α) CI based on relative variance σ2:[
γ̃

(
1

1 + zασ√
N

)
; γ̃

(
1

1− zασ√
N

)]
with σ2 ≥

n∑
k=1

1− γk

γk

σ2 is minimize when all the γk have same probability.
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Importance Splitting in a Model Checking Context

Idea: given a rare property φ, define a set of levels based on a sequence of
temporal properties such that:

(φk )0≤k≤n : φ0 ⇐ φ1 ⇐ ...⇐ φn = φ

Thus,

γ = P(ω |= φ0)
n∏

k=1

P(ω |= φk | ω |= φk−1)
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Formula decomposition

Simple decomposition:

φ =
n∧

j=1

ψj −→ ∀i ∈ {1, . . . ,n} , φi =
i∧

j=1

ψj

Natural decomposition. Given x a state variable,

φ = (x ≥ τ) −→ ∀τ0 ≤ · · · ≤ τn = τ, φi = (x ≥ τi)

Temporal decomposition. Make use of propositions:

− (φn ⇒ φn−1) =⇒ (4φn ⇒4φn−1) with 4 ∈ {3≤t ,2≤t ,#,3≤t2≤s}
− (φn ⇒ φn−1 ∧ ψm ⇒ ψm−1) =⇒ (φn U ψm ⇒ φn−1 U ψm−1)

Time decomposition

φ = (2≤tψ) −→ ∀t0 ≤ · · · ≤ tn = t , φi = (2≤tiψ)

Axel Legay (Inria) A Quick Tour on Statistical Model Checking 12th November 2015 8 / 15



Formula decomposition

Simple decomposition:

φ =
n∧

j=1

ψj −→ ∀i ∈ {1, . . . ,n} , φi =
i∧

j=1

ψj

Natural decomposition. Given x a state variable,

φ = (x ≥ τ) −→ ∀τ0 ≤ · · · ≤ τn = τ, φi = (x ≥ τi)

Temporal decomposition. Make use of propositions:

− (φn ⇒ φn−1) =⇒ (4φn ⇒4φn−1) with 4 ∈ {3≤t ,2≤t ,#,3≤t2≤s}
− (φn ⇒ φn−1 ∧ ψm ⇒ ψm−1) =⇒ (φn U ψm ⇒ φn−1 U ψm−1)

Time decomposition

φ = (2≤tψ) −→ ∀t0 ≤ · · · ≤ tn = t , φi = (2≤tiψ)

Axel Legay (Inria) A Quick Tour on Statistical Model Checking 12th November 2015 8 / 15



Formula decomposition

Simple decomposition:

φ =
n∧

j=1

ψj −→ ∀i ∈ {1, . . . ,n} , φi =
i∧

j=1

ψj

Natural decomposition. Given x a state variable,

φ = (x ≥ τ) −→ ∀τ0 ≤ · · · ≤ τn = τ, φi = (x ≥ τi)

Temporal decomposition. Make use of propositions:

− (φn ⇒ φn−1) =⇒ (4φn ⇒4φn−1) with 4 ∈ {3≤t ,2≤t ,#,3≤t2≤s}
− (φn ⇒ φn−1 ∧ ψm ⇒ ψm−1) =⇒ (φn U ψm ⇒ φn−1 U ψm−1)

Time decomposition

φ = (2≤tψ) −→ ∀t0 ≤ · · · ≤ tn = t , φi = (2≤tiψ)

Axel Legay (Inria) A Quick Tour on Statistical Model Checking 12th November 2015 8 / 15



Formula decomposition

Simple decomposition:

φ =
n∧

j=1

ψj −→ ∀i ∈ {1, . . . ,n} , φi =
i∧

j=1

ψj

Natural decomposition. Given x a state variable,

φ = (x ≥ τ) −→ ∀τ0 ≤ · · · ≤ τn = τ, φi = (x ≥ τi)

Temporal decomposition. Make use of propositions:

− (φn ⇒ φn−1) =⇒ (4φn ⇒4φn−1) with 4 ∈ {3≤t ,2≤t ,#,3≤t2≤s}
− (φn ⇒ φn−1 ∧ ψm ⇒ ψm−1) =⇒ (φn U ψm ⇒ φn−1 U ψm−1)

Time decomposition

φ = (2≤tψ) −→ ∀t0 ≤ · · · ≤ tn = t , φi = (2≤tiψ)

Axel Legay (Inria) A Quick Tour on Statistical Model Checking 12th November 2015 8 / 15



Dining Philosophers Problem

Figure : Automata modelling a
philosopher

property of interest:
φ = φ5 = F30 (Phil i eat)
φ4 = F30 (Phil i picks 2 forks)
φ3 = F30 (Phil i picks 1 fork)
φ2 = F30 (Phil i intends to take a fork)
φ1 = F30 (Phil i chooses)
φ0 = F30 (Phil i thinks)
φ5 ⇒ φ4 ⇒ · · · ⇒ φ0
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Importance Splitting in a Model Checking Context

  

Simulator
Initial state chosen 

randomly in L
k

Monitor
z( ω ; k+1)

Initialisation:
k=0, L

k
=s

0

ISp core

L
k+1

 distribution of 

prefixes satisfying φ
k+1 

k1=
1
n
∑
i=1

n

z  i ; k1

After n samples
outputs

collects

Produces an execution path ω

triggers

k<- k+1
=∏

k=1

m

k
k=m

OK/KO local verdict
with respect to

Φ_{k+1}
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A naive decomposition

150 philosophers
property of interest:
φ = φ5 = F30 (Phil i eat)
γ ≈ 1.59× 10−6

Results:
Time (with 1000 paths per iteration): 6.95
seconds in average
γ̃1:5 ∈ {0.158,0.088,0.027,0.008,0.003}
γ̃ = 10−8

=> Need to increase the decomposition to make use of Cérou-Guyader’s
Adaptive Important Splitting algorithms
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Idealized Version (Cérou-Guyader)

Relative variance of the estimator: σ2 =
∑n

k=1
1−γk
γk

For a fixed number of levels, minimal variance if all the conditional
probabilities are equal (= γ0).

Variance minimised when γ0 is close to 1.

Problem: levels might be too coarse.
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Use of heuristics

Assign a finer score S(ω) to path ω
How to increase the granularity of the score function S?

Time-bounded reachability problem:

S(ω) = k∗ − ε(tk∗)

with:
I k∗ = maxk{k | ω |= φk}
I tk∗ = mint{t ∈ [0,T ] | ω |= φk∗}
I ε(·) ∈ ]0; 1[ an increasing time function.
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Adaptive important sampling implementation

  

Simulator
Initial state chosen 

randomly in L
k

Monitor

Initialisation:


0
, τ

0
=0, k=0, L

k
=s

0

ISp core

L
k+1

 distribution of 

prefixes satisfying S>τ
k+1 

k1=
∣{ i : S i

k1}∣
n

≈0

After n samples

Collects
{S(ω

l
)}

l
,

S(ω)=max {S(ω
l
)}

l
,

{ (ω
l
, t

l
) }

l

Produces an execution path ω

triggers

k <- k+1
=∏

k=1

m

k

τ
k
 > τ

φ

Sort S(ω(i))

τ
k+1

= min { τ : P( S(ω)>τ
  
| S(ω)>τ

k
 ) ≈ 

0
 }

Maximal S(ω):
τ

φ
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Experimental Results given by an optimised algorithm

Stat. MC Importance splitting

nb exp 1 100 100 100 100

nb path 107 100 200 500 1000

t̄ in sec. > 5 h 1.73 4.08 11.64 23.77

¯̃γ 1.5 1.52 1.59 1.58 1.65

σ(γ̃) 0.39 1.02 0.87 0.5 0.38

95%-CI [0.74; 2.26] [1.34; 1.74] [1.48; 1.72] [1.54; 1.63] [1.63; 1.67]

95%-CI based on a 3× 108 sample:
[
1.44× 10−6;1.72× 10−6

]
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