

A Quick Tour on Statistical Model Checking

Axel Legay

12 novembre 2015

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- **Importance Splitting**: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- **Importance Splitting**: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- **Importance Splitting**: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- **Importance Splitting**: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- Importance Splitting: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- Importance Splitting: Tackle the problem by reasoning on the property We focus on the second one.

Rare events (computing very small probabilities) are challenging

- Require a lot of samples (to see the event at least once)
- Relative error explodes

- Importance Sampling: Tackle the problem by reasoning on the model
- **Importance Splitting**: Tackle the problem by reasoning on the property We focus on the second one.

Basics of Importance Splitting

Let *A* be a rare event and $(A_k)_{0 \le k \le n}$ be a sequence of nested events:

$$A_0 \supset A_1 \supset ... \supset A_n = A$$

By Bayes formula,

$$\gamma \stackrel{\text{def}}{=} P(A) = P(A_0)P(A_1 \mid A_0)P(A_2 \mid A_1)...P(A_n \mid A_{n-1})$$

implying that every conditional probability is less rare:

$$\forall k, P(A_k \mid A_{k-1}) = \gamma_k \geq \gamma$$

Write γ as a product of γ_k

- How do you define conditional probabilities?
- Estimate separately each γ_k .
 - How do you estimate in practice these conditional probabilities?
- Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

Write γ as a product of γ_k

- How do you define conditional probabilities?
- Estimate separately each γ_k .

How do you estimate in practice these conditional probabilities?

Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

Write γ as a product of γ_k

- How do you define conditional probabilities?
- Estimate separately each γ_k .
 - How do you estimate in practice these conditional probabilities?
- Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

- Write γ as a product of γ_k
 - How do you define conditional probabilities?
- Estimate separately each γ_k .
 - How do you estimate in practice these conditional probabilities?
- Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

- Write γ as a product of γ_k
 - How do you define conditional probabilities?
- Estimate separately each γ_k .
 - How do you estimate in practice these conditional probabilities?
- Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

- Write γ as a product of γ_k
 - How do you define conditional probabilities?
- Estimate separately each γ_k .
 - How do you estimate in practice these conditional probabilities?
- Importance Splitting estimator:

$$\tilde{\gamma} = \prod_{k=0}^{n} \hat{\gamma}_k$$

P(reaching Level 3)=3/5*2/5*2/5

Confidence Interval based on relative error

• $(1 - \alpha)$ CI based on relative variance σ^2 :

$$\left[\tilde{\gamma}\left(\frac{1}{1+\frac{z_{\alpha}\sigma}{\sqrt{N}}}\right); \tilde{\gamma}\left(\frac{1}{1-\frac{z_{\alpha}\sigma}{\sqrt{N}}}\right)\right] \text{ with } \sigma^{2} \geq \sum_{k=1}^{n} \frac{1-\gamma_{k}}{\gamma_{k}}$$

• σ^2 is minimize when all the γ_k have same probability.

Importance Splitting in a Model Checking Context

Idea: given a rare property ϕ , define a set of levels based on a sequence of temporal properties such that:

$$(\phi_k)_{0 \le k \le n}$$
 : $\phi_0 \Leftarrow \phi_1 \Leftarrow ... \Leftarrow \phi_n = \phi$

Thus,

$$\gamma = P(\omega \models \phi_0) \prod_{k=1}^n P(\omega \models \phi_k \mid \omega \models \phi_{k-1})$$

Simple decomposition:

$$\phi = \bigwedge_{j=1}^{n} \psi_j \quad \longrightarrow \quad \forall i \in \{1, \dots, n\}, \quad \phi_i = \bigwedge_{j=1}^{i} \psi_j$$

Natural decomposition. Given x a state variable,

$$\phi = (X \ge \tau) \longrightarrow \forall \tau_0 \le \cdots \le \tau_n = \tau, \phi_i = (X \ge \tau_i)$$

Temporal decomposition. Make use of propositions:

$$- (\phi_n \Rightarrow \phi_{n-1}) \Longrightarrow (\triangle \phi_n \Rightarrow \triangle \phi_{n-1}) \text{ with } \triangle \in \{ \diamondsuit^{\leq t}, \Box^{\leq t}, \bigcirc, \diamondsuit^{\leq t} \Box^{\leq s} \} \\ - (\phi_n \Rightarrow \phi_{n-1} \land \psi_m \Rightarrow \psi_{m-1}) \Longrightarrow (\phi_n \ U \ \psi_m \Rightarrow \phi_{n-1} \ U \ \psi_{m-1})$$

$$\phi = (\Box^{\leq t}\psi) \quad \longrightarrow \quad \forall t_0 \leq \cdots \leq t_n = t, \quad \phi_i = (\Box^{\leq t_i}\psi)$$

Simple decomposition:

$$\phi = \bigwedge_{j=1}^{n} \psi_j \longrightarrow \forall i \in \{1, \dots, n\}, \quad \phi_i = \bigwedge_{j=1}^{i} \psi_j$$

Natural decomposition. Given *x* a state variable,

$$\phi = (\mathbf{x} \ge \tau) \longrightarrow \forall \tau_0 \le \cdots \le \tau_n = \tau, \phi_i = (\mathbf{x} \ge \tau_i)$$

Temporal decomposition. Make use of propositions:

$$- (\phi_n \Rightarrow \phi_{n-1}) \Longrightarrow (\triangle \phi_n \Rightarrow \triangle \phi_{n-1}) \text{ with } \triangle \in \{\diamond^{\leq t}, \Box^{\leq t}, \bigcirc, \diamond^{\leq t} \Box^{\leq s} \}$$
$$- (\phi_n \Rightarrow \phi_{n-1} \land \psi_m \Rightarrow \psi_{m-1}) \Longrightarrow (\phi_n \ U \ \psi_m \Rightarrow \phi_{n-1} \ U \ \psi_{m-1})$$

$$\phi = (\Box^{\leq t}\psi) \quad \longrightarrow \quad \forall t_0 \leq \cdots \leq t_n = t, \quad \phi_i = (\Box^{\leq t_i}\psi)$$

Simple decomposition:

$$\phi = \bigwedge_{j=1}^{n} \psi_j \longrightarrow \forall i \in \{1, \dots, n\}, \quad \phi_i = \bigwedge_{j=1}^{i} \psi_j$$

Natural decomposition. Given *x* a state variable,

$$\phi = (\mathbf{X} \ge \tau) \longrightarrow \forall \tau_0 \le \cdots \le \tau_n = \tau, \phi_i = (\mathbf{X} \ge \tau_i)$$

Temporal decomposition. Make use of propositions:

$$- (\phi_n \Rightarrow \phi_{n-1}) \Longrightarrow (\triangle \phi_n \Rightarrow \triangle \phi_{n-1}) \text{ with } \triangle \in \{\diamond^{\leq t}, \Box^{\leq t}, \bigcirc, \diamond^{\leq t} \Box^{\leq s} \}$$
$$- (\phi_n \Rightarrow \phi_{n-1} \land \psi_m \Rightarrow \psi_{m-1}) \Longrightarrow (\phi_n \ U \ \psi_m \Rightarrow \phi_{n-1} \ U \ \psi_{m-1})$$

$$\phi = (\Box^{\leq t}\psi) \quad \longrightarrow \quad \forall t_0 \leq \cdots \leq t_n = t, \quad \phi_i = (\Box^{\leq t_i}\psi)$$

Simple decomposition:

$$\phi = \bigwedge_{j=1}^{n} \psi_j \longrightarrow \forall i \in \{1, \dots, n\}, \quad \phi_i = \bigwedge_{j=1}^{i} \psi_j$$

Natural decomposition. Given *x* a state variable,

$$\phi = (\mathbf{X} \ge \tau) \longrightarrow \forall \tau_0 \le \cdots \le \tau_n = \tau, \phi_i = (\mathbf{X} \ge \tau_i)$$

Temporal decomposition. Make use of propositions:

$$- (\phi_n \Rightarrow \phi_{n-1}) \Longrightarrow (\triangle \phi_n \Rightarrow \triangle \phi_{n-1}) \text{ with } \triangle \in \{\diamondsuit^{\leq t}, \square^{\leq t}, \bigcirc, \diamondsuit^{\leq t} \square^{\leq s} \}$$
$$- (\phi_n \Rightarrow \phi_{n-1} \land \psi_m \Rightarrow \psi_{m-1}) \Longrightarrow (\phi_n \ U \ \psi_m \Rightarrow \phi_{n-1} \ U \ \psi_{m-1})$$

$$\phi = (\Box^{\leq t}\psi) \quad \longrightarrow \quad \forall t_0 \leq \cdots \leq t_n = t, \quad \phi_i = (\Box^{\leq t_i}\psi)$$

Dining Philosophers Problem

Figure : Automata modelling a philosopher

- property of interest: $\phi = \phi_5 = \mathbf{F}^{30}$ (Phil i eat)
- $\phi_4 = \mathbf{F}^{30}$ (Phil i picks 2 forks)
- $\phi_3 = \mathbf{F}^{30}$ (Phil i picks 1 fork)
- $\phi_2 = \mathbf{F}^{30}$ (Phil i intends to take a fork)
- $\phi_1 = \mathbf{F}^{30}$ (Phil i chooses)
- $\phi_0 = \mathbf{F}^{30}$ (Phil i thinks)
- $\phi_5 \Rightarrow \phi_4 \Rightarrow \cdots \Rightarrow \phi_0$

Dining Philosophers Problem

Figure : Automata modelling a philosopher

- property of interest: $\phi = \phi_5 = \mathbf{F}^{30}$ (Phil i eat)
- $\phi_4 = \mathbf{F}^{30}$ (Phil i picks 2 forks)
- $\phi_3 = \mathbf{F}^{30}$ (Phil i picks 1 fork)
- $\phi_2 = \mathbf{F}^{30}$ (Phil i intends to take a fork)
- $\phi_1 = \mathbf{F}^{30}$ (Phil i chooses)

•
$$\phi_0 = \mathbf{F}^{30}$$
 (Phil i thinks)

•
$$\phi_5 \Rightarrow \phi_4 \Rightarrow \cdots \Rightarrow \phi_0$$

Importance Splitting in a Model Checking Context

A naive decomposition

- 150 philosophers
- property of interest:
 - $\phi=\phi_5={f F}^{30}$ (Phil i eat)
- $\gamma pprox$ 1.59 imes 10⁻⁶

Results:

- Time (with 1000 paths per iteration): 6.95 seconds in average
- $\tilde{\gamma}_{1:5} \in \{0.158, 0.088, 0.027, 0.008, 0.003\}$ • $\tilde{\gamma} = 10^{-8}$

=> Need to increase the decomposition to make use of Cérou-Guyader's Adaptive Important Splitting algorithms

A naive decomposition

- 150 philosophers
- property of interest:

$$\phi = \phi_5 = \mathbf{F}^{30}$$
 (Phil i eat)

•
$$\gamma \approx 1.59 \times 10^{-6}$$

Results:

- Time (with 1000 paths per iteration): 6.95 seconds in average
- $\tilde{\gamma}_{1:5} \in \{0.158, 0.088, 0.027, 0.008, 0.003\}$ • $\tilde{\gamma} = 10^{-8}$

=> Need to increase the decomposition to make use of Cérou-Guyader's Adaptive Important Splitting algorithms

A naive decomposition

- 150 philosophers
- property of interest:

$$\phi = \phi_5 = \mathbf{F}^{30}$$
 (Phil i eat)

•
$$\gamma \approx 1.59 \times 10^{-6}$$

Results:

- Time (with 1000 paths per iteration): 6.95 seconds in average
- $\tilde{\gamma}_{1:5} \in \{0.158, 0.088, 0.027, 0.008, 0.003\}$

)
$$ilde{\gamma} = \mathsf{10^{-8}}$$

=> Need to increase the decomposition to make use of Cérou-Guyader's Adaptive Important Splitting algorithms

• Relative variance of the estimator: $\sigma^2 = \sum_{k=1}^{n} \frac{1-\gamma_k}{\gamma_k}$

- For a fixed number of levels, minimal variance if all the conditional probabilities are equal (= γ_0).
- Variance minimised when γ_0 is close to 1.
- Problem: levels might be too coarse.

- Relative variance of the estimator: $\sigma^2 = \sum_{k=1}^{n} \frac{1-\gamma_k}{\gamma_k}$
- For a fixed number of levels, minimal variance if all the conditional probabilities are equal $(= \gamma_0)$.
- Variance minimised when γ_0 is close to 1.
- Problem: levels might be too coarse.

- Relative variance of the estimator: $\sigma^2 = \sum_{k=1}^{n} \frac{1-\gamma_k}{\gamma_k}$
- For a fixed number of levels, minimal variance if all the conditional probabilities are equal $(= \gamma_0)$.
- Variance minimised when γ_0 is close to 1.
- Problem: levels might be too coarse.

- Relative variance of the estimator: $\sigma^2 = \sum_{k=1}^{n} \frac{1-\gamma_k}{\gamma_k}$
- For a fixed number of levels, minimal variance if all the conditional probabilities are equal $(= \gamma_0)$.
- Variance minimised when γ_0 is close to 1.
- Problem: levels might be too coarse.

Use of heuristics

- Assign a finer score $S(\omega)$ to path ω
- How to increase the granularity of the score function S?

• Time-bounded reachability problem:

$$S(\omega) = k^* - \epsilon(t_{k^*})$$

with:

$$k^* = \max_k \{ k \mid \omega \models \phi_k \}$$

•
$$t_{k^*} = \min_t \{t \in [0, T] \mid \omega \models \phi_{k^*}\}$$

• $\epsilon(\cdot) \in]0; 1[$ an increasing time function.

Use of heuristics

- Assign a finer score $S(\omega)$ to path ω
- How to increase the granularity of the score function S?
- Time-bounded reachability problem:

$$S(\omega) = k^* - \epsilon(t_{k^*})$$

with:

•
$$k^* = \max_k \{k \mid \omega \models \phi_k\}$$

•
$$t_{k^*} = \min_t \{t \in [0, T] \mid \omega \models \phi_{k^*}\}$$

• $\epsilon(\cdot) \in]0; 1[$ an increasing time function.

Adaptive important sampling implementation

Experimental Results given by an optimised algorithm

Stat.	MC	Importance splitting			
nb exp	1	100	100	100	100
nb path	10 ⁷	100	200	500	1000
\overline{t} in sec.	> 5 h	1.73	4.08	11.64	23.77
$ar{ ilde{\gamma}}$	1.5	1.52	1.59	1.58	1.65
$\sigma(ilde{\gamma})$	0.39	1.02	0.87	0.5	0.38
95%-CI	[0.74; 2.26]	[1.34; 1.74]	[1.48; 1.72]	[1.54; 1.63]	[1.63; 1.67]

95%-CI based on a 3 \times 10⁸ sample: $[1.44 \times 10^{-6}; 1.72 \times 10^{-6}]$