

A Quick Tour on Statistical Model Checking

Axel Legay

12 novembre 2015

Context of System Verification

IT systems

- Omnipresent
- More and more complex
- Major quality indications: absence of errors

Context of System Verification

- IT systems
 - Omnipresent
 - More and more complex
- Major quality indications: absence of errors

Context of System Verification

- IT systems
 - Omnipresent
 - More and more complex
- Major quality indications: absence of errors

Motivation for System Verification: economical issues

Software bugs can be costly

• Worldwide economy: Software errors cost 312 billion dollars in 2012

- The 2003 North-American blackout
- Concurrency bug
- Breakdown of 256 power plants
- Cost: 6 billion dollars

Motivation for System Verification: economical issues

Software bugs can be costly

Worldwide economy: Software errors cost 312 billion dollars in 2012

- The 2003 North-American blackout
- Concurrency bug
- Breakdown of 256 power plants
- Cost: 6 billion dollars

Motivation for System Verification: fatal defects

Errors can have dramatic consequences

Ariane 5, Therac 25...

Sample of Validation Techniques

• Various techniques:

- Code reviewing
- Testing
- Formal methods: static analysis, model checking...
- Focus on Model Checking
 - Automated Technique
 - Exhaustive Verification
 - Property specification: Temporal Logic

Sample of Validation Techniques

- Various techniques:
 - Code reviewing
 - Testing
 - Formal methods: static analysis, model checking...
- Focus on Model Checking
 - Automated Technique
 - Exhaustive Verification
 - Property specification: Temporal Logic

Sample of Validation Techniques

- Various techniques:
 - Code reviewing
 - Testing
 - Formal methods: static analysis, model checking...
- Focus on Model Checking
 - Automated Technique
 - Exhaustive Verification
 - Property specification: Temporal Logic

(Probabilistic) Model Checking overview

Stochastic Systems

Systems that contain probabilistic features

Probabilistic aspects are central in:

- Performance Analysis, Queuing theory
- Systems biology
- Social and economical systems

=> Extension of verification methods for quantitative analysis of Markovian systems

Stochastic Systems

Systems that contain probabilistic features

Probabilistic aspects are central in:

- Performance Analysis, Queuing theory
- Systems biology
- Social and economical systems

=> Extension of verification methods for quantitative analysis of Markovian systems

Stochastic Systems

Systems that contain probabilistic features

Probabilistic aspects are central in:

- Performance Analysis, Queuing theory
- Systems biology
- Social and economical systems

=> Extension of verification methods for quantitative analysis of Markovian systems

Strict requirements

- offers a strict guarantee that "there is no failure"
- Fault tolerance
 - "90% of the components of the system are operational."
- Qualitative analysis
 - "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner.

Strict requirements

offers a strict guarantee that "there is no failure"

Fault tolerance

- "90% of the components of the system are operational."
- Qualitative analysis
 - "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner.

Strict requirements

offers a strict guarantee that "there is no failure"

Fault tolerance

"90% of the components of the system are operational."

Qualitative analysis

- "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner.

Strict requirements

offers a strict guarantee that "there is no failure"

Fault tolerance

- "90% of the components of the system are operational."
- Qualitative analysis
 - "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner. Temporal Logic appropriate for specifying requirements over time

Strict requirements

offers a strict guarantee that "there is no failure"

Fault tolerance

- "90% of the components of the system are operational."
- Qualitative analysis
 - "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner.

Strict requirements

offers a strict guarantee that "there is no failure"

Fault tolerance

- "90% of the components of the system are operational."
- Qualitative analysis
 - "Is the probability of false alarm lower than 0.001?"
- Quantitative analysis
 - "What is the probability of false alarm?"

Properties should be described in a precise manner.

• **BLTL:**
$$\phi := \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \diamond \leq^{t} \phi \mid \Box \leq^{t} \phi \mid \phi U \leq^{t} \phi$$

- O: "next" operator
- > : "eventually" operator
- ▶ □: "always" operator
- U: "until" operator
- $\diamond^{\leq t}(x \geq 0)$: x will be eventually greater than 0 within t time units
- Probabilistic BLTL. extension of BLTL with a probabilistic operator
 - $P_{\sim \theta} \phi$ with $\sim \in \{<, >, =\}$ and $\theta \in [0, 1]$
 - ▶ $P_{\leq 0.2}(\diamond^{\leq t} \Box^{\leq s}(x \geq 0))$: The probability that *x* will be eventually greater than 0 during *s* time units within *t* time units is lower than 0.2.

• **BLTL:**
$$\phi := \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \diamond \leq t \phi \mid \Box \leq t \phi \mid \phi U \leq t \phi$$

- ▶ ⊖: "next" operator
- > : "eventually" operator
- : "always" operator
- U: "until" operator
- $\diamondsuit^{\leq t} (x \geq 0)$: x will be eventually greater than 0 within t time units

Probabilistic BLTL. extension of BLTL with a probabilistic operator

- $P_{\sim \theta} \phi$ with $\sim \in \{<, >, =\}$ and $\theta \in [0, 1]$
- ► $P_{\leq 0.2}(\diamond^{\leq t} \square^{\leq s}(x \ge 0))$: The probability that *x* will be eventually greater than 0 during *s* time units within *t* time units is lower than 0.2.

• **BLTL:**
$$\phi := \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \diamond \leq t \phi \mid \Box \leq t \phi \mid \phi U \leq t \phi$$

- ▶ ⊖: "next" operator
- > : "eventually" operator
- : "always" operator
- U: "until" operator
- $\diamondsuit^{\leq t}(x \geq 0)$: x will be eventually greater than 0 within t time units

• Probabilistic BLTL. extension of BLTL with a probabilistic operator

- $P_{\sim \theta} \phi$ with $\sim \in \{<, >, =\}$ and $\theta \in [0, 1]$
- ► $P_{\leq 0.2}(\diamond^{\leq t} \Box^{\leq s}(x \geq 0))$: The probability that *x* will be eventually greater than 0 during *s* time units within *t* time units is lower than 0.2.

• **BLTL:**
$$\phi := \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \diamond \leq t \phi \mid \Box \leq t \phi \mid \phi U \leq t \phi$$

- ▶ ⊖: "next" operator
- > : "eventually" operator
- : "always" operator
- U: "until" operator
- $\diamondsuit^{\leq t} (x \geq 0)$: x will be eventually greater than 0 within t time units

• Probabilistic BLTL. extension of BLTL with a probabilistic operator

- $P_{\sim \theta} \phi$ with $\sim \in \{<, >, =\}$ and $\theta \in [0, 1]$
- ► $P_{\leq 0.2}(\diamond^{\leq t} \Box^{\leq s}(x \ge 0))$: The probability that *x* will be eventually greater than 0 during *s* time units within *t* time units is lower than 0.2.

Limitation of Model Checking

State space explosion problem

Prompted the recourse to statistical verification

Limitation of Model Checking

State space explosion problem

Prompted the recourse to statistical verification

Algorithms

- Quantitative algorithms to estimate a probability (e.g. Monte Carlo)
- Qualitative algorithms to compare probabilities (e.g. Hypothesis Testing)
- Rare event simulation
- Cu-Sum detection

- Ω a set of paths ending uniformly in a square
- $z(\omega) = 1$ if ω ends in *A*, 0 otherwise.
- $\gamma = P(\text{"end in A"}).$
- Monte-Carlo estimator:

$$\tilde{\gamma}_N = \frac{1}{N} \sum_{i=1}^N Z(\omega_i)$$

• Standard Confidence Interval = Estimator +/- Absolute Error

$$AE \propto Var(\tilde{\gamma}_N) = rac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}$$

- Ω a set of paths ending uniformly in a square
- $z(\omega) = 1$ if ω ends in *A*, 0 otherwise.
- $\gamma = P$ ("end in A").
- Monte-Carlo estimator:

$$\tilde{\gamma}_N = \frac{1}{N} \sum_{i=1}^N Z(\omega_i)$$

• Standard Confidence Interval = Estimator +/- Absolute Error

$$AE \propto Var(\tilde{\gamma}_N) = rac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}$$

- Ω a set of paths ending uniformly in a square
- $z(\omega) = 1$ if ω ends in *A*, 0 otherwise.
- $\gamma = P(\text{"end in A"}).$
- Monte-Carlo estimator:

$$ilde{\gamma}_N = rac{1}{N}\sum_{i=1}^N Z(\omega_i)$$

• Standard Confidence Interval = Estimator +/- Absolute Error

$$AE \propto Var(\tilde{\gamma}_N) = rac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}$$

- Ω a set of paths ending uniformly in a square
- $z(\omega) = 1$ if ω ends in *A*, 0 otherwise.
- $\gamma = P(\text{"end in A"}).$
- Monte-Carlo estimator:

$$\tilde{\gamma}_N = \frac{1}{N} \sum_{i=1}^N Z(\omega_i)$$

 Standard Confidence Interval = Estimator +/- Absolute Error

$$AE \propto Var(\tilde{\gamma}_N) = rac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}$$

Test $H_1: p \leq \theta$ against $H_0: p > \theta$

With (Type error):

- (1) α : the probability to accept H_1 while H_0 is true;
- (2) β : the probability to accept H_0 while H_1 is true.

Test $H_1: p \leq \theta$ against $H_0: p > \theta$

With (Type error):

- **(1)** α : the probability to accept H_1 while H_0 is true;
- **2** β : the probability to accept H_0 while H_1 is true.

Performance of Test

Needs an infinite number of samples to get ideal performances !

Axel Legay (Inria)

If $p \in [\theta - \delta, \theta + \delta]$, we say we are *indifferent* to know if $p \ge \theta$

Summary

We want to test :

$$H_0: p \ge p_0$$
 against $H_1: p < p_1$, where
 $p_0 = \theta + \delta$ and $p_1 = \theta - \delta$.

With:

• Type erros α and β , and

• Indifference region 2δ .

Summary

We want to test :

$$H_0: p \ge p_0$$
 against $H_1: p < p_1$, where
 $p_0 = \theta + \delta$ and $p_1 = \theta - \delta$.

With:

- Type erros α and $\beta,$ and
- Indifference region 2δ .

 $H_1: p \leq \theta, H_0: p > \theta$

Compute

$$W = \prod_{i=1}^{m} \frac{\Pr(Z_i = z_i \mid p = \theta - \delta)}{\Pr(Z_i = z_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m}(1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m}(1 - \theta - \delta)^{m - d_m}},$$

where $d_m = \sum_{i=1}^m z_i$.

Stop when :

- $W \ge (1 \beta)/\alpha$: H_1 is accepted;
- $W \leq \beta/(1-\alpha)$: H_0 is accepted.

 $H_1: p \leq \theta, H_0: p > \theta$

Compute

$$W = \prod_{i=1}^{m} \frac{\Pr(Z_i = z_i \mid p = \theta - \delta)}{\Pr(Z_i = z_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m - d_m}},$$
(1)

where $d_m = \sum_{i=1}^m z_i$.

Stop when :

• $W \ge (1 - \beta)/\alpha$: H_1 is accepted;

• $W \leq \beta/(1-\alpha)$: H_0 is accepted.

 $H_1: p \leq \theta, H_0: p > \theta$

Compute

$$W = \prod_{i=1}^{m} \frac{\Pr(Z_i = z_i \mid p = \theta - \delta)}{\Pr(Z_i = z_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m - d_m}},$$
(1)

where $d_m = \sum_{i=1}^m z_i$.

Stop when :

- $W \ge (1 \beta)/\alpha$: H_1 is accepted;
- $W \leq \beta/(1-\alpha)$: H_0 is accepted.

Conclusion

- A new approach for the verification of stochastic systems
- Can be more efficient than probabilistic model checking
- Can be more general than probabilistic model checking
- The price to pay is the confidence interval.

Next steps:

- Rare event simulation
- Implementation
- Three applications