Bayesian Networks and Decision Graphs: Home Assignments \#1

28 April 2005

Question 1

Consider the causal network below:

a) What probability distributions (e.g. on the form $P(X \mid Y))$ should be specified in order to obtain a Bayesian network from the causal network?
b) Which variables are d-separated from A given hard evidence on K ?
c) Which variables are d-separated from A given hard evidence on F and I ?

Answers

a) $P(A), P(B), P(C), P(D), P(E \mid A, B), P(F \mid B, C), P(G \mid C, D), P(H \mid D), P(I \mid E, F), P(J \mid F, G)$, $P(K \mid I, F), P(L \mid K)$.
b) D, H, L.
c) K, L, D, H.

Question 2

A used car sales man offers all potential costumers to have a test performed on the car they are interested in buying. The test should reveal whether the car has either no defects or one (or more) defects; the prior probability that a car has one or more defects is 0.3 . There are two possible tests: Test1 has three possible outcomes, namely no-defects, defects and inconclusive. If the car doesn't have any defects, then the probabilities for these test results are $0.8,0.05$ and
0.15 , respectively. On the other hand, if the car has defects, then the probabilities for the test results are $0.05,0.75$ and 0.2 . For Test 2 there are only two possible outcomes (no-defects and defects). If the car doesn't have any defects, then the probabilities for the test results are 0.8 and 0.2 , respectively, and the if the car has defects then the probabilities are 0.25 and 0.75 .
a) Construct a Bayesian network (both structure and probabilities) representing the relations between the two tests and the state of the car.
b) Calculate the probabilities $\mathrm{P}($ StateOfCar \mid Test 1$)$ and $\mathrm{P}($ Test 1$)$.

Answer for question a

The variable StateOfCar (SOC) is associated with $\mathrm{P}(\mathrm{SOC})=(0.7,0.3)$ and for the other two variables we have:

	Test1		
	$\neg \mathrm{d}$	d	inc.
$\mathrm{SOC}^{\neg \mathrm{d}}$	0.8	0.05	0.15
	0.05	0.75	0.2

	Test2	
	$\neg \mathrm{d}$	d
$\mathrm{SOC}^{\neg \mathrm{d}}$	0.8	0.2
	0.25	0.75

Answer for question b

We have:

$$
\mathrm{P}(\mathrm{SOC} \mid \text { Test } 1)=\frac{\mathrm{P}(\mathrm{SOC}, \text { Test } 1)}{\mathrm{P}(\text { Test } 1)}=\frac{\mathrm{P}(\text { Test } 1 \mid \mathrm{SOC}) \mathrm{P}(\mathrm{SOC})}{\sum_{\mathrm{SOC}} \mathrm{P}(\text { Test } 1 \mid \mathrm{SOC}) \mathrm{P}(\mathrm{SOC})}
$$

Using the tables we get (for $\mathrm{P}(\mathrm{SOC}$, Test 1$)$):

	Test1		
	$\neg \mathrm{d}$	d	inc.
SOC	$\neg \mathrm{d}$	0.56	0.035
	0.015	0.225	0.06
		$\mathrm{P}($ SOC, Test1 $)$	

Hence, $\mathrm{P}($ Test 1$)=(0.575,0.26,0.165)$ and finally:

	Test1		
	$\neg \mathrm{d}$	d	inc.
SOC	$\neg \mathrm{d}$	0.974	0.135
	0.026	0.865	0.364
	$\mathrm{P}($ SOC\|Test1 $)$		

