
Compiler Construction: Introduction 1

Introduction: Outline
• Motivation

n High-level languages
n Low-level languages

• Compiler Architectures
n Overall

u Front-end
u Back-end

n Detailed

• Terminology
n Compiler vs. assembler
n Compiler vs. interpreter

Compiler Construction: Introduction 2

Motivation
• Compilers are important system software components

n e.g., used in artificial intelligence (AI), databases, machine
translation, and text analysis

• Compilers include many applications of theory to
practice
n e.g., regular expressions and graph algorithms

• Writing a compiler exposes practical algorithmic and
engineering issues

• Many practical applications have embedded languages
n e.g., commands, formatting tag, and macros

Compiler Construction: Introduction 3

Levels of Programming Languages

class Triangle{class Triangle{
// <snip>// <snip>
float surface(){float surface(){

return b*h/2;return b*h/2;
}}

}}
LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

101010100100100
010100100100111
0010101101001

Translate/compile

High-level
Programming

Language

Low-level
Programming

Language

Executable
Machine

Code

Translate/compile

• Compute surface of triangle.

Compiler Construction: Introduction 4

Levels of Programming Languages
• In high-level languages but typically not in low-level

languages, such as
n Expressions
n Control structures

u for/while/loop
u switch/case/if-then-else

n Data types
u Composite data types
u User-defined data types

n Encapsulation
u Classes, modules, functions, procedures, objects

Compiler Construction: Introduction 5

Overall Architecture

• From a high-level source language, to a low-level
language

• Implications
n Must recognize legal and illegal source programs
n Must generate correct code
n Must manage storage of all variables and code
n Must agree with operating system and linker on format for

target program

compilersource
program

target
program

error
messages

Compiler Construction: Introduction 6

Two-Pass Compiler

• Implications
n Uses an intermediate representation (IR).
n Front end maps (legal) source programs into IR.
n Back end maps IR into target program, e.g., machine code.

• Complexity
n Front end O(n) or O(n log n)
n Back end NP complete

source
program

target
program

error
messages

Front End Back Endintermediate
representation

Compiler Construction: Introduction 7

Compiler Pass
• A pass is a complete traversal of the source program or a

complete traversal of an internal representation of the
source program.

• A pass can correspond to a compilation phase
n Of a single pass corresponds to multiple phases that are

interleaved in time.

• Number of passes increases compilation time.

• Example
n In a single pass compiler all identifiers must be declared before

they are used, e.g., Pascal and C++.

Compiler Construction: Introduction 8

The Compiler Front End

• Responsibilities
n Recognizes legal and illegal source programs.
n Reports errors in a useful way.
n Produces IR and preliminary storage map.
n Shapes the source program for the back end.
n Both scanner and parser implementations can be automated.

source
program IR

error
messages

Scanner Parsertokens

Compiler Construction: Introduction 9

Scanner
• Called lexical analysis.
• Maps source program stream into tokens
• Tokens include

n x = y * z; becomes <id, z> = <id, y> * <id, z>
n numbers
n keywords and identifiers
n +, -, *, / and other special character sequences

• Typically eliminates white space
n White space, i.e., tab, space, and new line (exception Python)
n Comments (exceptions JavaDoc)

• Speed is important

Compiler Construction: Introduction 10

Parser
• Also called syntax analysis.
• Recognizes a context-free grammars.
• Guides the semantic analysis (e.g., type checking)
• Builds IR for source program.

• Small hand-code parser are simple to build
n Interpreter design pattern [Gamma et al 94]

Compiler Construction: Introduction 11

Context-Free Grammar (CFG)

• The grammar defines all strings with one or more bs and
ending with and a.

• The grammar is written in Backus-Naur Form (BNF).

• Formally a grammar G = (S, N, T, P)
n S is the start symbol
n N is a set of non-terminals
n T is a set of terminals
n P is a set of production rules (P: N → N ∪ T)

list → item list |a
item → b

Compiler Construction: Introduction 12

Context-Free Grammars, example

• The parts of the grammar G
n S = expr
n T = {+, -, number, id}
n N = {stmt, expr, term, op}
n P = {stmt → expr, expr → expr op expr, expr → term,

…, op → -}

1. stmt → expr
2. expr → expr op expr
3. | term
4. term → number
5. | id
6. op → +
7. | -

Compiler Construction: Introduction 13

Deriving Sentences from a CFG
• Given a CFG sentences can be derived by repeated

substitution.
Production Result

stmt
1. expr
2. expr op expr
3. expr op term
5. expr op y
6. expr + y
7. expr op expr + y
3. expr op term + y
4. expr op 10 + y
7 expr – 10 + y
3 term – 10 + y
5 x – 10 + y

The grammar
1. stmt → expr
2. expr → expr op expr
3. | term
4. term → number
5. | id
6. op → +
7. | -

• To recognize a valid sentence in a CFG the process is
reversed and a parse tree (or syntax tree) is build.

Compiler Construction: Introduction 14

Parse Tree
• The sentence x – 10 + y can be represented by a parse

tree. stmt

expr

opexpr

+

-

opexpr

term

<id, x>

expr

• The parse tree contains a lot of irrelevant information,
seen from a compilers point-of-view.

term

<number, 10>

expr

term

<id, y>

Compiler Construction: Introduction 15

Abstract Syntax Tree
• Compilers use abstract syntax trees (ASTs) instead of parse

trees.
*

- <id, y>

<id, x> <number, 10>

• Abstract syntax trees are more compact that parse trees.
n Summarizes the grammatical structure
n Include no details about the derivation

• ASTs are one kind of intermediate representation.

Compiler Construction: Introduction 16

The Compiler Back End

• Responsibilities
n Translates IR into target program, e.g., machine code.
n Chooses introductions to implement each IR operation.
n Decides which values to keep in CPU registers
n Ensures conformance with system interfaces

• Back end automation has been less successful compared
to front end automation.

IR target
program

error
messages

Instruction
Selection

Instruction
Selection

Register
Allocation

Compiler Construction: Introduction 17

Instruction Selection

• Produce fast and compact code.
• Take advantages of target machine features.
• A pattern matching problem

n ad-hoc methods
n tree matching
n string matching
n dynamic programming

Compiler Construction: Introduction 18

Register Allocation
• Have each value in a register when it is used.

n Integer and floating point registers.

• Manage a limited set of resources
• Optimal allocation is NP-complete.

n Approximate/heuristic solutions are used in practice.

Compiler Construction: Introduction 19

Instruction Scheduling
• Avoid hardware (or virtual machine) stalls and interlocks
• Use all functional units productively

• Optimal scheduling is NP-complete in most cases
n Many good heuristic solutions are used in practice.

Compiler Construction: Introduction 20

Three-Pass Compiler

• Code optimization (or improvement)
n Analyzes IR and rewrites it
n Primary goal reduce running time (reduce space usage, power

consumption or other scare resources)
n Must preserve the semantics of the code

u Measured by the values of named variables.

source
program

target
program

error
messages

Front End Back EndIR Middle End IR

Compiler Construction: Introduction 21

The Compiler Middle End/Optimizer

• Possible optimizations
n Constant propagation and folding
n Code motions
n Common subexpression elimination
n Redundant store elimination
n Discover and remove useless or “dead” (unreachable) code.

IR IR

error
messages

Optimizer
Step 1

Optimizer
Step n

IR Optimizer
Step 2

IR

Compiler Construction: Introduction 22

Detailed Compiler Architecture

lexical analysis

target program

syntax analysis

semantic analysis

intermediate code
generation

optimizer

code generation

symbol table
manager

error
handler

source program

Compiler Construction: Introduction 23

Java “Implementation”

public class Compiler {
// “main” method
void compile() throws CompileException {
// connect lexer to input
Lexer l = new Lexer(inputStream);
// connect lexer to parser
Parser p = new Parser(l);
// calls l.next_token() to read tokens
AbstractSyntaxTree ast = p.parse();

if (typeCheck(ast)){
IntermediateRepresentation ir =

genIntermediateCode(ast);
}
ir.emitCode();

}
}

Compiler Construction: Introduction 24

Phases of Compilation
position = init + rate * 60

lexical analysis

id1 = id2 + id3 * 60

syntax analysis

=

id1 +

id2 *

id3 60

semantic analysis

=

id1 +

id2 *

id3 int2real
60

code generation

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

intermediate code gen.

temp1 = inttoreal (60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3

optimizer

temp1 = id3 * 60.0
id1 = id2 + temp1

Compiler Construction: Introduction 25

Terminology
• Examples of translating an Eiffel source program to an

executable program on an Intel box.

C

x86 assembly

x86 executable binary

Eiffel

High-level Language

Low-level Language

Eiffel (to C) high-level compiler

C compiler

x86 assembler

Compiler Construction: Introduction 26

Compiler vs. Assembler
• Assembler

n Almost direct mapping (one-to-one mapping) from the source
program to the target program.

• Compiler
n Complex conceptual mapping from a high-level language to

a low-level language (one-to-many mapping). One
construction in the high-level language is mapped to many
instructions in the low-level language.

Compiler Construction: Introduction 27

Compiler vs. Interpreter
• An interpreter is a language processor implemented in

software, i.e, there is no target language.

• Use a compiler when
n Programs are deployed in a production environment.

• Use a interpreter when
n You are development, debugging, or testing.
n Programs are run once and then discarded

Compiler Construction: Introduction 28

Programming Language Usage

compilersource
program

target
program

Expressed in the
source language S

Expressed in the
implementation language I

Expressed in the
target language T

I
S T• T-Diagrams for a compiler that

implemented in language I and translate the
source language S to the target language T.

Compiler Construction: Introduction 29

Summary
• Use compilers for translating from high-level language to

a low-level language.

• A compiler can be split into
n a front-end,
n a back-end
n and possible a middle-end (optimizer)

• Multiple programming languages are involved in a
compiler construction project.

