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Simplification: Outline
• Motivation
• Simplification

n Basic block
n Trace 
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Motivation
• Simplify the intermediate language
• Make Tree language more appropriate for target 

language

SEQ

stmt1 SEQ

stmt2 SEQ

stmt3 SEQ

stmt4 stmt5

stmt1
stmt2
stmt3
stmt4
stmt5

linearize/transform
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Simplification of IR
• Goals [p 163 Appel]

n No SEQ or ESEQ.
n CALL can only be subtree of 

u EXP(… )
u MOVE(TEMP t, …)

• Then expression can be evaluated in any order, because 
no side-effects (they commute). Examples
n 5 + 6 = 6 + 5
n 12 * 3 = 3 * 12

• Transformations
n Lift ESEQs up tree until they can become SEQs
n Turn SEQs into linear list (they are now uninteresting)
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Steps in Simplification
1. IR tree rewritten into a list of canonical tree without 

SEQ and ESEQ nodes
2. The list is grouped into a set of basic blocks (no jumps or 

labels)
3. Basic blocks ordered into a set of traces
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Canonical Tree
• Transformation of ESEQ

ESEQ

stmt1 ESEQ

stmt2 expr1

transform

ESEQ

expr1SEQ

stmt1 stmt2

BINOP

op expr2ESEQ

stmt1 expr1

transform
BINOP

op expr2expr1

ESEQ

stmt1

Make 2b 2d, 3a, 3b, 4b
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Problem with CJUMP
• There is a problem with CJUMP(op, e1, e2 ,lt, lf)

Label Action Comment
temp = e1 op e2 ;compute value
if t is true jump lt
if t is true jump lf

lt: do true stuff ; true part
jump next

lf: do false stuff ; false part
next: ; next statement

Label Action Comment
temp = e1 op e2 ;compute value
if t is true jump lt
do false stuff ; false part
jump next

lt: do true stuff ; true part
next: ; next statement

transform
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Basic Block
• A sequence of statements that is entered at the beginning 

and exited at the end.
n First statement is a LABEL
n The last statement is a JUMP or CJUMP
n There no other LABEL, JUMP, or CJUMP statements

• Implications
n It is a sequence of straight-line code
n If one instruction executes then they all execute
n It is a maximal sequence of instructions without branches
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1 a = 10
2 b = 7
3 c = 5
4 r = c
5 goto 10
6 r = b
7 goto 13
8 r = a
9 goto 13

10 if a > b goto 12 else goto 11
11 if c > b goto 13 else goto 6
12 if c > a goto 13 else goto 8
13 return r

Basic Block, Example
a = 10
b = 7
c = 5
r = c
JUMP(L10)
LABEL L6
r = b
JUMP(L13)
LABEL L8
r = a
JUMP(L13)
LABEL L10
CJUMP(a > b, L12, L11)
LABEL L11
CJUMP(c > b, L13, L6)
LABEL L12
CJUMP(c > a, L13, L8)
LABEL L13
return r
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Basic Block, Example cont
a = 10
b = 7
c = 5
r = c
JUMP(L10)
LABEL L6
r = b
JUMP(L13)
LABEL L8
r = a
JUMP(L13)
LABEL L10
CJUMP(a > b, L12, L11)
LABEL L11
CJUMP(c > b, L13, L6)
LABEL L12
CJUMP(c > a, L13, L8)
LABEL L13
return r

LABEL L0
a = 10
b = 7
c = 5
r = c
JUMP(L10)

LABEL L6
r = b
JUMP(L13)

LABEL L8
r = a
JUMP(L13)

LABEL L10
CJUMP(a > b, L12, L11)

LABEL L11
CJUMP(c > b, L13, L6)

LABEL L12
CJUMP(c > a, L13, L8)

LABEL L13
return r
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Trace
• Trace = sequence of statements that can be consecutively 

executed during the execution of a program.
• A program has many traces
• Idea: Rearrange the basic blocks without altering the 

result of the execution
• “Good” rearrangments

n Let JUMP XX be followed by LABEL XX. Then JUMP XX 
can be removed (and possible LABEL XX)

n Let CJUMP(cond, LTrue, LFalse) be followed by LABEL 
LFalse. Then LABEL LFalse can be removed.
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Summary
• The Tree language (intermediate representation) is 

converted into a sequence of statement using a set of 
transformation rules.

• Statements are grouped into basic blocks
• The basic blocks of a program are rearranged into traces
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LABEL L0
a = 10
b = 7
c = 5
r = c
JUMP(L10)
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LABEL L6
r = b
JUMP(L13)
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LABEL L8
r = a
JUMP(L13)



Compiler Construction: Simplification 15

LABEL L10
CJUMP(a > b,L12,L11)
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LABEL L11
CJUMP(c > b, L13, L6)
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LABEL L12
CJUMP(c > a, L13, L8)
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LABEL L13
return r


