Liveness Analysis: Outline

* Control Flow Graphs (CFGS)
* Liveness analysis
* [Inference graphs

Control Flow Graph (CFG)

* A graph representation of computation and control flow
In a program.
°* InaCFG

= Nodes are basic blocks (represents computation)
« Edge characterize control flow between basic blocks

®* Can build the CFG from the IR

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

Build a CFG from Code or IR

whi | e(c){
X =y + 1
y =2 * z;
1 f(d){
X =y + Zz;
}
z = 1;
}
Z = X;

P o YL D . N S S (-

v

1 f(c)

l

< X

—h

* +
N

o
~

X

+
N

N
=

N
X

«— Il [— || —m < +— DN

LABEL L1
CJUWP c L2

9<X
- c i i

N — X
>
9y,
N — X B

-+ o *+

-~ e <

JUWP L1
LABEL L2
Z = X

Using CFGs

* Use CFG to statically extract information about the
program
= Reason at compile time

= About the run-time value of variables and expressions in all
program executions.

= Examples: live variables analysis or copy propagation analysis
* ldea

= Define program points in the CFG

= Reason statically about how the information flows between the
program points.

Program Point

* There are two program points for each instruction
= Before the instruction
= After the instruction

P
I

o < o
+
N

* |n a basic block

= Program point after an instruction = program point before the
successor instruction

Program Point, Example

* Multiple successors blocks

means that the point at the x =y + 1
end of the block has multiple .
SUCCESSOTS. y =2%*z
* Depending on the execution, i f'(d)
control flows from a program .

point to one of its successors.

=

.II .‘ .\< .‘

Flow of Extracted Information

* Q1. How does information

flow between the program x =y + 1
points before and after an .
Instruction? y =2%*z

= 1., what is the effect of
Instructions

* Q2: How does information

flow between successor and X =y + z
predecessor basic blocks .
= I.e., what is the effect of control l
flow 3
z =1

Live Variable Analysis

* Compute live variables at each program point
= l.e., variables holding values which are used later in the program

* For an instruction | consider

= In[l] = live variables at program point before |
= out[l] = live variables at program point after |

* [For a basic block B consider
= In[B] = live variables at beginning of B
= Out[B] = live variables at end of B

* |f I =first instruction in B, then In[B] = In[l]
* If I’ = last instruction of B, the out|B] = out[l’]

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

How to Compute Liveness?

* Answer Q1: for each
Instruction | what is the
relationship between in[l] and
out[l]?

* Answer Q2: for each basic
block B which successor
blocks B,,..., B, what Is the
relationship between out[B]
and In[B,],..., In[B,]?

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

(1]
|

out[1]

B
out [B]

TN

in[B,]
Bl

in[B,]
B

n

Part 1. Analyzing Instructions

* Knowing variables live after | we can T
. . I N
compute variables live before | |

= All variables live after I are also live out[I]
before I, unless | defines (writes) them

= All variables that I uses (reads) are also
live before instruction |
* |n math

in[1] = use[l] E (out[1] — def[I])

= def[l] = variables defined by I
= use[l] = variables used by |

in[1]={y, z} in[I]={t,y,z} In[1]={x,1}
X =y + z X =y + z X =x +1
out[I]={z} out[I]={x,t} put [I'] ={x, t}

o Y [N S . (-

lisx =y OP z
lisx=0PYy:
lisx=y:

| is if (X)

| Is return x

| is x = f(y,z)

use[l] and def]l]

USE

USE

use[
use[

L
use[

1=4y,z}
1] ={y}
use[l] = {y}
1={x}
1] = {x}
1] ={y.z}

def]l

def
def
def

def[l
1] ={x}
def[l]
1] =1}
1] =1}
1] ={x}

use[l] and def[l], Example

* Basic block B with
Instructions 11, 12, and 13
« livel = in[B] = in[I1]

= live2 = out
= live3 = out

= lived = out|

1]
12]

13

= in[12]
=in[13]
= out[B]

* Relationship between sets
« livel = {y} E (live2 - {x})
= live2 = {z} E (live3 - {z})
. live3 = {d} E (live4 — {})

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

Basic block B

live 1
X =y +1
live 2

y =2 * z
live 3

1 f(d)

live 4

Backward Flow

* Relationship
in[1] = use[l] E (out[1] — def[I])

: I N[|
* |nformation flows backwards |[|
= Can compute in[i] if we know out[l] out[I]

= Information about live variables flow
from out[B] to In B

Basic block B

| N[B]
X =y +1
y =2 * z

1 f(d)

out [B]

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

Part 2: Analyzing Control Flow

A variable is live at the end of block B if it
live at the beginning of one successor block.

Characterizes all possible program

executions B
out [B]
In math /\
OUt[B] - EB’T succ(B) in[B’] I n[By] In[B]
B, B,

Again information flows backwards from
successor B' to B

Analyzing Control Flow, Example

1X,Y,2}

{y, z}

First Example Again

v
1 T(c) State Use Def succ
l 0 {c} @ {1, 4}
X =y + 1 1 {dyz} |[{xy} {2, 3}
y =2%*z 2 {y.z} {x} {3}
' (d) 3 % {2} {04}
| 4 o [{F o
X =y + 2
State Live-in Live-Out
l 0 {c,dx,y,z} | {c,dxy,z}
=1 1 {cdyz} |{cdxyz}
l 2 fcdyz}y |{cdyx}
. 3 {c.dyx} |{cdxy,z}
l 4 {x}]

P o YL D . N S S (-

Inference Graphs

* Use for register allocation

* A conditions that prevents data elements a and b from
being allocated to the same register is called inference

= Typically overlap in life-span of data elements
= Special cases for MOVE instruction, e.g., s~ t

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

summary

* CFG for control flow
* Liveness analysis for data flow
* Liveness used in register allocation

S mmime l omee £ mimodrrt st meme 1 2t rmemomemem A smomd o vt

Exercise 10.1

1 m<- 0O
2 m<- 0

A 4

w
N
1

o

5 10 S <- S + X

7 Vv <- v + 1

3if v >= n goto 15 [«

8 goto 3

9 X <- Mr]

—» 14 goto 6

11 s <= mqgoto 13

12 m<- s

13 r <-r + 1

