
Compiler Construction: Instruction Selection 1

Instruction Selection: Outline
• Problem and overview
• Machine description for the Jouette architecture
• Algorithms for Instruction Selection

n Maximal Munch
n Dynamic programming

Compiler Construction: Instruction Selection 2

Problem
• The IR code instructions (the Tree language)

were designed to do exactly one operation, e.g.,
load, store, add, subtract, and jump

• The machine instructions of a real CPU often
perform several of these primitive operations.

MOVE

TEMP MEM

$v0 BINOP

TEMPPLUS CONST

$a1 32

maps to
on MIPS

lw $v0, 32($a1)

[Courtesy T. Grust]

Compiler Construction: Instruction Selection 3

Overview
• Finding the machine instructions to implement a

given IR tree is called instruction selection.

• The instruction selection phase is supplied with a
machine description, a set of IR tree patterns describing
the machine instructions of the target CPU.
n Instruction selection then amounts to tiling the IR tree

with a set of tree patterns.

• The book uses the hypothetical Jouette architecture
as target CPU

Compiler Construction: Instruction Selection 4

Machine Description for Jouette
Instruction Effect IR Tree Pattern

+
TEMP

ri ← rj + rk ADD

MUL

SUB

DIV

ADDI +

CONST c

+

CONST c

CONST c

SUBI -

CONST

LOAD
+

CONST c

+

CONST c

CONST c

MEM MEM MEM MEM

ri ← rj * rk

ri ← rj - rk

ri ← rj / rk

ri ← rj + c

ri ← rj - c

ri ← M[rj+ c]

ri

*

-

/

Compiler Construction: Instruction Selection 5

Machine Description for Jouette, cont.

+

CONST c

+

CONST c

CONST c

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Instruction Effect IR Tree Pattern

STORE

MOVEM
MEM

MOVE

MEM

M[rj+ c] ← ri

M[rj] ← M[ri]

In Journette CPU

• M[x] denotes the memory word (32 bits) at address x

• Register r0 always contains the value 0 (MIPS $zero)

Compiler Construction: Instruction Selection 6

Tiling
• Instruction selection means tiling the IR tree.

n The tiles are the tree patterns available in the machine
description.

n The fundamental goal is to cover the tree with a minimal set of
non-overlapping tiles.

n MiniJava example a[i] = x
MEM

MOVE

MEM

+

TEMP

fp

CONST a

+

MEM

TEMP

ri

CONST w

* TEMP

fp

CONST x

+

Compiler Construction: Instruction Selection 7

Tiling 1

MEM

MOVE

MEM

+

TEMP

fp

CONST a

+

MEM

TEMP

ri

CONST w

* TEMP

fp

CONST x

+

1
2

3

4

5

6

7 8

9

2 load r1 ← M[fp + a]
4 addi r2 ← r0 + w
5 mul r2 ← ri * r2
6 add r1 ← r1 + r2
8 load r2 ← M[fp + x]
9 store M[r1 + 0] ← r2

Compiler Construction: Instruction Selection 8

Tiling 2

MEM

MOVE

MEM

+

TEMP

fp

CONST a

+

MEM

TEMP

ri

CONST w

* TEMP

fp

CONST x

+

1
2

3

4

5

6

7

2 load r1 ← M[fp + a]
4 addi r2 ← r0 + w
5 mul r2 ← ri * r2
6 add r1 ← r1 + r2
8 addi r1 ← fp + x
9 movem M[r1] ← M[r2]

8

9

Compiler Construction: Instruction Selection 9

Tiling 3

MEM

MOVE

MEM

+

TEMP

fp

CONST a

+

MEM

TEMP

ri

CONST w

* TEMP

fp

CONST x

+

1

2 addi r1 ← r0 + a
3 add r1 ← fp + r1
4 load r1 ← M[r1 + 0]
6 addi r2 ← r0 + w
7 mul r2 ← ri + r2
8 add r1 ← r1 + r2
10 addi r2 ← r0 + x
11 add r2 ← fp + r2
12 load r2 ← M[r2 + 0]
13 store M[r1] ← r2

2

3

4

5
6

7

8

9

10

11

12

13

Compiler Construction: Instruction Selection 10

Tiling, cont.
• Can we always find a tiling such that the given IR tree

can be covered?
n Yes, if the machine instruction set is “reasonable”, we can at

least produce a tiling such that each tile covers one IR tree
node only (almost what is done in Tiling 3).

• It is expected that the execution cost (approximate no. of
instructions) of the naive tiling 3 is higher than of tiling 1
and 2.

Compiler Construction: Instruction Selection 11

Optimum and Optimal Tiling
• Cover the tree with non-overlapping tiles from the tree

patterns
• Minimize the cost of the generated code
• Assures that every tree can be covered

n Tree patterns for all the “tiny” tiles

• Optimal tiling: no two adjacent tiles can be combined into
a single tile of lower cost.

• Optimum tiling, the sum of the overall tile costs is
minimum.

Compiler Construction: Instruction Selection 12

Algorithms for Instruction Selection
• A number of reasonable algorithms exist to solve the IR

tree tiling problem.
n Maximal Munch
n Dynamic Programming

• For simplicity, we set the cost of each instruction to one
unit.
n Typically nearby instructions interact such that a good cost

function will be complicated to design. As an example for the
Intel Pentium 4, instruction latency is influenced by the
following CPU features
u branch prediction, speculative execution
u non-blocking memory access
u pipelining
u multiple cache levels, temporal/spatial locality of data access

Compiler Construction: Instruction Selection 13

Optimum Tiling

LOAD r1 ← M[FP + -8]
ADDI r2 ← r0+ 4
MUL r2 ← te * r2
ADD r1 ←r1 +r2
LOAD r2 ← M[fp + -4]
STORE M[r1 + 0] ← r2

LOAD r1 ← M[FP + -8]
ADDI r2 ← r0+ 4
MUL r2 ← te * r2
ADD r1 ←r1 +r2
ADD r2 ← fp + r2
MOVEM M[r1] ← M[r2]

Compiler Construction: Instruction Selection 14

Maximal Munch
1. Start at the root of the IR tree
2. Find the largest (maximum number of nodes in IR tree

covered) tile t that fits
3. Record the machine instruction corresponding to t
4. t covers the root and perhaps several nodes below the

root. Tile t leaves several subtrees uncovered
5. Invoke maximal munch recursively on all subtrees
6. Emit the machine instructions recorded in step 3 in

order of a post-order traversal of the tiled IR tree.

Compiler Construction: Instruction Selection 15

Maximal Munch, cont.
• A very simple algorithm
• Tiling based on maximal munch proceeds top-down.
• Always finds an optimal tiling.

Compiler Construction: Instruction Selection 16

Dynamic Programming
• Maximal Munch makes a local decision when it selects and

places the next tile
• An approach based on dynamic programming techniques,

takes a global view and can produce an optimum tiling.
• The basic idea of dynamic programming is that an

optimum solution of a problem p is based on optimum
solutions of the subproblems of p.
n If p = instruction selection for an IR tree, then the solutions to

subproblems of p are tilings for the tree's subtrees.
n Tiling based on dynamic programming proceeds bottom-up.

Compiler Construction: Instruction Selection 17

• The cost of placing a tile t is

where c denotes the cost for the tile itself (we assume c =
1) and ci is the cost of the ith tiled subtree attached to t

• No of leaves 2 1

• Of all the tiles that match at a node n, starting from the
leaves of the IR tree, the one with minimum cost is
chosen and this of node n is recorded

Dynamic Programming, cont.

∑ =
+

)(#

1

tleaves

i
icc

+

MEM

CONST c

+

Compiler Construction: Instruction Selection 18

Dynamic Programming, Example

• Start at the leaves. For both leaves the only matching tile
is an addi instruction with total cost

MEM

CONST 2

+

CONST 1

11
0

1
=+ ∑ =i

ic

MEM

CONST 2

+

CONST 1

Compiler Construction: Instruction Selection 19

Dynamic Programming, Example, cont

211addi

211addi

31 + 11add

Total CostLeaves Cost ciTile Cost cInstruction
MEM

CONST 2

+

CONST 1

MEM

CONST 2

+

CONST 1

MEM

CONST 2

+

CONST 1

Compiler Construction: Instruction Selection 20

Dynamic Programming, Example, cont

211load

211load

221load

321load

Total CostLeaves Cost ciTile Cost cInstructionMEM

CONST 2

+

CONST 1
MEM

CONST 2

+

CONST 1
MEM

CONST 2

+

CONST 1

MEM

CONST 2

+

CONST 1

Compiler Construction: Instruction Selection 21

Dynamic Programming, Example, cont
• When the tiling process covers the IR tree root with tile t

then start the code emission

public void emit(t){
foreach tile ti attachted to tile t do

emit(ti);
write instruction for tile t;

• The final Jouette assembly program is
ADDI r1 ← r0+ 1
LOAD r2 ← M[r1 + 2]

Compiler Construction: Instruction Selection 22

Summary
• Tiling of single IR tree can be done in many ways
• Optimum and optimal tiling
• Algorithms for Instruction Selection

n Maximal Munch
u simple
u always optimal

n Dynamic programming
u more complex
u in general produces faster code

Compiler Construction: Instruction Selection 23

Exercise 9.1A

+

MEM

+

CONST
1000

TEMP fp

TEMP x

MEM

MOVE

CONST 0

1

23

4

5

6

7

2 LOAD r1 <- M[rx] ; temp x stored in rx
3 ADDI r2 <- r1 + 1000
5 ADD r3 <- r2 + fp ; fp special register
7 STORE M[r3+r0] <- r0 ; 0 always in r0

Compiler Construction: Instruction Selection 24

Exercise 9.1B

MEM

CONST 100

CONST 5

*

MUL CONST 5

BINOP

MEM

CONST 100

1 ADDI r1 <- r0 + 5 ; have no MULI
2 LOAD r2 <- M[r0 + 1000] ; 0 always in r0
3 MUL r3 <- r1 * r1

1

2

3

Compiler Construction: Instruction Selection 25

Exercise 9.2
JUMP

CJUMP

rjri LT LFGT

JUMP

NAME

JUMP rj

BRANCHEQ r0 NAME

SUB r1 <- ri – rj
BRANCHGE r1 LT

