
Compiler Construction: Register Allocation 1

Register Allocation: Outline
• Purpose
• Inference graph
• Graph coloring

n Spilling

• Rewriting code



Compiler Construction: Register Allocation 2

Register Allocation
• Wants to replace variables (and temporaries) with some 

fixed set of registers
• The basic idea: Cannot allocate two variables to the same 

register if the both live at a program point
• Need to know which variables are live at each instruction
• From liveness analysis

n For every node n in CFG we have out[n] which are the 
variables live on exit from node

n If two variables are in the same live set they cannot be allocated 
to the same register – they interfere with each other



Compiler Construction: Register Allocation 3

b = a + 2
c = b*b
b = c + 1
return b*a

Inference Graph
• Nodes of graph = variables
• Edges = variables that interfere with each other

• Register assignment is graph coloring

a
a, b
a, c
a, b

a

b c



Compiler Construction: Register Allocation 4

Graph Coloring
• Simple algorithm for finding a K-coloring of a graph 

(here K = 3)
• Step 1: Find some node with at most K-1 edges and cut it 

out of the graph (simplify)



Compiler Construction: Register Allocation 5

Simple Algorithm
• Once coloring is found for a simplified graph, select 

node that can be colored using a free color.
• Step 2: simplify until graph contain no nodes, unwind 

adding nodes back and assign colors.



Compiler Construction: Register Allocation 6

Failure in Simple Algorithm
• If graph cannot be colored, it will reduce to a graph in 

which every node has at least K neighbors
n May happen even if graph is colorable in K colors

• Finding K-coloring is NP-complete problem



Compiler Construction: Register Allocation 7

Spilling
• Once all nodes have K or more neighbors, pick a node 

and mark it for spilling (storage on stack). Remove it 
from the graph and continue as before
n Pick a node that not used much, e.g., not in an inner loop

X



Compiler Construction: Register Allocation 8

Accessing Spilled Variables
• Need to generate extra instructions to get spilled 

variables out of stack and back again
• Solutions

n Naïve: Always keep extra registers handy for shuttling data in 
and out

n Smart: Rewrite code introducing a new temporary, rerun 
liveness analysis (and register allocation)



Compiler Construction: Register Allocation 9

Precolored Nodes
• Some variables are pre-assigned to registers

n typically of hardware reasons instruction can only use specific 
registers

• To properly allocate registers treat these register uses as 
special temporary variables and enter these into inference 
graph as precolored nodes.
n Cannot be simplified
n Staring point of coloring process
n Once simplified graph is all colored nodes, add other nodes 

back in an color them



Compiler Construction: Register Allocation 10

Optimizing Move Instructions
• Code generation produces a lot of extra move operation, 

e.g., 
mov t5, t9

• If we can assign t5 and t9 to the same register the move 
instruction can be removed.

• Idea: If t5 and t9 are not connected in the inference 
graph, coalesce them into a single variable.



Compiler Construction: Register Allocation 11

Coalesing
• Coalescing two nodes can make the graph uncolorable

n High-degree nodes can make graph harder to color

• Avoid creation of high-degree (>K) nodes
n Also called conservative coalescing

t9

t5 t5/t9

coalesce



Compiler Construction: Register Allocation 12

Simplification and Coalescing
• Start by simplifying as much as possible without 

removing nodes that are either the source or destination 
of move instructions

• Coalesce pair of move related nodes as longs as no high-
degree nodes are created (delete the corresponding move 
instruction)

• If neither simplification nor coalescing possible take a 
move related pair and freeze it 



Compiler Construction: Register Allocation 13

Summary
• Register allocation is NP-complete

n Use simple or heuristic algorithms

• Now we should be able to generate code for target 
machine.


