Introduction: Outline

* Motivation
= High-level languages
= Low-level languages
* Compiler Architectures

= Overall
+ Front-end
+ Back-end

= Detailed

* Terminology
= Compiler vs. assembler
« Compiler vs. interpreter

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Motivation

* Compilers are important system software components

= e.0., used in artificial intelligence (Al), databases, machine
translation, and text analysis

* Compilers include many applications of theory to
practice
= €.0., regular expressions and graph algorithms

* Writing a compiler exposes practical algorithmic and
engineering Issues
* Many practical applications have embedded languages
= €.0., commands, formatting tag, and macros

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Levels of Programming Languages

* Compute surface of triangle.

2l ass Tri angl ef

[l <snip> High-level
float surface(){ Programming
return b*h/2; Language
} Translate/compile
LOAD r1, b
LOAD r2, h Low-level
MUL rl,r2 Programming
DIV ri1, #2 Language
RET

Translate/compile

101010100100100 Executable
010100100100111 Machine
R 0010101101001 Code _



Levels of Programming Languages

* [n high-level languages but typically not in low-level
languages, such as
= EXxpressions
= Control structures
o for/whil e/l oop
e« SW tch/case/i f -t hen-el se
« Data types
+ Composite data types
+ User-defined data types
= Encapsulation
«+ Classes, modules, functions, procedures, objects

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Overall Architecture

source : target
» compiler , larg
program program
error
messages

* From a high-level source language, to a low-level
language
* Implications
= Must recognize legal and illegal source programs

= Must generate correct code

« Must manage storage of all variables and code

= Must agree with operating system and linker on format for
target program

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Two-Pass Compiler

source
program

—

Front End

intermediate

representation

» Back End

_ target

* Implications
= Uses an intermediate representation (IR).

= Front end maps (legal) source programs into IR.

—

error
IMesSages

program

= Back end maps IR into target program, e.g., machine code.

* Complexity

= Frontend O(n) or O(n log n)

= Back end NP complete



Compiler Pass

A pass Is a complete traversal of the source program or a
complete traversal of an internal representation of the
source program.

A pass can correspond to a compilation phase

= Of a single pass corresponds to multiple phases that are
Interleaved in time.

Number of passes increases compilation time.

Example

= Inasingle pass compiler all identifiers must be declared before
they are used, e.g., Pascal and C++.



The Compller Front End

source tokens
—|  Scanner > Parser R
program
error
messages

* Responsibilities
= Recognizes legal and illegal source programs.
= Reports errors in a useful way.
= Produces IR and preliminary storage map.
= Shapes the source program for the back end.
= Both scanner and parser implementations can be automated.



Scanner

* Called lexical analysis.
* Maps source program stream into tokens
* Tokens include
= X =Y * 2, becomes <id, z> = <id, y> * <id, z>
= numbers
= keywords and identifiers
« +, -, * / and other special character sequences
* Typically eliminates white space
= White space, I.e., tab, space, and new line (exception Python)
= Comments (exceptions JavaDoc)

* Speed Is Important

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Parser

* Also called syntax analysis.

* Recognizes a context-free grammars.

* Guides the semantic analysis (e.g., type checking)
e Builds IR for source program.

* Small hand-code parser are simple to build
= Interpreter design pattern [Gamma et al 94]

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Context-Free Grammar (CFG)

list ® item list |a
item ® b

* The grammar defines all strings with one or more bs and
ending with and a.

* The grammar Is written in Backus-Naur Form (BNF).

* Formally agrammar G = (S, N, T, P)
= S s the start symbol
= N is a set of non-terminals
« T Isa set of terminals

= P isaset of production rules (P: N® N E T)

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Context-Free Grammars, example

1. stmt ® expr

2. expr ® expr op expr
3. | term

4. term ® number

S. | id

6. op ® +

/. | -

* The parts of the grammar G
= S =expr
« T ={+, -, number, id}
= N = {stmt, expr, term, op}

= P={stmt® expr, expr ® expr op expr, expr ® term,
..,0p® -}

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Deriving Sentences from a CFG

* Given a CFG sentences can be derived by repeated

substitution.
Production Result The grammar
stmt stmt
expr expr
eXPr op expr
expr op term
expropy
expr +y
expr op expr +y
expr op term +y
exprop 10 +vy
expr—-10 +vy
term-10+vy
~ x=10+y _ _
* To recognize a valid sentence in a CFG the process Is

reversed and a parse tree (or syntax tree) is build.

expr
eXpr op exp
| term
number

| id

+

term

® ® o

op

No gk wdE

W~k wWNOTWN

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Parse Tree

* The sentence x — 10 + y can be represented by a parse

tree. @

<id, x> <number, 10>

* The parse tree contains a lot of irrelevant information,
seen from a compilers point-of-view.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Abstract Syntax Tree

* Compilers use abstract syntax trees (ASTS) instead of parse
trees.

<id, y>

<id, x> <number, 10>

* Abstract syntax trees are more compact that parse trees.
= Summarizes the grammatical structure
= Include no details about the derivation

* ASTs are one kind of intermediate representation.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



The Compiler Back End

Instruction

IR Selection

—>

Register
Allocation

—>

Instruction
Selection

_— T =

* Responsibilities

= Translates IR into target program, e.g., machine code.
= Chooses introductions to implement each IR operation.

error
IMesSages

= Decides which values to keep in CPU registers
« Ensures conformance with system interfaces

* Back end automation has been less successful compared
to front end automation.

target
program



Instruction Selection

* Produce fast and compact code.
* Take advantages of target machine features.

* A pattern matching problem
= ad-hoc methods
= tree matching
= String matching
= dynamic programming

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Register Allocation

* Have each value in a register when it is used.
= Integer and floating point registers.

* Manage a limited set of resources

* Optimal allocation is NP-complete.
= Approximate/heuristic solutions are used in practice.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Instruction Scheduling

* Avoid hardware (or virtual machine) stalls and interlocks
* Use all functional units productively

* Optimal scheduling is NP-complete in most cases
= Many good heuristic solutions are used in practice.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Three-Pass Compiler

SOurce | Front End —1R—| Middle End IR Back End > target
rogram prograrr
error
messages

* Code optimization (or improvement)
=« Analyzes IR and rewrites it

= Primary goal reduce running time (reduce space usage, power
consumption or other scare resources)

= Must preserve the semantics of the code
+ Measured by the values of named variables.



The Compiler Middle End/Optimizer

IR—

v

Optimizer
Step 1

IR,

Optimizer
Step 2

IR,

Optimizer
Step n

—»IR

- = =

* Possible optimizations

= Constant propagation and folding
Code motions

error
IMesSages

Common subexpression elimination
Redundant store elimination
Discover and remove useless or “dead” (unreachable) code.



Detailed Compiler Architecture

source program

:

lexical analysis

I

syntax analysis

symbol table
manager

semantic analysis

v

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~

Intermediate code
generation

error
handler

I

optimizer

I

code generation

i

target program



Java “Implementation”

public class Compiler {

[/ “main” nethod

void conpile() throws Conpil eException {
[/ connect |exer to I nput
Lexer | = new Lexer (i nputStream;
/| connect |exer to parser
Parser p = new Parser(l);
[/ calls |I.next token() to read tokens
Abstract Synt axTree ast = p. parse();

i f (typeCheck(ast)){
| nt er redi at eRepresentation ir =
genl nt er medi at eCode( ast);
}

| r.emt Code();



Phases of Compilation

position = init + rate * 60

'

v

lexical analysis

intermediate code gen.

:

v

idl - |d2 + |d3 * 60

syntax analysis

templ = inttoreal (60)
temp2 = id; * templ
temp3 =id, + temp2
idl  =temp3

'

optimizer

l

templ =id; * 60.0
idl  =id, + templ

'

code generation

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~

_ v
N
id, +
N
id, *
N
id, 60
semantic analysis
o
RN
idl /"‘\
id, N

id, int2real

i

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, idl




Terminology

* Examples of translating an Eiffel source program to an
executable program on an Intel box.

High-level Language

A

Eiffel

% Eiffel (to C) high-level compiler
C

C compiler
x86 assembly
_ x86 assembler
X86 executable binary
v

Low-level Language

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Compiler vs. Assembler

e Assembler

« Almost direct mapping (one-to-one mapping) from the source
program to the target program.

* Compiler
« Complex conceptual mapping from a high-level language to
alow-level language (one-to-many mapping). One
construction in the high-level language is mapped to many
Instructions in the low-level language.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Compiller vs. Interpreter

* An interpreter Is a language processor implemented in
software, I.e, there Is no target language.

* Use a compiler when
« Programs are deployed in a production environment.

* Use a Interpreter when

= You are development, debugging, or testing.
= Programs are run once and then discarded

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



Programming Language Usage

source | compiler , ftarget
program program
A
Expressed in the Expressed in the Expressed in the
source language S Implementation language | target language T
* T-Diagrams for a compiler that S T
Implemented in language | and translate the |

source language S to the target language T.



summary

* Use compilers for translating from high-level language to
a low-level language.

* A compiler can be split into
« a front-end,
= a back-end
= and possible a middle-end (optimizer)

* Multiple programming languages are involved in a
compiler construction project.

U v | ome ™ it ot tomd s mims | omdrsom o dy somd b o~



