
Compiler Construction: Simplification 1

Simplification: Outline
• Motivation
• Simplification

n Basic block
n Trace 



Compiler Construction: Simplification 2

Motivation
• Simplify the intermediate language
• Make Tree language more appropriate for target 

language

SEQ

stmt1 SEQ

stmt2 SEQ

stmt3 SEQ

stmt4 stmt5

stmt1
stmt2
stmt3
stmt4
stmt5

linearize/transform



Compiler Construction: Simplification 3

Simplification of IR
• Goals [p 163 Appel]

n No SEQ or ESEQ.
n CALL can only be subtree of 

u EXP(… )
u MOVE(TEMP t, …)

• Then expression can be evaluated in any order, because 
no side-effects (they commute). Examples
n 5 + 6 = 6 + 5
n 12 * 3 = 3 * 12

• Transformations
n Lift ESEQs up tree until they can become SEQs
n Turn SEQs into linear list (they are now uninteresting)



Compiler Construction: Simplification 4

Steps in Simplification
1. IR tree rewritten into a list of canonical tree without 

SEQ and ESEQ nodes
2. The list is grouped into a set of basic blocks (no jumps or 

labels)
3. Basic blocks ordered into a set of traces



Compiler Construction: Simplification 5

Canonical Tree
• Transformation of ESEQ

ESEQ

stmt1 ESEQ

stmt2 expr1

transform

ESEQ

expr1SEQ

stmt1 stmt2

BINOP

op expr2ESEQ

stmt1 expr1

transform
BINOP

op expr2expr1

ESEQ

stmt1

Make 2b 2d, 3a, 3b, 4b



Compiler Construction: Simplification 6

Problem with CJUMP
• There is a problem with CJUMP(op, e1, e2 ,lt, lf)

Label Action Comment
temp = e1 op e2 ;compute value
if t is true jump lt
if t is true jump lf

lt: do true stuff ; true part
jump next

lf: do false stuff ; false part
next: ; next statement

Label Action Comment
temp = e1 op e2 ;compute value
if t is true jump lt
do false stuff ; false part
jump next

lt: do true stuff ; true part
next: ; next statement

transform



Compiler Construction: Simplification 7

Basic Block
• A sequence of statements that is entered at the beginning 

and exited at the end.
n First statement is a LABEL
n The last statement is a JUMP or CJUMP
n There no other LABEL, JUMP, or CJUMP statements

• Implications
n It is a sequence of straight-line code
n If one instruction executes then they all execute
n It is a maximal sequence of instructions without branches



Compiler Construction: Simplification 8

1 a = 10
2 b = 7
3 c = 5
4 r = c
5 goto 10
6 r = b
7 goto 13
8 r = a
9 goto 13

10 if a > b goto 12 else goto 11
11 if c > b goto 13 else goto 6
12 if c > a goto 13 else goto 8
13 return r

Basic Block, Example
a = 10
b = 7
c = 5
r = c
JUMP(L10)
LABEL L6
r = b
JUMP(L13)
LABEL L8
r = a
JUMP(L13)
LABEL L10
CJUMP(a > b, L12, L11)
LABEL L11
CJUMP(c > b, L13, L6)
LABEL L12
CJUMP(c > a, L13, L8)
LABEL L13
return r



Compiler Construction: Simplification 9

Basic Block, Example cont
a = 10
b = 7
c = 5
r = c
JUMP(L10)
LABEL L6
r = b
JUMP(L13)
LABEL L8
r = a
JUMP(L13)
LABEL L10
CJUMP(a > b, L12, L11)
LABEL L11
CJUMP(c > b, L13, L6)
LABEL L12
CJUMP(c > a, L13, L8)
LABEL L13
return r

LABEL L0
a = 10
b = 7
c = 5
r = c
JUMP(L10)

LABEL L6
r = b
JUMP(L13)

LABEL L8
r = a
JUMP(L13)

LABEL L10
CJUMP(a > b, L12, L11)

LABEL L11
CJUMP(c > b, L13, L6)

LABEL L12
CJUMP(c > a, L13, L8)

LABEL L13
return r



Compiler Construction: Simplification 10

Trace
• Trace = sequence of statements that can be consecutively 

executed during the execution of a program.
• A program has many traces
• Idea: Rearrange the basic blocks without altering the 

result of the execution
• “Good” rearrangments

n Let JUMP XX be followed by LABEL XX. Then JUMP XX 
can be removed (and possible LABEL XX)

n Let CJUMP(cond, LTrue, LFalse) be followed by LABEL 
LFalse. Then LABEL LFalse can be removed.



Compiler Construction: Simplification 11

Summary
• The Tree language (intermediate representation) is 

converted into a sequence of statement using a set of 
transformation rules.

• Statements are grouped into basic blocks
• The basic blocks of a program are rearranged into traces



Compiler Construction: Simplification 12

LABEL L0
a = 10
b = 7
c = 5
r = c
JUMP(L10)



Compiler Construction: Simplification 13

LABEL L6
r = b
JUMP(L13)



Compiler Construction: Simplification 14

LABEL L8
r = a
JUMP(L13)



Compiler Construction: Simplification 15

LABEL L10
CJUMP(a > b,L12,L11)



Compiler Construction: Simplification 16

LABEL L11
CJUMP(c > b, L13, L6)



Compiler Construction: Simplification 17

LABEL L12
CJUMP(c > a, L13, L8)



Compiler Construction: Simplification 18

LABEL L13
return r


