Instruction Selection: Outline

* Problem and overview
* Machine description for the Jouette architecture

* Algorithms for Instruction Selection
= Maximal Munch
= Dynamic programming
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Problem

* The IR code instructions (the Tr ee language)
were designed to do exactly one operation, e.g.,
load, store, add, subtract, and jump

* The machine instructions of a real CPU often
perform several of these primitive operations.
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Overview

* Finding the machine instructions to implement a
given IR tree is called Instruction selection.

* The instruction selection phase is supplied with a
machine description, a set of IR tree patterns describing
the machine instructions of the target CPU.

= Instruction selection then amounts to tiling the IR tree
with a set of tree patterns.

* The book uses the hypothetical Jouette architecture
as target CPU



Machine Description for Jouette
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Machine Description for Jouette, cont.
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In Journette CPU

» M[X] denotes the memory word (32 bits) at address x

* Register r, always contains the value 0 (MIPS $zero)
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Tiling
* Instruction selection means tiling the IR tree.

= The tiles are the tree patterns available in the machine
description.

= The fundamental goal is to cover the tree with a minimal set of
non-overlapping tiles.

= MiniJava example a[i] = x
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Tiling 1
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Tiling 2




Tiling 3
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Tiling, cont.

* Can we always find a tiling such that the given IR tree
can be covered?

= Yes, if the machine instruction set Is “reasonable”, we can at
least produce a tiling such that each tile covers one IR tree
node only (almost what is done in Tiling 3).

* |t is expected that the execution cost (approximate no. of
Instructions) of the naive tiling 3 is higher than of tiling 1
and 2.
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Optimum and Optimal Tiling
* Cover the tree with non-overlapping tiles from the tree
patterns

* Minimize the cost of the generated code

* Assures that every tree can be covered
= Tree patterns for all the “tiny” tiles

* Optimal tiling: no two adjacent tiles can be combined into
a single tile of lower cost.

* Optimum tiling, the sum of the overall tile costs is
minimum.
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Algorithms for Instruction Selection

* A number of reasonable algorithms exist to solve the IR
tree tiling problem.

= Maximal Munch
= Dynamic Programming

* For simplicity, we set the cost of each instruction to one
unit.

« Typically nearby instructions interact such that a good cost
function will be complicated to design. As an example for the
Intel Pentium 4, instruction latency is influenced by the
following CPU features

+ branch prediction, speculative execution

+ non-blocking memory access

+ pipelining

+ multiple cache levels, temporal/spatial locality of data access
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Optimum Tiling

M FP + -8] LOAD r, -~ MFP+ -8]
r,+ 4 ADDI 1, r,+ 4
te * r, MUL r,- te * r,
r, +r, ADD ry-r, +r,
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Maximal Munch
1. Start at the root of the IR tree

2. Find the largest (maximum number of nodes in IR tree

covered) tile t that fits
3. Record the machine instruction correspondi

4. tcovers the root and perhaps several nodes
root. Tile t leaves several subtrees uncovereo

ng to t
helow the

5. Invoke maximal munch recursively on all su

ntrees

0. Emit the machine instructions recorded in step 3 in
order of a post-order traversal of the tiled IR tree.
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Maximal Munch, cont.

* A very simple algorithm
* Tiling based on maximal munch proceeds top-down.
* Alwaysfinds an optimal tiling.




Dynamic Programming

* Maximal Munch makes a local decision when it selects and
places the next tile

* An approach based on dynamic programming techniques,
takes a global view and can produce an optimum tiling.

* The basic idea of dynamic programming is that an
optimum solution of a problem p is based on optimum
solutions of the subproblems of p.

« If p =instruction selection for an IR tree, then the solutions to
subproblems of p are tilings for the tree's subtrees.

= Tiling based on dynamic programming proceeds bottom-up.
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Dynamic Programming, cont.

* The cost of placing atile tis o #leaves(t)

c+a .

where ¢ denotes the cost for the tile itself (we assume ¢ =
1) and ¢; Is the cost of the ith tiled subtree attached to t

* No of leaves 2 1
MEM
+ .
/\ T
CONST ¢

e Of all the tiles that match at a node n, starting from the
leaves of the IR tree, the one with minimum cost Is
chosen and this of node n Is recorded
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Dynamic Programming, Example
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e Start at the leaves. For both leaves the only matching tile
is an addi instruction with total cost 1+ 3 9_1Ci -1




Dynamic Programming, Example, cont
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Instruction | Tile Costc | Leaves Costc | Total Cost '
add 1 1+1 3
addi 1 1 2
addi 1 1 2
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Dynamic Programming, Example, cont

Instruction | Tile Costc | Leaves Costc | Total Cost '
load 1 2 3 '
load 1 2 2
load 1 1 2
load 1 1 2




Dynamic Programming, Example, cor

* When the tiling process covers the IR tree root with i
then start the code emission

public void emt(t){
foreach tile ti attachted to tile t do
emt(ti );
wite instruction for tile t;

* Thefinal Jouette assembly program is

ADDI r, = r,+ 1
LOAD r, -~ Mr,+ 2]
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summary

* Tiling of single IR tree can be done in many ways
* Optimum and optimal tiling

* Algorithms for Instruction Selection

= Maximal Munch
+ simple
«+ always optimal
« Dynamic programming
+ More complex
«+ In general produces faster code




Exercise 9.1A

MOVE ) 7

CONSTO0 6

Mr.,] , tenp x stored in r,
r, + 1000
5 ADD r,; <-r1,+ fp , fp special register

*7ST(RE Mr,+r] <- rg , 0 always in ry



Exercise 9.1B

BINOP
e
MUL CONST5 MEM @
|
CONST 100 1
2
1 ADDI r; <- ry,+ 5 , have no MJLI
2 LOAD r, <- Mr,+ 1000] , 0 always in r,

3 ML r;<-r1,*r1,
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JUMP
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Exercise 9.2

JUMP I

BRANCHEQ r , NAME

SUB r, <
BRANCHGE r, LT

r.



