
Compiler Construction: Bottom-Up Parsing 1

Bottom-Up Parsing: Outline
• Recap
• Parsers

n Top-down
u LL(1) left-to-right-scan, left-most derivation, 1-token look ahead

n Bottom-up
u LR(1) left-to-right-scan, right-most derivation, 1-token look ahead

• Parser Generators
n SableCC

Compiler Construction: Bottom-Up Parsing 2

Compiler Front-End Parser

• Performs context-free syntax analysis
• Guides the context-sensitive analysis
• Constructs an intermediate representation (IR)
• Produces meaningful error messages
• Attempts simple error corrections

source
program IR

error
messages

Scanner Parsertokens

Compiler Construction: Bottom-Up Parsing 3

Definitions
• For a grammar G with start symbol S, any string α such

that S ⇒* α is called a sentential form.
• If α ∈ T (terminals) then α is a sentence in L(G)

• A left-sentential form is a sentential form that occurs in the
leftmost derivation of a sentence.

• A right-sentential form is a sentential form that occurs in the
rightmost derivation of a sentence.

Compiler Construction: Bottom-Up Parsing 4

Bottom-Up Parsing
• Given an input string w and a grammar G construct a

parse tree by starting from the leaves and working
towards the root.

• The parser repeatedly matches a right-sentential form
from the language against the tree’s upper frontier.

• At each match, it applies a reduction to build on the
frontier.
n each reduction matches an upper frontier of the partially built

tree to the right-hand side of some production
n each reduction adds a node on top of the frontier

• The final result is a rightmost derivation in reverse.

Compiler Construction: Bottom-Up Parsing 5

Example

• The input string abbcde

1. S → aABe
2. A → Abc
3. | b
4. B → d

S-
aABe1

aAde4
aAbcde2

abbcde3
Sentential FormProduction

• The trick appears to be scanning the input and finding
valid sentential forms.

Compiler Construction: Bottom-Up Parsing 6

Handles: Informally
• A substring α of the tree’s upper frontier that match

some production A→ α where reduction α to A is one
step in the reverse of a rightmost derivation.

• Such a string is called a handle.

Compiler Construction: Bottom-Up Parsing 7

Handles: Definition
• A handle of a right-sentential form γ is a production A→β

and a position in γ where β may be found an replaced by
A to produce the previous right-sentential form in a
rightmost derivation of reducing γ.

As an example: if S ⇒*
rm αAw ⇒rm αβw then A→β in

the position following α is a handle of αβw

• Because γ is a right-sentential form, the substring to the
right of a handle contains only terminal symbols.

Compiler Construction: Bottom-Up Parsing 8

Handles: Example

• The handle A → β in the parse tree for αβw

S

A

β

α

w

Compiler Construction: Bottom-Up Parsing 9

Shift-Reduce Parsing Example

shift4))+5(S+(E+(S+(E+4))+5←

shift+4))+5(S+(E(S+(E+4))+5←

reduce E → num+4))+5(S+(3(S+(3+4))+5←

shift3+4))+5(S+((S+(3+4))+5←

shift(3+4))+5(S+(S+(3+4))+5←

shift+(3+4))+5(S(S+(3+4))+5←

reduce S → S + E+(3+4))+5(S+E(S+E+(3+4))+5←

reduce E → num+(3+4))+5(S+2(S+2+(3+4))+5←

shift2+(3+4))+5(S+(S+2+(3+4))+5←

shift+2+(3+4))+5(S(S+2+(3+4))+5←

reduce S → E+2+(3+4))+5(E(E+2+(3+4))+5←

reduce E → num+2+(3+4))+5(1(1+2+(3+4))+5←

shift1+2+(3+4))+5((1+2+(3+4))+5←

shift(1+2+(3+4))+5<empty>(1+2+(3+4))+5←

actioninputstackderivation

S → S + E | E
E → num | (S)

Compiler Construction: Bottom-Up Parsing 10

Shift-Reduce Parsing
• Parsing action is a sequence of shift and reduce

operations.
• Parser stack: a stack of terminals and/or non-terminals
• Current derivation step is stack plus the input

• Shift moves look ahead token to token on the stack
• Reduce replaces symbol γ from top of the stack with the

non-terminal X, where X → γ is a production in the
grammar (pop γ of the stack, push X on the stack)

Compiler Construction: Bottom-Up Parsing 11

LR Parser Engine
• Basic Mechanism

n Uses a set of parser states
n Uses a stack with alternating symbols and states,

u 1 id 4 := 6 num 10

n Uses a parse table to
u Determine which action to apply (shift or reduce)
u Determine the next state

n The parser action can be precisely determined from the parse
table.

Compiler Construction: Bottom-Up Parsing 12

LR Parsing Table

• Algorithm
n Look at entry for current state S and input terminal C

u if ParseTable[S,C] = s(S’) then shift
push(C)
push(S’)

u if ParseTable[S,C] = X → γ then reduce
pop 2 * |γ|
S’ = top()
push(X)
push(ParseTable[S’,X])

next action
and

next state
next state

non-terminalsterminals

states

goto
table

action
table

Compiler Construction: Bottom-Up Parsing 13

LR Parsing Table, Example

r4r4r4r4r49
g9s2s38

r3r3r3r3r37
r1r1r1r1r16

s8s65
accept4

g5g7s2s33
r2r2r2r2r22

g4s2s31
LS$,id)(State

1. S → (L)
2. S → id
3. L → S
4. L → L, S

Compiler Construction: Bottom-Up Parsing 14

LR(k) Grammar
• Main cases

n LR(0)
n SLR
n LR(1)
n LALR(1)

• Parser for LR(0) grammar
n Determine the actions without any look ahead symbol
n Precursor to advanced LR(1) parser

Compiler Construction: Bottom-Up Parsing 15

Building LR(0) Parsing Table
• Algorithm

n Define the LR(0) states of the parser
n Build a DFA to describe the transitions between states
n Use the DFA to build the parsing table

• Each LR(0) state is a set of LR(0) items
n LR(0) items X → α . β, where X → αβ is a production
n The LR(0) item must keep track of the progress on all of the

possible upcoming productions.
n The item X → α . β, shows that the parser already matched the

string α (it is at the top of the stack).

Compiler Construction: Bottom-Up Parsing 16

LR(0) State Example
• An LR(0) item is a production from the grammar with a

separator (the dot “.”) in the right-hand side.

S’ → .S$
S → .(L)
S → .id

state items

• Substrings before dot is on the stack
• Substrings after dot what is seen next

Compiler Construction: Bottom-Up Parsing 17

Start State and Closure
• Start state

n Add production to the
grammar S’ → S$

n Start state of DFA has empty
stack S’ → .S$

• Closure of state
n start with closure(S) = S
n for each item in S: X → α.Yβ

add the items for all
productions Y → γ to
closure(S) Y → .γ

• Nested list grammar
S → (L)
S → id
L → S
L → L, S

• Examples
n (a, b, c)
n ((a,b), (c,d), (e,f,g))
n (a, ((b,(c,d)))

Compiler Construction: Bottom-Up Parsing 18

Closure Example

S’ → .S$
S → .(L)
S → .id

S → (L)
S → id
L → S
L → L, S

S’ → .S$ closure(S’)

• Set of productions to be reduced next
• Added items have the dot located at the beginning, i.e.,

no symbols for these items on stack yet.

The grammar

Start
state

Compiler Construction: Bottom-Up Parsing 19

Goto Operation
• The goto operation describes transitions between parser

states (the sets of items)
• Algorithm: for a state sold and a symbol Y

n snew = {X → αY . β | X → α . Yβ ∈ sold}
n goto (sold,Y) = closure(snew)

S’ → .S$
S → .(L)
S → .id

goto(s1, ‘(‘) closure({S → (.L)}

S → (.L)
L → .S
L → .L, S
S → .(L)
S → .id

=

Compiler Construction: Bottom-Up Parsing 20

Goto Example

S’ → .S$
S → .(L)
S → .id

S → (.L)
L → .S
L → .L, S
S → .(L)
S → .id

(

S’ → .S$
S → .(L)
S → .id

idid

Compiler Construction: Bottom-Up Parsing 21

DFA Example

S’ → .S$
S → .(L)
S → .id

S → (.L)
L → .S
L → .L, S
S → .(L)
S → .id

(

S’ → id.

S

S

S → (L.)
L → L., S

L

L → S.

S’ → S.$

$

final state

L → L,.S
S → (.L)
S → .id

id

,

L → L, S.S

S → (L).(

id

id

4

1

2

3

7

6

5

8

9

Compiler Construction: Bottom-Up Parsing 22

Parsing Example

shift goto 8,b)$1(3 L5(L,b)←

shift goto 6),b)$1(3 (3L5((L),b)←

shift goto 2a),b)$1(3 (3((a),b)←

accept$S4S←

reduce S → (L)$1(3 L5)6(L)←

shift goto 6)$1(3 L5(L)←

reduce L → L, S)$1(3 L5 ,8 S9(L,S)←

reduce S → id)$1(3 L5 ,8 b2(L,b)←

shift goto 2b)$1(3 L5 ,8(L,b)←

reduce L → S,b)$1(3 S7(S,b)←

reduce S → (L),b)$1(3 (3L5)6((L),b)←

reduce L → S),b)$1(3 (3S7((S),b)←

reduce S → id),b)$1(3 (3a2((a),b)←

shift goto 3(a),b)$1(3((a),b)←

shift goto 3((a),b)$1((a),b)←

actioninputstackderivation

Compiler Construction: Bottom-Up Parsing 23

Reduction
• On reducing X → γ with stack αγ

n pop γ of the stack (revealing prefix α and a new state)
n take single step in DFA from top state
n push X onto stack with new DFA state

• Examples
n ((a),b)← 1(3 (3 a),b)$ shift goto 2
n ((a),b)← 1(3 (3a2),b)$ reduce S → id
n ((S),b)← 1(3 (3S7),b)$ reduce L → S

Compiler Construction: Bottom-Up Parsing 24

Building LR(0) Parsing Table
• States in table is the states in the DFA
• For a transition S’ → S on a terminal T:

Shift(S’) ⊆ Table[S,T]
• For a transition S’ → S on a non-terminal N:

Goto(S’) ⊆ Table[S,N]
• If S is a reduction state X → γ then:

Reduce(X → γ) ⊆ Table[S,*]

• Previous example

Compiler Construction: Bottom-Up Parsing 25

LR(0) Limitations
• An LR(0) works only if states with reduce state have a

single reduce action.
• With more complicated grammars states may have

shift/reduce or reduce/reduce conflicts

L → L, S. L → L, S.
S → S.,L

L → L, S.
L → S.

no conflict shift/reduce
conflict

reduce/reduce
conflict

Compiler Construction: Bottom-Up Parsing 26

A Non-LR(0) Grammar
• Grammar for addition of numbers

S → S + E
S → E
E → num

• Left-associative version is LR(0)
• Right-associative version is not LR(0)

S → E + S
S → E
E → num

Compiler Construction: Bottom-Up Parsing 27

LR(0) Parsing Table

S’ → .S$
S →.E+S
S → .E
E→ .num

1
S → E. +S
S → E.

2

E → num.
4

S’ → S.$
6

S’ → S$.
7

S →.E .+S
S → .E+S
S → .E
E→ .num

3

S → E+S.
5

g6g2s41
r2s3/r22

SE$+numState 1. S → E + S
2. S → E
3. E → num

The grammar

Compiler Construction: Bottom-Up Parsing 28

SLR Parsing
• Easy extension of LR(0) parsing

n for each reduction X → γ look at the next symbol C
n apply reduction only if C in FOLLOW(X)

• SLR parsing tables eliminates some conflicts
n Same as LR(0) parsing table except reductions

• Example Follow(S) = {$}

1. S → E + S
2. S → E
3. E → num

The grammar

g6g2s41
r2s3/r22

SE$+numState

Compiler Construction: Bottom-Up Parsing 29

SLR Parsing Table
• Reduction do not fill entire row
• Otherwise same as LR(0)

1. S → E + S
2. S → E
3. E → num

The grammar

accept7
s76
r15
r2r24

g5g2s2s43

g6g2s41
r2s32

SE$+numState

Compiler Construction: Bottom-Up Parsing 30

LR(1) Parsing
• Gets as much power as possible out of one look ahead

symbol parsing table.
• LR(1) grammar = recognizable by a shift/reduce parser

with 1 token look ahead.
• LR(1) parsing similar concepts as LR(0)

n parser states = set of items
n LR(1) item = LR(0) item + look ahead symbol

S → .S+E

S → .S+E +

LR(0) item

LR(1) item

Compiler Construction: Bottom-Up Parsing 31

LR(1) State
• LR(1) state = set of LR(1) items
• LR(1) item = (X → α.β, y)

n α already match at top of stack
n next expect to see β y

• Shorthand notation
n (X → α.β, {y1,…, yn}) = (X → α.β, y1) … (X → α.β, yn)

• Must extend compared to LR(0)
n Closure operation
n Goto operation

S → S . +E +, $
S → S + . E num

Compiler Construction: Bottom-Up Parsing 32

LR(1) Closure
• Closure operation

n Start with Closure(S) = S
n For each item in S:

X → α.Yβ, z
and for each production Y → γ add the following item to
closure(S)

Y → .γ, FIRST(βz)
n repeat until nothing changes

• Similar to LR(0) closure, but also keeps track of the look
ahead symbol.

Compiler Construction: Bottom-Up Parsing 33

LR(1) Start State
• Start with S’ → .S, $ and apply closure operation.
• Example

S → E + S
S → E
E → num

S’ → .S, $
S → .E + S $
S → .E $
E → .num +,$

S’ → .S, $ closure(S’)

Compiler Construction: Bottom-Up Parsing 34

LR(1) Goto Operation
• LR(1) goto operation = transitions between LR(1) states.
• Algorithm: For a state sold and a symbol Y

n snew = {(X → αY . β, z) | (X → α . Yβ, z) ∈ sold}
n goto (sold,Y) = closure(snew)

S → E. + S $
S → .E $ goto(S1, ‘+‘) closure({S → E + . S, $}

S → E + .S $
S → .E + S $
S → .E $
E→ .num +,$

=

Compiler Construction: Bottom-Up Parsing 35

LR(1) DFA Construction
• If S’ = goto(S,x) then add an edge labeled x from S to S’

S → E. + S $
S → .E $

S’ → S. $

S → E + .S $
S → .E + S $
S → .E $
E→ .num +,$

S’ →.S $
S → .E + S $
S → .E $
E→ .num +,$

E → num. +,$

S → E. +,$

S

num

num

+

E

E
S

• Reduction is LR(1) items of the form X → γ., y

Compiler Construction: Bottom-Up Parsing 36

Building LR(1) Parsing Table
• Same as construction of LR(0) parsing table except for

reductions
• For a transition S’ → S on a terminal T:

Shift(S’) ⊆ Table[S,T]
• For a transition S’ → S on a non-terminal N:

Goto(S’) ⊆ Table[S,N]
• If S is a reduction state (X → γ., y) then:

Reduce(X → γ) ⊆ Table[S, y]

Compiler Construction: Bottom-Up Parsing 37

LALR(1) Grammars
• Problem with LR(1): too many states
• LALR(1) parsing look ahead LR

n Construct LR(1) DFA and merge any two LR(1) states whose
items are identical except for look ahead.

n Results in smaller parse tables
n Theoretically less powerful than LR(1)

• LALR(1) grammar = a grammar whose LALR(1) parsing
table has no conflicts.

Compiler Construction: Bottom-Up Parsing 38

Classification of Grammars

SLR
LR(0)

LALR(1)

LR(1)

LL(1)

Compiler Construction: Bottom-Up Parsing 39

Automate The Parsing Process
• Can automate

n The construction of LR parsing tables
n The construction of shift-reduce parser based on these parsing

tables.

• Automatic parser generators
n Yacc/Bison
n Java Cup
n SableCC/JavaCC

• LALR(1) parser generators
n No much difference compared to LR(1) in practice
n Argument LALR(1) grammar specification with declaration of

precedence and associativity.

Compiler Construction: Bottom-Up Parsing 40

Summary
• Look-ahead information makes SLR, LALR, and LR

grammars more expressive.
• Automatic parser generators supports

n LALR(1) (YACC/Bison/Java Cup/SableCC)
n LL(1) (JavaCC)

