
Compiler Construction: Liveness Analysis 1

Liveness Analysis: Outline
• Control Flow Graphs (CFGs)
• Liveness analysis
• Inference graphs

Compiler Construction: Liveness Analysis 2

Control Flow Graph (CFG)
• A graph representation of computation and control flow

in a program.
• In a CFG

n Nodes are basic blocks (represents computation)
n Edge characterize control flow between basic blocks

• Can build the CFG from the IR

Compiler Construction: Liveness Analysis 3

Build a CFG from Code or IR

while(c){
x = y + 1;
y = 2 * z;
if(d){

x = y + z;
}
z = 1;

}
z = x;

LABEL L1
CJUMP c L2
x = y + 1
y = 2 * x
CJUMP d L3
x = y + z
LABEL L3
z = 1
JUMP L1
LABEL L2
z = x

if(c)

x = y + 1
y = 2 * z
if(d)

x = y + z

z = 1

z = x

Compiler Construction: Liveness Analysis 4

Using CFGs
• Use CFG to statically extract information about the

program
n Reason at compile time
n About the run-time value of variables and expressions in all

program executions.
n Examples: live variables analysis or copy propagation analysis

• Idea
n Define program points in the CFG
n Reason statically about how the information flows between the

program points.

Compiler Construction: Liveness Analysis 5

Program Point
• There are two program points for each instruction

n Before the instruction
n After the instruction

• In a basic block
n Program point after an instruction = program point before the

successor instruction

•
x = y + z

•

Compiler Construction: Liveness Analysis 6

Program Point, Example
• Multiple successors blocks

means that the point at the
end of the block has multiple
successors.

• Depending on the execution,
control flows from a program
point to one of its successors.

•
x = y + 1

•
y = 2 * z

•
if(d)
•

•
x = y + z

•

•
z = 1
•

Compiler Construction: Liveness Analysis 7

Flow of Extracted Information
• Q1: How does information

flow between the program
points before and after an
instruction?
n i.e., what is the effect of

instructions

• Q2: How does information
flow between successor and
predecessor basic blocks
n i.e., what is the effect of control

flow

•
x = y + 1

•
y = 2 * z

•
if(d)
•

•
x = y + z

•

•
z = 1
•

Compiler Construction: Liveness Analysis 8

Live Variable Analysis
• Compute live variables at each program point

n i.e., variables holding values which are used later in the program

• For an instruction I consider
n in[I] = live variables at program point before I
n out[I] = live variables at program point after I

• For a basic block B consider
n in[B] = live variables at beginning of B
n out[B] = live variables at end of B

• If I = first instruction in B, then in[B] = in[I]
• If I’ = last instruction of B, the out[B] = out[I’]

Compiler Construction: Liveness Analysis 9

How to Compute Liveness?
• Answer Q1: for each

instruction I what is the
relationship between in[I] and
out[I]?

• Answer Q2: for each basic
block B which successor
blocks B1,…, Bn what is the
relationship between out[B]
and in[B1],…, in[Bn]?

in[I]
I

out[I]

B
out[B]

in[B1]
B1

in[Bn]
Bn

Compiler Construction: Liveness Analysis 10

Part 1: Analyzing Instructions
• Knowing variables live after I we can

compute variables live before I
n All variables live after I are also live

before I, unless I defines (writes) them
n All variables that I uses (reads) are also

live before instruction I

• In math
in[I] = use[I] ∪ (out[I] – def[I])

n def[I] = variables defined by I
n use[I] = variables used by I

in[I]
I

out[I]

in[I]={y,z}
x = y + z
out[I]={z}

in[I]={t,y,z}
x = y + z

out[I]={x,t}

in[I]={x,t}
x = x + 1

out[I]={x,t}

Compiler Construction: Liveness Analysis 11

use[I] and def[I]
• I is x = y OP z: use[I] = {y, z} def[I] = {x}
• I is x = OP y: use[I] = {y} def[I] = {x}
• I is x = y: use[I] = {y} def[I] = {x}
• I is if (x) use[I] = {x} def[I] = {}
• I is return x use[I] = {x} def[I] = {}
• I is x = f(y,z) use[I] = {y,z} def[I] = {x}

Compiler Construction: Liveness Analysis 12

use[I] and def[I], Example
• Basic block B with

instructions I1, I2, and I3
n live1 = in[B] = in[I1]
n live2 = out[I1] = in[I2]
n live3 = out[I2] = in[I3]
n live4 = out[I3] = out[B]

• Relationship between sets
n live1 = {y} ∪ (live2 – {x})
n live2 = {z} ∪ (live3 – {z})
n live3 = {d} ∪ (live4 – {})

live 1
x = y + 1
live 2
y = 2 * z
live 3
if(d)
live 4

Basic block B

Compiler Construction: Liveness Analysis 13

Backward Flow
• Relationship

in[I] = use[I] ∪ (out[I] – def[I])

• Information flows backwards
n Can compute in[i] if we know out[I]
n Information about live variables flow

from out[B] to in B

in[B]
x = y + 1
y = 2 * z
if(d)
out[B]

Basic block B

in[I]
I

out[I]

Compiler Construction: Liveness Analysis 14

Part 2: Analyzing Control Flow
• A variable is live at the end of block B if it

live at the beginning of one successor block.
• Characterizes all possible program

executions

• In math
out[B] = ∪B’∈succ(B) in[B’]

• Again information flows backwards from
successor B’ to B

B
out[B]

in[B1]
B1

in[Bn]
Bn

Compiler Construction: Liveness Analysis 15

Analyzing Control Flow, Example
B

{x,y,z}

{x,z}
B1

{x,y}
B2

B
{x,y,z}

{x}
B1

{y}
B2

{y,z}
B3

Compiler Construction: Liveness Analysis 16

First Example Again

{}{z}{x}4
{0,4}{z}Ø3
{3}{x}{y,z}2
{2, 3}{x,y}{d,y,z}1
{1, 4}Ø{c}0
SuccDefUseStateif(c)

x = y + 1
y = 2 * z
if(d)

x = y + z

z = 1

z = x
Ø{x}4
{c,d,x,y,z}{c,d,y,x}3
{c,d,y,x}{c,d,y,z}2
{c,d,x,y,z}{c,d,y,z}1
{c,d,x,y,z}{c,d,x,y,z}0
Live-OutLive-inState

Compiler Construction: Liveness Analysis 17

Inference Graphs
• Use for register allocation
• A conditions that prevents data elements a and b from

being allocated to the same register is called inference

n Typically overlap in life-span of data elements
n Special cases for MOVE instruction, e.g., s ← t

Compiler Construction: Liveness Analysis 18

Summary
• CFG for control flow
• Liveness analysis for data flow
• Liveness used in register allocation

Compiler Construction: Liveness Analysis 19

Exercise 10.1
1 m <- 0
2 m <- 0

3 if v >= n goto 15

4 r <- v
5 s <- 0

6 if r < v goto 9

7 v <- v + 1
8 goto 3

9 x <- M[r]
10 s <- s + x
11 s <= m goto 13

12 m <- s

13 r <- r + 1
14 goto 6

15 return m

