Instruction Selection: Outline

* Problem and overview
* Machine description for the Jouette architecture

* Algorithms for Instruction Selection
= Maximal Munch
= Dynamic programming

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Problem

* The IR code instructions (the Tr ee language)
were designed to do exactly one operation, e.g.,
load, store, add, subtract, and jump

* The machine instructions of a real CPU often
perform several of these primitive operations.

MOVE
TEMP MEM
| ma
psto lw $v0, 32(%al
$v0 BINOP on MIPS ($al)

PLUS TEMP CONST
| |
sourtesy T. Grust] $a1 32

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Overview

* Finding the machine instructions to implement a
given IR tree is called Instruction selection.

* The instruction selection phase is supplied with a
machine description, a set of IR tree patterns describing
the machine instructions of the target CPU.

= Instruction selection then amounts to tiling the IR tree
with a set of tree patterns.

* The book uses the hypothetical Jouette architecture
as target CPU

Machine Description for Jouette

Instruction | Effect IR Tree Pattern
r TEMP
ADD oo+ +
MUL rl = rj *rk *
TN
SUB — 8
DIV /
-/ Py
ADDI |1, = 1, +¢ /+\ /+\ CONST ¢
CONST ¢ CONST ¢
SUBI I'I - rj -C / \
CONST
LOAD |fi ™ M+] 'V'E|M ME|M ME|M MEM
K *_ CONSTc
/N LN

CONST ¢ CONST ¢

Machine Description for Jouette, cont.

Instruction

Effect

IR Tree Pattern

STORE

M[rj+ c]-

MOVE MOVE
—\ —\
M%M M%M

+ +

/N /N

MOVE

MEM

|
CONST ¢

CONST ¢ CONST ¢

MOVE
—\
M%M

MOVEM

M[ri] = MIr]

MOVE
—

MI|EM MI|EM

In Journette CPU

» M[X] denotes the memory word (32 bits) at address x

* Register r, always contains the value 0 (MIPS $zero)

U™ vl e ™ ittt omams | oot st o~

CAl bl o~

Tiling
* Instruction selection means tiling the IR tree.

= The tiles are the tree patterns available in the machine
description.

= The fundamental goal is to cover the tree with a minimal set of
non-overlapping tiles.

= MiniJava example a[i] = x

MOVE
EM ME

| |
+ +
/\ /\
MEM x TEMP CONST X
| Py |
+ TEMP CONSTw P
|
TEMP CONSTa r
|
fp

M M

Tiling 1

oo uUlLPk~DN

load r,
addi r,
mul r,
add r,
load r,

4 1 1 1 1

Mfp + a]
ro + W

*
I I,
rl + I‘2

Mip + X]

store Mr,+ 0] - r,

Tiling 2

Tiling 3

Move) 13

MEM MEM 12
|

Rddi r, - r, + a
add r, - fp +r,
load r;, - Mr, + O]
addi r, -~ r, + w
mul r,- r, +r,
add r,- r, +r,
addi r, - r, + X
add r,- fp+r,
load r,- Mr, + O]

Tiling, cont.

* Can we always find a tiling such that the given IR tree
can be covered?

= Yes, if the machine instruction set Is “reasonable”, we can at
least produce a tiling such that each tile covers one IR tree
node only (almost what is done in Tiling 3).

* |t is expected that the execution cost (approximate no. of
Instructions) of the naive tiling 3 is higher than of tiling 1
and 2.

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Optimum and Optimal Tiling
* Cover the tree with non-overlapping tiles from the tree
patterns

* Minimize the cost of the generated code

* Assures that every tree can be covered
= Tree patterns for all the “tiny” tiles

* Optimal tiling: no two adjacent tiles can be combined into
a single tile of lower cost.

* Optimum tiling, the sum of the overall tile costs is
minimum.

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Algorithms for Instruction Selection

* A number of reasonable algorithms exist to solve the IR
tree tiling problem.

= Maximal Munch
= Dynamic Programming

* For simplicity, we set the cost of each instruction to one
unit.

« Typically nearby instructions interact such that a good cost
function will be complicated to design. As an example for the
Intel Pentium 4, instruction latency is influenced by the
following CPU features

+ branch prediction, speculative execution

+ non-blocking memory access

+ pipelining

+ multiple cache levels, temporal/spatial locality of data access

LOAD
ADDI
MUL
ADD
LOAD

I

4 41 1 1 1

Optimum Tiling

M FP + -8] LOAD r, -~ MFP+ -8]
r,+ 4 ADDI 1, r,+ 4
te * r, MUL r,- te * r,
r, +r, ADD ry-r, +r,
Mfp + -4] ADD r,-~ fp+r,

STORE Mr,+ 0] = r, MOVEM Mr,] = M r,]

Maximal Munch
1. Start at the root of the IR tree

2. Find the largest (maximum number of nodes in IR tree

covered) tile t that fits
3. Record the machine instruction correspondi

4. tcovers the root and perhaps several nodes
root. Tile t leaves several subtrees uncovereo

ng to t
helow the

5. Invoke maximal munch recursively on all su

ntrees

0. Emit the machine instructions recorded in step 3 in
order of a post-order traversal of the tiled IR tree.

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Maximal Munch, cont.

* A very simple algorithm
* Tiling based on maximal munch proceeds top-down.
* Alwaysfinds an optimal tiling.

Dynamic Programming

* Maximal Munch makes a local decision when it selects and
places the next tile

* An approach based on dynamic programming techniques,
takes a global view and can produce an optimum tiling.

* The basic idea of dynamic programming is that an
optimum solution of a problem p is based on optimum
solutions of the subproblems of p.

« If p =instruction selection for an IR tree, then the solutions to
subproblems of p are tilings for the tree's subtrees.

= Tiling based on dynamic programming proceeds bottom-up.

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Dynamic Programming, cont.

* The cost of placing atile tis o #leaves(t)

c+a .

where ¢ denotes the cost for the tile itself (we assume ¢ =
1) and ¢; Is the cost of the ith tiled subtree attached to t

* No of leaves 2 1
MEM
+ .
/\ T
CONST ¢

e Of all the tiles that match at a node n, starting from the
leaves of the IR tree, the one with minimum cost Is
chosen and this of node n Is recorded

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

Dynamic Programming, Example

MEM

|
+

/\
CONST1 CONST?2

e Start at the leaves. For both leaves the only matching tile
is an addi instruction with total cost 1+ 3 9_1Ci -1

Dynamic Programming, Example, cont

MEM

o

CONST1 CONST?2

MEM

l
+

CONST 1/ CONST 2

MEM
l

CONST 1

Instruction | Tile Costc | Leaves Costc | Total Cost '
add 1 1+1 3
addi 1 1 2
addi 1 1 2

CEEn
Conery

CMEMS

+

CONST 1

’CONST;)

VIEM

I
+

CONST 1

S~

Hi Y P

Y T (R SR TR o Y (R T

CONST 2

J

¥

e o,

Dynamic Programming, Example, cont

Instruction | Tile Costc | Leaves Costc | Total Cost '
load 1 2 3 '
load 1 2 2
load 1 1 2
load 1 1 2

Dynamic Programming, Example, cor

* When the tiling process covers the IR tree root with i
then start the code emission

public void emt(t){
foreach tile ti attachted to tile t do
emt(ti);
wite instruction for tile t;

* Thefinal Jouette assembly program is

ADDI r, = r,+ 1
LOAD r, -~ Mr,+ 2]

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

et

summary

* Tiling of single IR tree can be done in many ways
* Optimum and optimal tiling

* Algorithms for Instruction Selection

= Maximal Munch
+ simple
«+ always optimal
« Dynamic programming
+ More complex
«+ In general produces faster code

Exercise 9.1A

MOVE) 7

CONSTO0 6

Mr.,] , tenp x stored in r,
r, + 1000
5 ADD r,; <-r1,+ fp , fp special register

*7ST(RE Mr,+r] <- rg , 0 always in ry

Exercise 9.1B

BINOP
e
MUL CONST5 MEM @
|
CONST 100 1
2
1 ADDI r; <- ry,+ 5 , have no MJLI
2 LOAD r, <- Mr,+ 1000] , 0 always in r,

3 ML r;<-r1,*r1,

U v o mee ™ vt tor 1t mams P omemdrs st omem] o~ o~

JUMP

JUMP

NAME

CJUMP

GT r. r. LTLF

' J

Exercise 9.2

JUMP I

BRANCHEQ r , NAME

SUB r, <
BRANCHGE r, LT

r.

