
Compiler Construction: Lexical Analysis 1

Lexical Analysis: Outline
• Recap

n Front-end of compiler

• Regular Expressions
n Definition
n Usage

• Finite Automata
n Non-deterministic Finite Automata (NFA)
n Deterministic Finite Automata (DFA)

• Scanner Generators
n SableCC

Compiler Construction: Lexical Analysis 2

Compiler Front-end Scanner

• Maps characters into tokens that (the basic unit of syntax)
• Typical tokens

n number, id, +, -, >=, if, while, for
• Eliminates white space

n tab, space, new line

• Speed is important

source
program IR

error
messages

Scanner Parsertokens

Compiler Construction: Lexical Analysis 3

Specifying Patterns
A scanner must recognize the different parts or a programming

language syntax.
• Identifiers

n A letter followed by one or more letters or digits
• Numbers

n integer -- zero or more digits
n decimal -- zero or more digits a dot zero or more digits
n real -- integer or decimal and ‘e’ a plus or minus followed by an

integer
n complex -- a real, a comma, and a real

• We need a notation for specifying the patterns
n Motivation: Can be used for generating the scanners

automatically.

Compiler Construction: Lexical Analysis 4

Regular Expression Definition
A regular expression is defined inductively over a finite alphabet Σ

• ε is a RE denoting the set {ε}
• if a ∈ Σ then a is a RE denoting the set {a}
• if r and s are REs denoting L(r) and L(s) then

n (r) is a RE denoting L(r) (grouping)
n r|s is a RE denoting L(r) ∪ L(s) (alternation)
n rs is a RE denoting L(r)L(s) (concatenation)

sometimes written as r ⋅s
n r* is a RE denoting L(r)* (repetition)

Compiler Construction: Lexical Analysis 5

Regular Expressions, Examples
• A regular expression r describes a set of strings of

characters denoted L(r)
n L(r) the language defined by r

• Let Σ = {a, b, 0, 1}
n L(ab1) = {ab1}
n L(a|b} ={a, b}
n L(1*} = {ε, 1, 11, 111, 1111, 11111, 111111, etc}
n L(a(ab)*) = {a, aab, aabab, aababab, aabababab, etc}
n L(a*|b*) = {ε, a, aa, aaa, aaaa, etc, b, bb, bbb, bbbb, etc}
n L(aa*|bb*) = {a, aa, aaa, etc, b, bb, bbb, etc.}
n L(ε |a|b|0|1) = {ε, a, b, 0, 1}

Compiler Construction: Lexical Analysis 6

Regular Expressions Shorthands
• Let Σ = {a, b, c, d, e, f, g} and r be a RE

n r? ≡ r| ε zero or one
n r+ ≡ rr* one or more
n [acdf] ≡ a|c|d|f one on the list
n [a-f] ≡ a|b|c|d|e|f one in the range
n [^acdf] ≡ b|e|g not one on the list
n [^a-f] ≡ g not one in the range

• Precedence (highest to lowest)
n * ,+,? ba* = (b)a* (repetition, Kleene closure)
n ⋅ ab | c = (ab)|c (concatenation)
n | (alternation)

Compiler Construction: Lexical Analysis 7

More Realistic RE Examples
• Let the alphabet (Σ) be the ASCII characters.
• Identifiers

n letter → [a-z|A-Z]
n digit → [0-9]
n id → letter(letter|digit)*

• Numbers
n integer → (+|-|ε)digit+
n decimal → integer . digit*
n real → (integer | decimal) (e|E) (+|- |ε)digit*
n complex → real , real

• Such REs are used to build scanners automatically

Compiler Construction: Lexical Analysis 8

Algebraic Properties of REs
Axiom Description

• r|s ≡ s | r alternation is commutative
• r|(s|t) ≡ (r | s) | t alternation is associative
• (rs)t ≡ r(st) concatenation is associative
• r(s|t) ≡ rs | rt concatenation distributes over |

(s|t)r ≡ sr| tr
• ε r ≡ r ε is the identity for concatenation

r ε ≡ r
• r** ≡ r* * is idempotent

Compiler Construction: Lexical Analysis 9

Regular Grammars
• Theorem: For any RE r there is a grammar g such that

L(r) = L(g)
• These grammars are called regular grammars (or Chomsky

type 3 grammars)

• In a regular grammar all productions have form
n N → tN
n N → t

where N is a non-terminal and t is a terminal

• Much more on grammars when looking at parsers.
*** Appel 2.1 a-d ***

Compiler Construction: Lexical Analysis 10

Finite Automata, Intro
• From a regular expression we can construct a

deterministic finite automaton (DFA)
n DFA can be implemented in a programming language to

implement the recognizing or a RE.
• Example

n letter → [a-z|A-Z]
n digit → [0-9]
n id → letter(letter|digit)*

0 21

3

error

acceptletter

digit |other

digit | letter

other

Compiler Construction: Lexical Analysis 11

Finite Automata, Definition
• A non-deterministic finite automaton (NFA) consists of

n A set of states S = {s0,…,sn}
n A set of input symbols Σ (the alphabet)
n A transition function move mapping state-symbol pairs to sets of

states
n A distinguished start state s0

n A distinguished set of accepting states (or final states)

• A deterministic finite automaton (DFA) is a special case
of an NFA
n No state has an ε-transition
n For each state s and input symbol a there is at most one edge

label with a leaving s

Compiler Construction: Lexical Analysis 12

Basic REs to DFA
ε

aa

a|b

a

b

ab a b

a*
a

*** Appel 2.1e + 2.4 ***

Compiler Construction: Lexical Analysis 13

NFA versus DFA
• Theorem: Every NFA can be converted into an

equivalent DFA.

• Any NFA can be converted into a DFA by simulating
sets of simultaneous stats where each DFA state
corresponds to a set of NFA states
n possible exponential blowup (2n where n is the number of states

in the NFA).

• NFA are more intuitive and good for explaining (a first
step in creating a DFA).

Compiler Construction: Lexical Analysis 14

NFA to DFA, Example

(a|b)abb S0 S2
b S3

bS1
a

a|b

NFA

{S0}D:{S0, S3}
{S0, S3}{S0, S1}

{S0, S1}
C:{S0, S2}

{S0, S2}
{S0}{S0, S1}

{S0, S1}
A:{S0}
B:{S0, S1}

baState

SA SC
b SD

bSB
a

b a
a

b

DFA

Transition
Table

a

*** Appel 2.5a and c ***

Compiler Construction: Lexical Analysis 15

NFA to DFA Algorithm

states[0] ← {}
states[1] ← closure({s1})
p ← 1
j ← 0
while j ≤ p

foreach c ∈ ∑
e ← DFAEdge(states[j], c)
if e = states[i] for i ≤ p then

trans[j,c] ← i
else

p ← p + 1
states[p] ← e
trans[j,c] ← p

j ← j +1

• edge(s, c) set of states
reachable by following an
edge label c from state s.

• closure(S) for a set of
states S that can be
reached a state in S
without consuming any of
the input.

• DFAEdge(d, c) =
closure(∪edge(s,c)),
s ∈d

Compiler Construction: Lexical Analysis 16

Minimizing DFA, Example

• Both NFAs accept b*ab*a, DFA 1 is suboptimal.
• Algorithms exists for doing this.

0 3b 4

b

2a

1

a

a

b a

b

DFA 1

1a 20 a
bb

DFA 2

Compiler Construction: Lexical Analysis 17

Automatic Scanner Construction
• RE → NFA (also called Thompson’s construction)

n Build an NFA for each RE term
n Combine these with ε-moves

• NFA → DFA (subset construction)
n Simulate sets of state

• DFA → Minimal DFA
n Hopcroft’s algorithm

• Minimal DFA → RE
n Not really a part of scanner construction

RE

DFA

NFAMinimal
DFA

Compiler Construction: Lexical Analysis 18

Scanner Generators, Intro
• Scanner generators constructs code from regular

expressions like specifications
n Constructs a DFA
n Uses state minimization techniques (to reduce size and increase

speed)
n Emits source code, e.g., Java or C++ code.

• A key issue is the interface to the parser
n In JavaCC and SableCC the scanner and parser are combined.
n In Lex and Yacc, and Flex and Bison the scanner and parser are

separated.

Compiler Construction: Lexical Analysis 19

SableCC Specification File
• A text file that contains the lexical definitions and the

grammar productions.
• There are four parts in the file

n Package
u The destination root Java package

n Tokens
u The lexical definitions

n Ignored Tokens
u The lexical definition not to return to the parser from the scanner

n Productions
u The productions of the grammar (topic next lecture).

Compiler Construction: Lexical Analysis 20

SableCC Specification File, Example

Package postfix;

Tokens
number = ['0' .. '9']+;
plus = '+';
minus = '-';
mult = '*';
div = '/';
mod = '%';
l_par = '(';
r_par = ')';
blank = (' ' | 13 | 10)+;

Ignored Tokens
blank;

Productions
expr =
{factor} factor |
{plus} expr plus factor |
{minus} expr minus factor;

factor =
{term} term |
{mult} factor mult term |
{div} factor div term |
{mod} factor mod term;

term =
{number} number |
{expr} l_par expr r_par;

Compiler Construction: Lexical Analysis 21

SableCC Output
• Generates files into four sub-packages of the specified

root package. The packages are named lexer,
parser, node, and analysis.
n lexer contains the Lexer and LexerException classes.
n parser contains the Parser and ParserException

classes.
n node contains all the classes defining the abstract syntax tree

(AST). In the previous example, e.g., AFactorExpr,
APlusExpr, ATermFactor, AMultFactor,
ANumberTerm, etc.

n analysis contains one interface and three classes for
traversing the AST.

Compiler Construction: Lexical Analysis 22

SableCC
• Much more on the SableCC toolkit in the next seminar

and letters.

• The parser are covered in letters three and four
• The AST is covered in letter five.

Compiler Construction: Lexical Analysis 23

Limits of Regular Languages
• Not all languages are regular.
• It is not possible to construct DFAs for the following

languages because DFAs cannot in general count. Let
Σ = {a, b}
n L = {anbn}
n L = {wawn | w ∈ Σ*}

• Also recursion cannot be expressed in a regular language

• The syntax of a programming language cannot be
expressed in a regular grammar for this we need a context-
free grammar. The topic next time.

Compiler Construction: Lexical Analysis 24

Summary
• Scanners expressed in RE implemented in finite

automaton
n NFA converted to DFA converted to minimal DFA

• Typically a tools is used for generating scanners (Lex,
JavaCC, SableCC, etc.)
n Ad-hoc scanners faster but hard to get right and maintain

• Recursion not need to implement a scanner

Compiler Construction: Lexical Analysis 25

Code Comments
• Have typically no effect on the target program

n Python and Fortran are exceptions.

• Needed by several tools, e.g.,
n Java’s JavaDoc tool
n Python’s doc strings

• Can cause errors, e.g.,
n Unclosed comment /** This is a bad comment *

• Can be eliminated by the scanner
n Scanner skips comments and returns next non-comment token.

Compiler Construction: Lexical Analysis 26

Exercise: Appel 2.4

1

2i

4t

8

e

3

5

9

6

10

7

11

f

h

l

e

s

n

e

x

3
4ε

7
ε

5

8

b

c

a

6

ε

ε 9
x

2 a

ε

ε1

10 11
a

ε

ε

Compiler Construction: Lexical Analysis 27

Exercise: Appel 2.4, to DFA

----{11}

---{3,4,7}{2,9}

{2,9}---{6,8}

{2,9}---{5,6}

-{6,8}-{7}{7}

{10}--{11}{10}

-{6,8}{5,6}{7}{3,4,7}

{10}--{3,4,7}{1,2,9,10}

xcbastates

