
OOP: Introduction 1

Introduction to Object-Oriented Programming
• Objects and classes
• Encapsulation and information hiding
• Mental exercises

 Classification and exemplification
 Aggregation and decomposition
 Generalization and specialization

• Inheritance
• Polymorphism and dynamic binding
• Java an example of an object-oriented programming language

 Program example
 History of Java
 Comparison to C/C+

OOP: Introduction 2

Objects and Classes

Mammal
Two-legs

Very large brains
Omnivorous (plants + meat)

Mammal
Tusks

Four legs
Herbivorous (plant eater)

OOP: Introduction 3

The Object Concept
• An object is an encapsulation of data.

• An object has
 identity (a unique reference)

 social security number (cpr), employee number, passport number
 state, also called characteristics (variables)

 hungry, sad, drunk, running, alive
 behavior (methods)

 eat, drink, wave, smile, kiss

• An object is an instance of an class.
 A class is often called an Abstract Data Type (ADT).

OOP: Introduction 4

The Class Concept
• A class is a collection of objects (or values) and a

corresponding set of methods.
• A class encapsulates the data representation and makes data

access possible at a higher level of abstraction.

• Example 1: A set of vehicles with operations for starting,
stopping, driving, get km/liter, etc.

• Example 2: A time interval, start time, end time, duration,
overlapping intervals, etc.

• Example 3: A string, upper case, compare, lower case, etc.
 str.equals(otherStr) – class/Java style
 strcmp(str, otherStr) – C style

OOP: Introduction 5

Encapsulation and Information Hiding
• Data can be encapsulated such that it is invisible to the

“outside world”.
• Data can only be accessed via methods.

Data

Function

Function

Function

Data

Method

Method

Method

ClassProcedural

send
message

OOP: Introduction 6

Encapsulation and Information Hiding, cont.
• What the “outside world” cannot see it cannot depend on!
• The object is a “fire-wall” between the object and the “outside

world”.
• The hidden data and methods can be changed without

affecting the “outside world”.

Hidden (or encapsulated) data and methods

Client interface

Visible data and methodsAn object

Outside world

OOP: Introduction 7

Class vs. Object
Class
• A description of the

common properties of a
set of objects.

• A concept.
• A class is a part of a

program.

• Example 1: Person

• Example 2: Album

Object
• A representation of the

properties of a single
instance.

• A phenomenon.
• An object is part of data

and a program execution.

• Example 1: Bill Clinton,
Bono, Viggo Jensen.

• Example 2: A Hard Day's
Night, Joshua Tree, Rickie
Lee Jones.

OOP: Introduction 8

Connection between Object and Class
• In object-oriented programming we write classes

 The text files we create contain classes!
 Static
 “One”

• Objects are created from classes
 A class contains a “receipe” on how to make objects
 Dynamic
 “Many”
Ingrediens
250 g digestive biscuits food processor
125 g soft brown sugar saucepan
125 g butter wooden spoon
50 g raisins 18 cm sandwich tin (greased)
3 tablespoons cocoa powder fridge
1 egg, beaten knife
25 g = 1 oz
2.5 cm = 1 inch
Process
blend
bake

source http://www.icbl.hw.ac.uk/ltdi/cookbook/chocolate_cake/
source http://www.filflora.com

OOP: Introduction 9

Type and Interface
• An object has type and an interface.

Account
 balance()
 withdraw()
 deposit()

Type

Interface

• To get an object Account a = new Account()
Account b = new Account()

• To send a message a.withdraw()
b.deposit()
a.balance()

OOP: Introduction 10

Instantiating Classes
• An instantiation is a mechanism where objects are created

from a class.
• Always involves storage allocation for the object.
• A mechanism where objects are given an initial state.

Static Instantiating
• In the declaration part of a

program.
• A static instance is

implicitly created

Dynamic Instantiating
• In the method part of a

program.
• A dynamic instance is

created explicitly with a
special command.

OOP: Introduction 11

Interaction between Objects
• Interaction between objects happens by messages being send.
• A message activates a method on the calling object.

• An object O1 interacts with another object O2 by calling a
method on O2 (must be part of the client interface).
 “O1 sends O2 a message”

• O1 and O2 must be related to communicate.
• The call of a method corresponds to a function (or procedure)

call in a non-object-oriented language such as C or Pascal.

O1 O2

O3

message

messagemessage

OOP: Introduction 12

Phenomenon and Concept
• A phenomenon is a thing in the “real” world that has

individual existence.
 an object

• A concept is a generalization, derived from a set of
phenomena and based on the common properties of these
phenomena.
 a class

• Characteristics of a concept
 A name
 Intension, the set of properties of the phenomenon
 Extension, the set of phenomena covered by the concept.

OOP: Introduction 13

Classification and Exemplification, Examples
• hat, 23, 34, mouse, telephone, book, 98, 45.34, hello

 numbers: 23, 34, 98, 45.34
 words: hat, mouse, telephone, book, hello

• mouse, tyrannosaurus rex, allosaurus, elephant, velociraptor
 dinosaur: tyrannosaurus rex, allosaurus, velociraptor
 mammal: mouse, elephant

OOP: Introduction 14

Classification and Exemplification, cont.
• A classification is a description of which phenomena that

belongs to a concept.
• An exemplification is a phenomenon that covers the concept

Concept

Phenomenon

classification exemplification

OOP: Introduction 15

Aggregation and Decomposition, Example
• Idea: make new objects by combining existing objects.
• Reusing the implementation!

Engine
start()
stop()
Gearbox
up()
down()
Door

open()
close()

Car
Engine
Gearbox
Doors[4]
start()
drive()

new class
existing classes

 Aggregation

• Car “has-a” Gearbox and Car “has-an” Engine

OOP: Introduction 16

Aggregation and Decomposition
• An aggregation consists of a number of (sub-)concepts which

collectively is considered a new concept.
• A decomposition splits a single concept into a number of

(sub-)concepts.

Concept

Concept ConceptConcept

decomposition

Concept ConceptConcept

Concept
aggregation

OOP: Introduction 17

Generalization and Specialization

source : www.geology.ucdavis.edu/ ~GEL12/dinosauria.Html

OOP: Introduction 18

Generalization and Specialization, cont.
• Generalization creates a concept with a broader scope.
• Specialization creates a concept with a narrower scope.
• Reusing the interface!

Concept A

Concept B

specialization

Concept C

Concept D

generalization

Vehicle

Car Truck

Hatchback Station car Sedan Pickup

OOP: Introduction 19

Generalization and Specialization, Example
• Inheritance: get the interface from the general class.
• Objects related by inheritance are all of the same type.

Shape
 draw()
 resize()

Circle
 draw()

 resize()
Line

 draw()
 resize()

Rectangle
 draw()

 resize()

Square
 draw()

 resize()

• Square “is-a” Shape or Square “is-like-a” Shape

OOP: Introduction 20

Generalization and Specialization in Java

Shape
 draw()
 resize()

Circle Line Rectangle

Object
 clone()
 equals()
toString()

...

OOP: Introduction 21

Polymorphism and Dynamic Binding

• Polymorphism: One piece of code works with all shape
objects.

• Dynamic binding: How polymorphism is implemented.

void doSomething(Shape s){
 s.draw(); // “magically” calls the specific class
 s.resize();
}
Circle c = new Circle();
Line l = new Line();
Rectangle r = new Rectangle();

doSomething(c); // dynamic binding
doSomething(l);
doSomething(r);

OOP: Introduction 22

Benefit Generalization and Specialization
• Take previous Shape class hierarchy

 remove inheritance
 remove general and abstract class Shape

Circle
 draw()
 resize()

Line
 draw()
 resize()

Rectangle
 draw()
 resize()

Square
 draw()
 resize()

OOP: Introduction 23

Code Example, Revisited
void doSomething(Circle c){
 c.draw();
 c.resize();
}
void doSomething(Line l){
 l.draw();
 l.resize();
}

Circle c = new Circle();
Line l = new Line();
Rectangle r = new Rectangle();

doSomething(c);
doSomething(l);
doSomething(r);

void doSomething(Rectangle r){
 r.draw();
 r.resize();
}
void doSomething(Square s){
 s.draw();
 s.resize();
}

Similar code
is repeated

OOP: Introduction 24

Java Program Structure

method body

method header

// comment on the class
public class MyProg {
 String s = ”Viggo”;

 /**
 * The main method (comment on method)
 */
 public static void main (String[] args){
 // just write some stuff
 System.out.println ("Hello World"); }
}

variable

OOP: Introduction 25

Java Class Example Car
/** A simple class modeling a car. */
public class Car {
 // instance variables
 private String make;

 private String model;
 private double price;
 // constructor
 public Car(String m, String mo, double p) {
 make = m; model = mo; price = p;
 }
 // string representation of the car
 public String toString() {
 return "make: " + make + " model: "
 + model + " price: " + price;
 }
}

OOP: Introduction 26

Byte Code vs. Executable

MyProg.java

Java Virtual Machine

Operating System

Java Class File
MyProg.class

Portable Byte Code

MyProg.cpp

Operating System

Executable myprog.exe

javac MyProg.java
gcc MyProg.cpp
-o myprog.exe

Java/C# world C++ world

OOP: Introduction 27

History of Java
• 1990 Oak (interactive television, big failure)
• 1994 Java (for the Internet)

 Main feature: "Write Once, Run Any Where"
 => wrap the operating system so they all look the same

• Designed for
 A fresh start (no backward compatibility)
 “Pure” OOP: C++ Syntax, Smalltalk style
 Improvements over C++ much harder to write a bad program
 Internet programming

 Very hard to create a virus
 Run in a web browser (and at the server)

 There is a speed issue (from Java 1.3 and up much better)
• C# Microsoft's “Java-Killer” project release 2001

 Language very similar to Java
 Commen-Language Runtime (CLR) supports 30+ languages

OOP: Introduction 28

Difference from C/C++
• Everything resides in a class

 variables and methods
• Garbage collection

 bye bye malloc(), free(), and sizeof()
• Error and exception handling handling
• No global variables or methods
• No local static variables
• No separation of declaration and implementation

 Bye bye header files
• No explicit pointer operations (uses references)
• No preprocessor (but something similar)
• Has fewer “dark corners”
• Has a much larger standard library (Java Developer Kit or

JDK)

OOP: Introduction 29

Summary
• Classes are “recipes” for creating objects
• All objects are instances of classes
• Encapsulation

 Key feature of object-oriented programming
 Separation of interface from implementation
 It is not possible to access the hidden/encapsulated parts of an object

• Aggregation and decomposition
 “has-a” relationship

• Generalization and specialization (inheritance)
 “is-a” or “is-like-a” relationship

• Polymorpishm/dynamic binding
 Softening static typing

OOP: Introduction 30

Common Mistakes and Errors
// what is ugly here?
public class main {
 public static void main(String[] args){
 System.out.println(“Hello World”);}
}
// what is wrong here?
public class MyClass {
 public void static main(string[] args){
 system.out.println(“Hello World”);}
}

// what is ugly here?
public class MyClass {
 public static void main(String[] args){
 System.out.println(“Hello World”);}
};

OOP: Introduction 31

Structuring by Program or Data?
• What are the actions of the program vs. which data does the

program act on.
• Top-down: Stepwise program refinement
• Bottom-up: Focus on the stable data parts then add methods

• Object-oriented programming is bottom-up. Programs are
structure with outset in the data.
 C and Pascal programs are typically implemented in a more top-down

fashion.

OOP: Introduction 32

Pure Object-Oriented Languages
Five rules [source: Alan Kay]

• Everything in an object.
• A program is a set of objects telling each other what to do by

sending messages.
• Each object has its own memory (made up by other objects).
• Every object has a type.
• All objects of a specific type can receive the same messages.

Java breaks some of these rules in the name of efficiency.

