
OOP: GUI, Part 1 1

Graphical User Interface (GUI), Part 1
• Applets
• The Model-View-Controller GUI Architecture

 Separated Model Architecture

• Abstract Windowing Toolkit (AWT)
• Java Foundation Classes (JFC)

• Note this is a huge area many books are devoted solely to this topic.
• Here we will provide an overview and how to get started.

OOP: GUI, Part 1 2

Applet
• An applet (application-let) is a Java program that runs in an

internet browser.
• Characteristics of an Applet

 Typically a smaller application.
 Consists of a user interface component and various other components.
 Program is downloaded.

 Does not require any software to be installed on the client maschine.
 Has the methods init, start, stop, and destroy.

 Called by the system not called by the programmer.
 Show in an HTML page

 Has a special <APPLET> tag for this.
 Runs "inside the sandbox" => much more safe, no viruses.

• Applets are displayed through a browser or through the applet Applets are displayed through a browser or through the applet
viewer (a JDK tool).viewer (a JDK tool).

OOP: GUI, Part 1 3

Applet, cont

• Deprecated in HTML 4.0 (and XHTML), widely supported.
• Replaced by the <object> tag.

• For details on applets see package javax.swing.JApplet
and java.applet.Applet.

<applet code="MyClass.class"
codebase="http://www.myHome.com"
archive="MyJarFile.jar"
height="100"
width="200">

</applet> <!-- never omitted -->

OOP: GUI, Part 1 4

Applet, cont
From java.applet.Applet.
• init().Called by the browser or applet viewer to inform this

applet that it has been loaded into the system.
• start().Called by the browser or applet viewer to inform this

applet that it should start its execution, e.g., when visible in
browser.

• stop().Called by the browser or applet viewer to inform this
applet that it should stop its execution, e.g., when applet becomes
invisible in browser.

• destroy().Called by the browser or applet viewer to inform
this applet that it is being reclaimed and that it should destroy any
resources that it has allocated.

OOP: GUI, Part 1 5

Model-View-Controller Design
• Swing's architecture is rooted in the model-view-controller

(MVC) design (from the programming language SmallTalk).
• In the MVC architecture a visual application is broken up into

three separate parts.
 A model that represents the data for the application.
 A view that is the visual representation of that data.
 A controller that takes user input on the view and translates that to

changes in the model.

Model

View

Controller

OOP: GUI, Part 1 6

Model-View-Controller, cont.
• Philosophy: Don't call use, we call you! (event driven).
• Model

 The core logic of the program that processes data independent of the
GUI.

• View
 Presentation of the model.
 There can be several views on the same model.
 Output to screen.

• Controller
 Input from devices such as keyboard and mouse.
 Effect the model directly and the view indirectly.

• However, to strict so Java uses a modified MVC model.

OOP: GUI, Part 1 7

Separated Model Architecture
• Based on the MVC Architecture.

 Merge the view and controller parts into a single User-Interface (UI)
part.

 Very difficult to write a generic controller that does not know the
specifics about a view.

 Center an application around its data not its user interface.

Model

Controller

View UI Object

Component

OOP: GUI, Part 1 8

Separated Model Architecture, Example

// the model class
class Model {
 private int x;
 private int y;
 public Model () { x = 0; y = 0;}
 public int getX() {return x;}
 public void setX(int x) {this.x = x;}
 public int getY() {return y;}
 public void setY(int y) {this.y = y;}
 public int calc() {return x*y;} // heavy calc.
}

OOP: GUI, Part 1 9

Separated Model Architecture, Example
// the view class
public class MVC1 extends JApplet {
 Model model = new Model();
 JLabel xl = new JLabel("x");
 JTextField x = new JTextField(10);
 JLabel yl = new JLabel("y");
 JTextField y = new JTextField(10);
 JLabel prodl = new Jlabel("prod");
 JTextField prod = new JtextField(10);
 JButton calc = new JButton("Calculate");
 /* see next slide for ActionListener */
 AL al = new AL();
 public void init() {
 Container cp = getContentPane();
 cp.setLayout (new GridLayout(4,2)); // change layout man.
 cp.add(xl); cp.add(x);
 cp.add(yl); cp.add(y);
 cp.add(prodl); cp.add(prod);
 cp.add(calc);
 calc.addActionListener(al); // add action list
 }

OOP: GUI, Part 1 10

Separated Model Architecture, Example
// the controller class
class AL implements ActionListener {
 public void actionPerformed (ActionEvent e){
 int xValue = Integer.parseInt(x.getText());
 model.setX(xValue);
 int yValue = Integer.parseInt(y.getText());
 model.setY(yValue);
 String temp = Integer.toString(model.calc());
 prod.setText(temp);
 }
 }
// run applet manuallypublic static void main(String[] args) {
 MVC1 applet = new MVC1();
 JFrame frame = new JFrame("MVC");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(applet);
 frame.setSize(150,150);
 applet.init();
 applet.start();
 frame.setVisible(true);
}

OOP: GUI, Part 1 11

The HTML File
<html><head><title>Applet1</title></head><hr>
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 width="100" height="50" align="baseline"
 codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#Version=1,2,2,0">
<PARAM NAME="code" VALUE="MVC1.class">
<PARAM NAME="codebase" VALUE=".">
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2.2">
<COMMENT>
 <EMBED type=
 "application/x-java-applet;version=1.2.2"
 width="200" height="200" align="baseline"
 code="Applet1.class" codebase="."
 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
 <NOEMBED>
</COMMENT>
 No Java 2 support for APPLET!!
 </NOEMBED>
</EMBED>
</OBJECT>
<hr></body></html>

OOP: GUI, Part 1 12

GUI Overview
• To create a Java GUI, you need to understandTo create a Java GUI, you need to understand

 ContainersContainers
 EventEvent
 Event HandlersEvent Handlers
 Layout managersLayout managers
 ComponentsComponents
 Special featuresSpecial features

OOP: GUI, Part 1 13

AWT and JFC/SwingAWT and JFC/Swing
• Early Java development used graphic classes defined in the Early Java development used graphic classes defined in the

Abstract Windowing Toolkit (AWT).Abstract Windowing Toolkit (AWT).
 See the java.awt.nn packages.

• In Java 2, JFC/Swing classes were introduced.In Java 2, JFC/Swing classes were introduced.
 See the javax.swing.nn packages

• Many AWT components have improved Swing counterparts.Many AWT components have improved Swing counterparts.
 An example, the AWT ButtonButton class corresponds to a more

versatile Swing class called JButtonJButton..
• Swing does not generally replace the AWT; still use for AWT Swing does not generally replace the AWT; still use for AWT

events and the underlying AWT event processing model.events and the underlying AWT event processing model.
• Here we focus mostly on Swing.Here we focus mostly on Swing.

OOP: GUI, Part 1 14

Containers
• A container is a special component that can hold other A container is a special component that can hold other

components.components.
• The AWT The AWT AppletApplet class, as well as the Swing class, as well as the Swing JAppletJApplet class, class,

are containers.are containers.
• Other containers includeOther containers include

 Frames
 A frame is a container that is free standing and can be positioned anywhere on

the screen.
 Frames give the ability to do graphics and GUIs through applications and

applets.
 Dialog boxes
 Panels
 Panes
 Toolbars

OOP: GUI, Part 1 15

Containers (Top Level and General)

Applet

Dialog

Frame

Panel

Scroll Pane

Split Pane

Tabbed Pane

Toolbar

[Source: java.sun.com]

OOP: GUI, Part 1 16

Special Containers

Internal frame

Layered pane

Root pane

[Source: java.sun.com]

OOP: GUI, Part 1 17

Events
• Every time the user types a character or pushes a mouse button,

an event occurs.
• Any object can be notified of the event.
• All the objects have to do implement the appropriate interface and

be registered as an event listener on the appropriate event source.

Button
ActionListener
 // code
 // do stuff
 ...
 ...

ActionEvent

OOP: GUI, Part 1 18

Events, cont.
• Several events implemented in java.awt.AWTEvent

subclasses (java.awt.Event is deprecated).
 Defines a lot of constants.

public abstract class AWTEvent extends EventObject {
 public void setSource(Object newSource);
 public int getID();
 public String toString();
 public String paramString();
 protected void consume();
 protected boolean isConsumed();
}

OOP: GUI, Part 1 19

Events Handlers
• In the declaration for the event handler class, one line of code

specifies that the class either implements a listener interface (or
extends a class that implements a listener interface).
public class MyClass implements ActionListener

• In the event handler class the method(s) in the listener interface
must be implemented
public void actionPerformed(ActionEvent e) {
 // code that "reacts" to the event
}

• Register an instance of the event handler class as a listener on one
or more components.
myComponent.addActionListener(myClassInstance)

OOP: GUI, Part 1 20

Events Handlers, cont.

• Often an event handler that has only a few lines of code is
implemented using an anonymous inner class.

class AL implements ActionListener {
 public void actionPerformed (ActionEvent e){
 int xValue = Integer.parseInt(x.getText());
 model.setX(xValue);
 int yValue = Integer.parseInt(y.getText());
 model.setY(yValue);
 String temp = Integer.toString(model.calc());
 prod.setText(temp);
 }
}

OOP: GUI, Part 1 21

Events Handlers, cont.
• SwingApplication has two event handlers.

 Window closing (window events).
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 Button clicks (action events).
see previous slide.

• Types of events (listeners defined in java.awt.event)
 Click button ActionListener
 Close frame WindowListener
 Press mouse button MouseListener
 Move mouse MouseMotionListener
 Component visible ComponentListener
 Component gets focus FocusListener

OOP: GUI, Part 1 22

WindowListener and MouseListener
public interface WindowListener extends EventListerner {
 void windowActivated(WindowEvent e);
 void windowClosed(WindowEvent e);
 void windowClosing(WindowEvent e);
 void windowDeactivated(WindowEvent e);
 void windowDeiconified(WindowEvent e);
 void windowIconified(WindowEvent e);
 void windowOpened(WindowEvent e);
}

public interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
}

OOP: GUI, Part 1 23

Layout Managers
• A layout manager is an object that determines the manner in A layout manager is an object that determines the manner in

which components are displayed in a container.which components are displayed in a container.

• There are several predefined layout managers defined in the Java There are several predefined layout managers defined in the Java
standard class library.standard class library.
 Flow Layout (in java.awt)
 Border Layout (in java.awt)
 Card Layout (in java.awt)
 Grid Layout (in java.awt)
 GridBag Layout (in java.awt)
 Box Layout (in javax.swing)
 Overlay Layout (in javax.swing)

OOP: GUI, Part 1 24

Layout Managers, cont.
• Every container has a default layout manager, but we can also Every container has a default layout manager, but we can also

explicitly set the layout manager for a container.explicitly set the layout manager for a container.
• Each layout manager has its own particular rules governing how Each layout manager has its own particular rules governing how

the components will be arranged.the components will be arranged.
• Some layout managers pay attention to a component's preferred Some layout managers pay attention to a component's preferred

size or alignment, and others do not.size or alignment, and others do not.
• The layout managers attempt to adjust the layout as components The layout managers attempt to adjust the layout as components

are added and as containers are resized.are added and as containers are resized.

OOP: GUI, Part 1 25

Flow Layout
• A flow layout puts as many components on a row as possible, A flow layout puts as many components on a row as possible,

then moves to the next rowthen moves to the next row
• Rows are created as needed to accommodate all of the Rows are created as needed to accommodate all of the

components.components.
• Components are displayed in the order they are added to the Components are displayed in the order they are added to the

container.container.
• The horizontal and vertical gaps between the components can be The horizontal and vertical gaps between the components can be

explicitly set.explicitly set.
• Default for Default for JPanelJPanel..

OOP: GUI, Part 1 26

Border Layout
• A border layout defines five areas into which components can be A border layout defines five areas into which components can be

added.added.
• The default for most GUIsThe default for most GUIs

OOP: GUI, Part 1 27

Box Layout
• A box layout organizes components either horizontally (in one A box layout organizes components either horizontally (in one

row) or vertically (in one column).row) or vertically (in one column).
• Special rigid areas can be added to force a certain amount of Special rigid areas can be added to force a certain amount of

spacing between components.spacing between components.
• By combining multiple containers using box layout, many By combining multiple containers using box layout, many

different configurations can be created.different configurations can be created.
• Multiple containers with box layouts are often preferred to one Multiple containers with box layouts are often preferred to one

container that uses the more complicated gridbag layout manager.container that uses the more complicated gridbag layout manager.

OOP: GUI, Part 1 28

Other Layout Managers

Card layout. The area
contains different
components at
different times.

Gridbag layout. The
most sophisticated
and flexible.

Grid layout. All
equal size in a
grid.

OOP: GUI, Part 1 29

"Atomic" Components
• The root in the component hierarchy is JComponent.
• The JComponent provides the following functionality to its

descendants, e.g., JLabel, JRadioButton, and
JTextArea.
 Tool tips
 Borders
 Keyboard-generated actions
 Application-wide pluggable look and feel
 Various properties
 Support for layout
 Support for accessibility
 Double buffering

OOP: GUI, Part 1 30

Basic Components

Button

Combo Box

Menu

Slider

Text FieldList

[Source: java.sun.com]

OOP: GUI, Part 1 31

Non-Editable Displays

Label

Progress bar

Tool tip

[Source: java.sun.com]

OOP: GUI, Part 1 32

Editable Displays

File Chooser Color Chooser

Table Text Tree

[Source: java.sun.com]

OOP: GUI, Part 1 33

Summary
• The Model-View-Controller GUI Architecture

 Separated Model Architecture

• Abstract Windowing Toolkit (AWT)
• Java Foundation Classes (JFC)

