Multithreading

* Advantages and disadvantages of threads
* User and kernel threads in general

e Javathreads
= Class Thr ead
= Interface Runnabl e

OOP: Multithreading

Thread

* Definition: A thread isasingle sequential flow of
control within a program (also called lightweight
Pr OCESS).

* Each thread acts like its own sequential program

= Underlying mechanism divides up CPU between multiple
threads.

* Two types of multithreaded applications

=« Make many threads that do many tasksin paralld, i.e., no
communication between the threads (GUI).

« Make many threads that do many tasks concurrently, i.e.,
communication between the threads (data access).

OOP: Multithreading

Advantages and disadvanteages

* Advantages
= Responsiveness
= Resource sharing
= Economy
« Utilization of multiprocessor architectures

* Disadvantages
= More complicated code
= Deadlocks (very hard to debug logical program errors)

OOP: Multithreading

Single and Multithreaded Processes

code || data || files code || data || files

s i

single-threaded multi-threaded

User and Kerneal Threads

* Thread management done by user-level threads library.

= Examples
+ POSIX Pthreads (e.g., Linux and NT)
+ Mach C-threads (e.g., MacOS and NeXT)
o Solaristhreads

* Supported by the kernel

= Examples
+ Windows 95/98/NT/2000
o Solaris
+ TRU6G4 (Compag UNIX)

OOP: Multithreading

user threads

kernel threads

OOP: Multithreading

Solaris 2 Threads

light weight

33 3 [R
L T
S
R % >
K Y
cpu| |cpu| | cpu cpu

Java Threads

* Javathreads may be created by
« Extending Thr ead class
= Implementing the Runnabl e interface

OOP: Multithreading

Class Thr ead

* The smplest way to make a thread
* Treats athread as an object

* Overidether un() method, i.e., the thread' s “main”
= Typically aloop
= Continues for the life of the thread

* Create Thr ead object, call method st art ()

* Paformsinitialization, call method r un()
* Thread terminateswhenr un() exits.

OOP: Multithreading

Extending the Thr ead Class

cl ass Worker extends Thread {
public void run() {
Systemout.println(“l\’ma worker thread”);

public class First{
public static void main (String args[]){
Wor ker runner = new Worker();
runner.start();
Systemout.printin(“lI\'"mthe main thread”);

}

OOP: Multithreading

Extending the Thr ead Class, cont.

cl ass Si npl eThread extends Thread {
public SinpleThread(String str) {

super (str);

}
public void run() {
for (int i =0; i < 10; i++) {
Systemout.printin(i +" " + getNanme());
try {
sl eep((1ong) (Mat h. randon() * 1000));
} catch (InterruptedException e) {}
}
Systemout.println("DONE! " + getNanme());
}

}

public class TwoThreadsDeno {
public static void main (String[] args) {

new Si npl eThread("Jamai ca").start();

new Si npl eThread("Fiji").start(); _
1} [Source: java.sun.com]

OOP: Multithreading 10

Sharing Resources

* Sngle threaded programming: you own everything, no
problem with sharing

* Multi-threaded programming: more than one thread
may try to use a shared resource at the same time

= Add and withdraw from a bank account
= Speak at the same time, etc.

* Javaprovideslocks, i.e., monitors, for objects, so you
can wrap an object around aressource

« First thread that acquires the lock gains control of the object,
and the other threads cannot call synchronized methods for
that object.

OOP: Multithreading 11

Locks

* Onelock pr. object for the object’ s methods.
* Onelock pr. classfor the class s static methods.

* Typically datais private, only accessed through
methods.

* |f amethod Is synchronized, entering that method
acquires the lock.

= No other thread can call any synchronized method for that
object until the lock is released.

OOP: Multithreading 12

Sharing Resources, cont.

* Only one synchronized method can be called at any
time for a particular object

synchroni zed void foo() {/*..*/}
synchroni zed void bar() {/*..*/}

* Efficiency
« Memory: Each object has alock implemented in Obj ect
= Speed: JavaSoft. 6x method call overhead. Theoretical

minimum 4 X overhead

+ Older standard Java libraries used synchronized alot, did not provide
any alternatives.

OOP: Multithreading 13

Sharing Resources, cont.

public class CubbyHol e {
private int contents;
private bool ean avail able = fal se;

public synchronized int get() {
while (avail able == false) {

try { wait(); } ... }
avai |l abl e = fal se;
notifyAll ();
return contents:;
}
public synchronized void put(int value) {
while (available == true) {
try { wait(); ...} }
contents = val ue;
avai |l abl e = true;
noti fyAl | ();

}

OOP: Multithreading

Sharing Resources, cont.

public class Producer extends Thread {
private CubbyHol e cubbyhol e;
private i nt nunber;
publ i ¢ Producer (CubbyHole c, int nunber) {
cubbyhol e = c;

t hi s. nunber = nunber; }
public void run() {
for (int i =0; i < 10; i++) {

cubbyhol e. put (i) ;

System out. printl n(
"Producer #" + this.nunmber + " put: " + 1);

try {sleep((int)(Math.randonm) * 100));
} catch (InterruptedException e) { } }

OOP: Multithreading

15

Sharing Resources, cont.

public class Consunmer extends Thread {
private CubbyHol e cubbyhol e;
private i nt nunber;
publ i ¢ Consuner (CubbyHol e ¢, int nunber) {
cubbyhol e = c;
t hi s. nunber = nunber;

}

public void run() {
I nt value = 0;
for (int i =0; i < 10; i++) {
val ue = cubbyhol e. get ();
System out. printl n(

"Consuner #" + this.nunber + " got:

}

OOP: Multithreading

+ val ue);

16

Sharing Resources, cont.

public class Producer Consuner Test {
public static void main(String[] args) {
CubbyHol e ¢ = new CubbyHol e() ;
Producer pl new Producer(c, 1);
Consuner cl new Consuner(c, 1);
pl.start();
cl.start();

OOP: Multithreading

17

The Runnabl e Interface

* Toinherit from an exising object and make it a thread,
Implement the Runnabl e interface.

* A more classical, function-oriented way to use threads.

* Ruleof Thumb: If your class must subclass some other
class (the most common example being Appl et), you

should use Runnabl e.

public i nterface Runnabl e{
public abstract void run();

}

OOP: Multithreading 18

The Runnabl e Interface, cont.

cl ass Worker i nplenents Runnabl ef

public void run(){
Systemout.printin(“l\’"ma worker thread”);

public class Second{
public static void main(String args[]) {

Runnabl e runner = new Worker();
Thread thrd = new Thread(runner);

thrd.start();
Systemout.printin(“I\"mthe main thread”);

}

OOP: Multithreading

19

The Runnabl e Interface, cont.

cl ass Si npl eRunnabl e i npl enents Runnabl e {

private String nyNane;

private Thread t;

Si npl eRunnabl e (String name) {
new Thread (this); t.start();

nmyNane = nane; t =

Lublic void run() {
for (int i =0; i < 10; i++) {
Systemout.printin(i +" " + nyNane);
try {
t.sleep((long)(Math.randon{) * 1000));
} catch (InterruptedException e) {}
}
Systemout.println("DONE! " + nyNane);
}

}

public class TwoRunnabl eDenpo {
public static void main (String[] args) {

Si npl eRunnabl e runnerl
Si npl eRunnabl e runner 2

}

OOP: Multithreading

new Si npl eRunnabl e(" Janai ca");
new Si npl eRunnabl e("Fiji");

}

20

Java Thread Management

* suspend() — suspends execution of the currently
running thread.

* dleep() — puts the currently running thread to slegp for a
specified amount of time.

* resume() — resumes execution of a suspended thread.
* stop() — stops execution of athread.

return/stop()

blocked

OOP: Multithreading 21

Summary

* Sngle-threaded programming: live by all by your sdf,
own everything, no contention for resources.

* Multithreading programming: suddenly " others’ can
have collisions and destroy information, get locked up
over the use of resources.

* Multithreading is built-into the Java programming
language.

* Multithreading makes Java programs complicated
« Multithreading is by nature difficult, e.q., deadlocks.

OOP: Multithreading 22

