
OOP: Multithreading 1

Multithreading
• Advantages and disadvantages of threads
• User and kernel threads in general
• Java threads

n Class Thread
n Interface Runnable

OOP: Multithreading 2

Thread
• Definition: A thread is a single sequential flow of

control within a program (also called lightweight
process).

• Each thread acts like its own sequential program
n Underlying mechanism divides up CPU between multiple

threads.

• Two types of multithreaded applications
n Make many threads that do many tasks in parallel, i.e., no

communication between the threads (GUI).
n Make many threads that do many tasks concurrently, i.e.,

communication between the threads (data access).

OOP: Multithreading 3

• Advantages
n Responsiveness
n Resource sharing
n Economy
n Utilization of multiprocessor architectures

• Disadvantages
n More complicated code
n Deadlocks (very hard to debug logical program errors)

Advantages and disadvanteages

OOP: Multithreading 4

Single and Multithreaded Processes

code data files code data files

single-threaded multi-threaded

thread

OOP: Multithreading 5

User and Kernel Threads
• Thread management done by user-level threads library.

n Examples
u POSIX Pthreads (e.g., Linux and NT)
u Mach C-threads (e.g., MacOS and NeXT)
u Solaris threads

• Supported by the kernel
n Examples

u Windows 95/98/NT/2000
u Solaris
u TRU64 (Compaq UNIX)

OOP: Multithreading 6

Solaris 2 Threads

kernel

task 1 task 2 task 3

cpu cpu cpu cpu

kernel threads

user threads

light weight
process

OOP: Multithreading 7

Java Threads
• Java threads may be created by

n Extending Thread class
n Implementing the Runnable interface

OOP: Multithreading 8

Class Thread
• The simplest way to make a thread
• Treats a thread as an object
• Override the run()method, i.e., the thread’s “main”

n Typically a loop
n Continues for the life of the thread

• Create Thread object, call method start()
• Performs initialization, call method run()
• Thread terminates when run() exits.

OOP: Multithreading 9

Extending the Thread Class
class Worker extends Thread {

public void run() {
System.out.println(“I\’m a worker thread”);

}
}

public class First{
public static void main (String args[]){

Worker runner = new Worker();
runner.start();
System.out.println(“I\’m the main thread”);

}
}

OOP: Multithreading 10

Extending the Thread Class, cont.
class SimpleThread extends Thread {

public SimpleThread(String str) {
super(str);

}
public void run() {

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + getName());
try {

sleep((long)(Math.random() * 1000));
} catch (InterruptedException e) {}

}
System.out.println("DONE! " + getName());

}
}
public class TwoThreadsDemo {

public static void main (String[] args) {
new SimpleThread("Jamaica").start();
new SimpleThread("Fiji").start();

}} [Source: java.sun.com]

OOP: Multithreading 11

Sharing Resources
• Single threaded programming: you own everything, no

problem with sharing
• Multi-threaded programming: more than one thread

may try to use a shared resource at the same time
n Add and withdraw from a bank account
n Speak at the same time, etc.

• Java provides locks, i.e., monitors, for objects, so you
can wrap an object around a ressource
n First thread that acquires the lock gains control of the object,

and the other threads cannot call synchronized methods for
that object.

OOP: Multithreading 12

Locks
• One lock pr. object for the object’s methods.
• One lock pr. class for the class’s static methods.

• Typically data is private, only accessed through
methods.

• If a method is synchronized, entering that method
acquires the lock.
n No other thread can call any synchronized method for that

object until the lock is released.

OOP: Multithreading 13

Sharing Resources, cont.
• Only one synchronized method can be called at any

time for a particular object
synchronized void foo() {/*..*/}
synchronized void bar() {/*..*/}

• Efficiency
n Memory: Each object has a lock implemented in Object
n Speed: JavaSoft: 6x method call overhead. Theoretical

minimum 4 x overhead
u Older standard Java libraries used synchronized a lot, did not provide

any alternatives.

OOP: Multithreading 14

Sharing Resources, cont.
public class CubbyHole {

private int contents;
private boolean available = false;
public synchronized int get() {

while (available == false) {
try { wait(); } ... }

available = false;
notifyAll();
return contents;

}
public synchronized void put(int value) {

while (available == true) {
try { wait(); ...} }

contents = value;
available = true;
notifyAll();

}
}

OOP: Multithreading 15

Sharing Resources, cont.
public class Producer extends Thread {

private CubbyHole cubbyhole;
private int number;
public Producer(CubbyHole c, int number) {

cubbyhole = c;
this.number = number; }

public void run() {
for (int i = 0; i < 10; i++) {

cubbyhole.put(i);
System.out.println(
"Producer #" + this.number + " put: " + i);
try {sleep((int)(Math.random() * 100));
} catch (InterruptedException e) { } }

}
}

OOP: Multithreading 16

Sharing Resources, cont.
public class Consumer extends Thread {

private CubbyHole cubbyhole;
private int number;
public Consumer(CubbyHole c, int number) {

cubbyhole = c;
this.number = number;

}
public void run() {

int value = 0;
for (int i = 0; i < 10; i++) {

value = cubbyhole.get();
System.out.println(

"Consumer #" + this.number + " got: " + value);
}

}
}

OOP: Multithreading 17

Sharing Resources, cont.
public class ProducerConsumerTest {

public static void main(String[] args) {
CubbyHole c = new CubbyHole();
Producer p1 = new Producer(c, 1);
Consumer c1 = new Consumer(c, 1);
p1.start();
c1.start();

}
}

OOP: Multithreading 18

The Runnable Interface

public interface Runnable{
public abstract void run();

}

• To inherit from an exising object and make it a thread,
implement the Runnable interface.

• A more classical, function-oriented way to use threads.

• Rule of Thumb: If your class must subclass some other
class (the most common example being Applet), you
should use Runnable.

OOP: Multithreading 19

The Runnable Interface, cont.
class Worker implements Runnable{

public void run(){
System.out.println(“I\’m a worker thread”);

}
}

public class Second{
public static void main(String args[]) {

Runnable runner = new Worker();
Thread thrd = new Thread(runner);
thrd.start();
System.out.println(“I\’m the main thread”);

}
}

OOP: Multithreading 20

The Runnable Interface, cont.
class SimpleRunnable implements Runnable {

private String myName; private Thread t;
SimpleRunnable (String name) {

myName = name; t = new Thread (this); t.start();
}
public void run() {

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + myName);
try {

t.sleep((long)(Math.random() * 1000));
} catch (InterruptedException e) {}

}
System.out.println("DONE! " + myName);

}
}
public class TwoRunnableDemo {

public static void main (String[] args) {
SimpleRunnable runner1 = new SimpleRunnable("Jamaica");
SimpleRunnable runner2 = new SimpleRunnable("Fiji"); }

}

OOP: Multithreading 21

Java Thread Management
• suspend() – suspends execution of the currently

running thread.
• sleep() – puts the currently running thread to sleep for a

specified amount of time.
• resume() – resumes execution of a suspended thread.
• stop() – stops execution of a thread.

new dead

runnable

blocked

new

start()

sleep()
suspend()
wait()

return/stop()

resume()
notify()

OOP: Multithreading 22

Summary
• Single-threaded programming: live by all by your self,

own everything, no contention for resources.

• Multithreading programming: suddenly ”others” can
have collisions and destroy information, get locked up
over the use of resources.

• Multithreading is built-into the Java programming
language.

• Multithreading makes Java programs complicated
n Multithreading is by nature difficult, e.g., deadlocks.

