
OOP:Inheritance and Polymorphism, Part 2 1

Inheritance and Polymorphism, Part 2
• Abstract Classes and Methods

• Multiple Inheritance

• Interfaces

• Inner Classes

OOP:Inheritance and Polymorphism, Part 2 2

Abstract Class and Method
• An abstract class is a class with an abstract method.

• An abstract method is method with out a body, i.e., only
declared but not defined.

• It is not possible to make instances of abstract classes.

• Abstract method are defined in subclasses of the abstract class.

OOP:Inheritance and Polymorphism, Part 2 3

Abstract Class and Method, Example

d1

d2

A

B
C

d3 A
d4

d5

B

D
E

C1

C2

C3

Abstract class C1 with
abstract methods A and B

Abstract class C2. Defines
method A but not method B.
Adds data elements d3 and d4

Concrete class C3. Defines
method B. Adds the methods D
and E and the data element d5.

OOP:Inheritance and Polymorphism, Part 2 4

Abstract Classes in Java

• Classes with abstract methods must declared abstract

• Classes without abstract methods can be declared abstract

• A subclass to a concrete superclass can be abstract

• Constructors can be defined on abstract classes.

• Instances of abstract classes cannot be made.

abstract class ClassName {
// <class body>;

}

OOP:Inheritance and Polymorphism, Part 2 5

Abstract Class in Java, Example
// [Source: Kurt Nørmark]
abstract class Stack{

 abstract public void push(Object el);
 abstract public void pop();
 abstract public Object top();
 abstract public boolean full();
 abstract public boolean empty();
 abstract public int size();

 public void toggleTop(){
 if (size() >= 2){
 Object topEl1 = top(); pop();
 Object topEl2 = top(); pop();
 push(topEl1); push(topEl2);
 }
 }

 public String toString(){
 return "Stack";
 }
}

OOP:Inheritance and Polymorphism, Part 2 6

Abstract Methods in Java

• A method body does not have be defined.

• Abstract method are overwritten in subclasses.

• Idea taken directly from C++

• You are saying: The object should have this properties I just do
not know how to implement the property at this level of
abstraction.

abstract [access modifier] return type
methodName([parameters]);

OOP:Inheritance and Polymorphism, Part 2 7

Abstract Methods in Java, Example
public abstract class Number {

public abstract int intValue();
public abstract long longValue();
public abstract double doubleValue();
public abstract float floatValue();
public byte byteValue(){

// method body
}
public short shortValue(){

// method body
}

}

OOP:Inheritance and Polymorphism, Part 2 8

Multiple Inheritance, Example
• For the teaching assistant when

want the properties from both
Employee and Student.

Employee
 salary()
 degree()

Student
gpa()
courses()

Person
name()
cpr()

Teaching A.

OOP:Inheritance and Polymorphism, Part 2 9

Problems with Multiple Inheritance
• Name clash problem: Which
department does ta refers
to?

• Combination problem: Can
department from Employee
and Student be combined in
Teaching Assistant?

• Selection problem: Can you
select between department
from Employee and
department from Student?

• Replication problem: Should
there be two departments
in Student?

Employee

 department

Student

 department

Person
name()
cpr()

TeachingA.

ta = new TeachingAssistant();
ta.department;

OOP:Inheritance and Polymorphism, Part 2 10

Multiple Classifications

Object

Storable ClonableRunable Comparable

X X

• Multiple and overlapping classification for the classes X and Y.

OOP:Inheritance and Polymorphism, Part 2 11

Java's interface Concept
• An interface is a collection of method declarations.

n An interface is a class-like concept.
n An interface has no variable declarations or method bodies.

• Describes a set of methods that a class can be forced to
implement.

• An interface can be used to define a set of "constants".

• An interface can be used as a type concept.
n Variable and parameter can be of interface types.

• Interfaces can be used to implement multiple inheritance like
hierarchies.

OOP:Inheritance and Polymorphism, Part 2 12

Java's interface Concept, cont.
interface InterfaceName {

// "constant" declarations
// method declarations

}

class ClassName implements InterfaceName {
...

}
class ClassName extends SuperClass implements InterfaceName
{

...
}

class ClassName extends SuperClass
implements InterfaceName1, InterfaceName2 {

...
}

interface InterfaceName extends InterfaceName {
// ...

}

OOP:Inheritance and Polymorphism, Part 2 13

Semantic Rules for Interfaces
• Type

n An interface can be used as a type, like classes
n A variable or parameter declared of an interface type is polymorph

u Any object of a class that implements the interface can be referred by the variable

• Instantiaztion
n Does not make sense on an interface.

• Access modifiers
n An interface can be public or "friendly" (the default).
n All methods in an interface are default abstract and public.

u Static, final, private, and protected cannot be used.
n All variables ("constants") are public static final by default

u Private, protected cannot be used.

OOP:Inheritance and Polymorphism, Part 2 14

The Iterator Interface
• The Iterator interface in java.util is a basic iterator

that works on collections.

package java.util;
public interface Iterator {
 boolean hasNext();
 Object next();

void remove(); // optional

}

OOP:Inheritance and Polymorphism, Part 2 15

The Iterator Interface, cont

• Note the cast (Shape) since Collection and Iterator manage
anonymous objects.

• When collection has a natural ordering, Iterator will respect it.

Iterator iter = myShapes.iterator();
while (iter.hasNext()) {
 Shape s = (Shape)iter.next();
 s.draw();
}

OOP:Inheritance and Polymorphism, Part 2 16

The Cloneable Interface
• A class X that implements the Cloneable interface tells

clients that X objects can be cloned.
• The interface is empty.

• Returns an identical copy of an object.
n A shallow copy, by default.
n A deep copy is often preferable.

• Prevention of cloning
n Necessary if unique attribute, e.g., database lock or open file reference.
n Not sufficient to omit to implement Cloneable.

u Sub classes might implement it.
n clone should throw an exception:

u CloneNotSupportedException

OOP:Inheritance and Polymorphism, Part 2 17

The Cloneable Interface, Example

package geometric; // [Source: java.sun.com]

/** A clonable Point */
public class Point extends java.awt.Point implements Cloneable
{

public Object clone(){
try {

return (super.clone()); // protected in Object
}
// must catch exception will be covered later
catch (CloneNotSupportedException e){

return null;
}

 public Point(int x, int y){
 super(x,y);
 }
}

OOP:Inheritance and Polymorphism, Part 2 18

The Serializable Interface
• A class X that implements the Serializable interface tells

clients that X objects can be stored on file or other persistent
media.

• The interface is empty.

OOP:Inheritance and Polymorphism, Part 2 19

Interface vs. Abstract Class
Interface
• Methods can be declared.

• No method bodies

• Constants can be declared

• Has no constructor

• Multiple inheritance possible.

• Has no top interface.

• Multiple "parent" interfaces.

Abstract Class
• Methods can be declared

• Method bodies can be defined

• All types of variables can be
declared

• Can have a constructor

• Multiple inheritance not
possible.

• Always inherits from
Object.

• Only one "parent" class

OOP:Inheritance and Polymorphism, Part 2 20

Interfaces and Classes Combined
• By using interfaces objects do not reveal which classes the

belong to.
n With an interface it is possible to send a message to an object without

knowing which class(es) it belongs. The client only know that certain
methods are accessible

n By implementing multiple interfaces it is possible for an object to
change role during its life span.

• Design guidelines
n Use classes for specialization and generalization
n Use interfaces to add properties to classes.

OOP:Inheritance and Polymorphism, Part 2 21

Multiple Inheritance vs. Interface
Multiple Inheritance
• Declaration and definition is

inherited.
• Little coding to implement

subclass.
• Hard conflict can exist.

• Very hard to understand
(C++ close to impossible).

• Flexible

Interface
• Only declaration is inherited.

• Must coding to implement an
 interface.

• No hard conflicts.

• Fairly easy to understand.

• Very flexible. Interface totally
separated from
implementation.

OOP:Inheritance and Polymorphism, Part 2 22

Inner Classes
• Fundamental language feature, added in Java 1.1.

• Used a lot in JFC/Swing (GUI programming).

• Nest a class within a class.

• Class name is hidden.

• More than hiding and organization
n Call-back mechanism.
n Can access members of enclosing object.

OOP:Inheritance and Polymorphism, Part 2 23

Inner Classes, Example
public class Parcel1 { // [Source: bruceeckel.com]
 class Contents {
 private int i = 11;
 public int value() { return i; }
 }
 class Destination {
 private String label;
 Destination(String whereTo) {
 label = whereTo;
 }
 String readLabel() { return label; }
 }
 public void ship(String dest) {
 Contents c = new Contents();
 Destination d = new Destination(dest);
 System.out.println(d.readLabel());
 }
 public static void main(String[] args) {
 Parcel1 p = new Parcel1();
 p.ship("Tanzania");
 }
}

OOP:Inheritance and Polymorphism, Part 2 24

Interfaces and Inner Classes
• An outer class will often have a method that returns a reference

to an inner class.

// [Source: bruceeckel.com]

public interface Contents {
int value();

}

public interface Destination {
String readLabel();

}

OOP:Inheritance and Polymorphism, Part 2 25

Interfaces and Inner Classes, cont

public class Parcel3 { // [Source: bruceeckel.com]
 private class PContents implements Contents {
 private int i = 11;
 public int value() { return i; }
 }
 protected class PDestination implements Destination {
 private String label;
 private PDestination(String whereTo) {
 label = whereTo;
 }
 public String readLabel() { return label; }
 }
 public Destination dest(String s) {
 return new PDestination(s);
 }
 public Contents cont() {
 return new PContents();
 }
}

OOP:Inheritance and Polymorphism, Part 2 26

Interfaces and Inner Classes, cont

class Test { // [Source: bruceeckel.com]
 public static void main(String[] args) {
 Parcel3 p = new Parcel3();
 Contents c = p.cont();
 Destination d = p.dest("Tanzania");
 // Illegal -- can't access private class:
 //! Parcel3.PContents pc = p.new PContents();
 }
}

OOP:Inheritance and Polymorphism, Part 2 27

Anonymous Inner Classes, Example

// [Source: bruceeckel.com]

public class Parcel6 {
 public Contents cont() {
 return new Contents() {
 private int i = 11;
 public int value() { return i; }
 };
 }
 public static void main(String[] args) {
 Parcel6 p = new Parcel6();
 Contents c = p.cont();
 }
}

• When a class in only needed in one place.

• Convenient shorthand.

• Works for both interfaces and classes.

OOP:Inheritance and Polymorphism, Part 2 28

Why Inner Classes?
• Each inner class can independently inherit from other classes,

i.e., the inner class is not limited by whether the outer class is
already inheriting from a class.

• With concrete or abstract classes, inner classes are the only way
to produce the effect of "multiple implementation inheritance"

OOP:Inheritance and Polymorphism, Part 2 29

Summary
• Abstract classes

n Complete abstract class no methods are abstract but instatiation does
not make sense.

n Incomplete abstract class, some method are abstract.

• Java only supports single inheritance.

• Java "fakes" multiple inheritance via interfaces.
n Very flexible because the object interface is totally separated from the

objects implementation.

• Classes can be nested in Java
n Name inner classes
n Anonymous inner classes

