|nheritance and Polymorphism, Part 2

* Abstract Classes and Methods
* Multiple Inheritance

* |nterfaces

* |Inner Classes

OOP:Inheritance and Polymorphism, Part 2

Abstract Class and Method

* An abstract classis aclass with an abstract method.

* An abstract method is method with out a body, i.e., only
declared but not defined.

* |t isnot possible to make instances of abstract classes.
* Abstract method are defined in subclasses of the abstract class.

OOP:Inheritance and Polymorphism, Part 2

Abstract Class and Method, Example

Cl

C2

C3

a N
d1 A
B

|

_ ,

N
d3 A

d4

_ J

4 l ™
B
d5 [|)
E

_ .

OOP:Inheritance and Polymorphism, Part 2

Abstract class C1 with
abstract methods A and B

Abstract class C2. Defines
method A but not method B.
Adds data dements d3 and d4

Concrete class C3. Defines
method B. Adds the methods D
and E and the data e ement db.

Abstract Classes in Java

abstract class C assNane {
/| <class body>;
}

* Classes with abstract methods must declared abstract

* Classes without abstract methods can be declared abstract
* A subclass to a concrete superclass can be abstract

* Constructors can be defined on abstract classes.

* |nstances of abstract classes cannot be made.

OOP:Inheritance and Polymorphism, Part 2

Abstract Class in Java, Example

/| [Source:
abstract cl

abst r act
abstract
abstract
abstract
abstract
abst ract

Kurt Ner mar k]
ass St ack{

public
publ i c
public
public
public
public

voi d push(Qbject el);
voi d pop();

Cbj ect top();

bool ean full ();

bool ean enpty();

I nt size();

public void toggl eTop(){
1 f (size() >= 2){
Cbject topElI1l = top(); pop();
Cbject topEl 2 = top(); pop();
push(topEl 1); push(topEl 2);

}
}

public String toString()({
return "Stack";

}
}

OOP:Inheritance and Polymorphism, Part 2

Abstract Methods in Java

abstract [access nodifier] return type
met hodNanme([par anet ers]);

* A method body does not have be defined.
* Abstract method are overwritten in subclasses.
* |deataken directly from C++

* You are saying: The object should have this properties | just do

not know how to implement the property at thislevel of
abstraction.

OOP:Inheritance and Polymorphism, Part 2

Abstract Methods in Java, Example

public abstract class Nunber {
public abstract int intValue();
publ i c abstract |ong | ongVal ue();
publ i c abstract doubl e doubl eVal ue();
public abstract float fl oatVal ue();
public byte byteVal ue(){

/] met hod body

}

public short shortVal ue() {
/1 met hod body
}

}

OOP:Inheritance and Polymorphism, Part 2

Multiple Inheritance, Example

* For the teaching assistant when
Person

name() want the properties from both
cpr () Employee and Student.

v v
Employee Student

sal ary()| gpa()
degree()| courses()
|

|
v
Teaching A.

OOP:Inheritance and Polymorphism, Part 2

Problems with Multiple Inheritance

Person
nanme()

CIOIF()|

Employee Student

depart nent| | depart nent
I——l
A 4
TeachingA.

ta = new Teachi ngAssi stant ();
t a. depart nent;

OOP:Inheritance and Polymorphism, Part 2

* Name clash problem: Which

depart nent doest a refers
to?

Combination problem: Can
depart nent from Employee
and Student be combined in
Teaching Assistant?

Selection problem: Can you

select between depar t nent

from Employee and
depart nent from Student?

Replication problem: Should

there betwo depart nent s
In Student?

Multiple Classifications

Object
v P — v v
Runable Comparable Storable Clonable

X

* Multiple and overlapping classification for the classes X and Y.

OOP:Inheritance and Polymorphism, Part 2

X

10

Javasi nt er f ace Concept

* Aninterfaceis acollection of method declarations.

= Aninterfaceis aclass-like concept.
= An interface has no variable declarations or method bodies.

* Describes a set of methods that a class can be forced to
Implement.

* An interface can be used to define a set of "constants'.
* An interface can be used as a type concept.
= Variable and parameter can be of interface types.

* |nterfaces can be used to implement multiple inheritance like
hierarchies.

OOP:Inheritance and Polymorphism, Part 2

11

Javasi nt er f ace Concept, cont.

I nterface InterfaceNanme {
[l "constant" decl arati ons
/1 nethod decl arati ons

}

class ClassNane i nplenments I nterfaceNane ({

}
class Cl assNane extends SuperC ass inplenents InterfaceNane

{
}

cl ass Cl assNane extends Superd ass
| npl enents InterfaceNanel, InterfaceName2 ({

}

I nterface InterfaceNane extends InterfaceName {
[/
}

OOP:Inheritance and Polymorphism, Part 2 12

Semantic Rules for Interfaces

* Type
= Aninterface can be used as atype, like classes

= A variable or parameter declared of an interface type is polymorph
+ Any object of aclassthat implements the interface can be referred by the variable

* |nstantiaztion
= Does not make sense on an interface.

* Access modifiers

= An interface can be public or "friendly" (the default).

= All methodsin an interface are default abstract and public.
+ Static, fina, private, and protected cannot be used.

= All variables ("constants') are public static final by default
+ Private, protected cannot be used.

OOP:Inheritance and Polymorphism, Part 2 13

Thel t er at or Interface

* Thelterator intefaceinj ava. uti | isabasc iterator
that works on collections.

package java.util;

public interface Iterator {
bool ean hasNext () ;
(bj ect next();
void renmove(); // optional

OOP:Inheritance and Polymorphism, Part 2

14

Thel t er at or Interface, cont

|terator iter = nyShapes.iterator();
while (iter.hasNext()) {
Shape s = (Shape)iter.next();
s.draw();
}

* Notethe cast (Shape) since Collection and Iterator manage
anonymous obj ects.

* When collection has a natural ordering, Iterator will respect it.

OOP:Inheritance and Polymorphism, Part 2

15

The C oneabl e Interface

* A class X that implementsthe Cl oneabl e interface tells
clients that X objects can be cloned.

* Theinterface is empty.

* Returns an identical copy of an object.

= A shallow copy, by default.
= A deep copy is often preferable.

* Prevention of cloning

= Necessary if unique attribute, e.g., database lock or open file reference.

= Not sufficient to omit to implement Cl oneabl e.
+ Sub classes might implement it.

= cl one should throw an exception:
+ Cl oneNot Support edExcepti on

OOP:Inheritance and Polymorphism, Part 2

16

The d oneabl e Interface, Example

package geonetric; // [Source: java.sun.coni

/[** A clonable Point */
public class Point extends java.awt.Point inplenents Cl oneable

{
public Cbject clone()({

try {
return (super.clone()); // protected in Cbject
}
/]l must catch exception wll|l be covered | ater
catch (C oneNot SupportedException e){
return nul | ;
}
public Point(int x, int y){
super (X, Y);

}
}

OOP:Inheritance and Polymorphism, Part 2 17

TheSer1 al 1 zabl e Interface

* A class X that implementsthe Ser | al | zabl e interfacetells

clientsthat X objects can be stored on file or other persistent
media.

* Theinterface is empty.

OOP:Inheritance and Polymorphism, Part 2

18

|nterface vs. Abstract Class

| nterface
* Methods can be declared.

* No method bodies
* Constants can be declared

* Has no constructor
* Multiple inheritance possible.

* Has no top interface.

°* Multiple "parent” interfaces.

OOP:Inheritance and Polymorphism, Part 2

Abstract Class

M ethods can be declared
M ethod bodies can be defined

All types of variables can be
declared

Can have a constructor

Multiple inheritance not
possible.

Always inherits from
(bj ect .

Only one "parent” class

19

| nterfaces and Classes Combined

* By using interfaces objects do not reveal which classes the
belong to.

= With an interface it is possible to send a message to an object without

knowing which class(es) it belongs. The client only know that certain
methods are accessible

= By implementing multiple interfaces it is possible for an object to
change role during its life span.

* Design guidelines
= Use classesfor specialization and generalization
= Useinterfaces to add properties to classes.

OOP:Inheritance and Polymorphism, Part 2 20

Multiple Inheritance vs. Interface

Multiple Inheritance

* Declaration and definition is
Inherited.

* Little coding to implement
subclass.

* Hard conflict can exist.

°* Vey hard to understand
(C++ close to impossible).

* Hexible

OOP:Inheritance and Polymorphism, Part 2

| nterface

Only declaration is inherited.

Must coding to implement an
Interface.

No hard conflicts.
Fairly easy to understand.

Very flexible. Interface totally

separated from
Implementation.

21

lnner Classes

* Fundamental language feature, added in Java 1.1.

* Used alot in JFC/Swing (GUI programming).
* Nest aclass within aclass.
* Class nameis hidden.

* More than hiding and organization

= Call-back mechanism.
= Can access members of enclosing object.

OOP:Inheritance and Polymorphism, Part 2

22

Inner Classes, Example

public class Parcell { // [Source: bruceeckel.coni
cl ass Contents {
private int I = 11;
public int value() { returni; }
}
cl ass Destination {
private String | abel;
Destination(String whereTo) {
| abel = whereTo;
}

String readLabel () { return |abel; }

}

public void ship(String dest) {
Contents ¢ = new Contents();
Destination d = new Destination(dest);
System out. println(d. readLabel ());

}

public static void main(String[] args) {
Parcel 1 p = new Parcel 1();
p.shi p("Tanzani a");

}
}

OOP:Inheritance and Polymorphism, Part 2

23

|nterfaces and | nner Classes

* An outer class will often have a method that returns a reference
to an Inner class.

/| [Source: bruceeckel.coni

public interface Contents {
I nt val ue();
}

public interface Destination {
String readLabel ();
}

OOP:Inheritance and Polymorphism, Part 2

24

| nterfaces and Inner Classes, cont

public class Parcel 3 { // [Source: bruceeckel.conm
private class PContents i nplenents Contents {
private int I = 11;
public int value() { returni; }
}
protected class PDestination inplenents Destination {
private String | abel;
private PDestination(String whereTo) {
| abel = whereTo;
}

public String readLabel () { return | abel; }
}
public Destination dest(String s) {
return new PDestination(s);
}
public Contents cont() {
return new PContents();

}
}

OOP:Inheritance and Polymorphism, Part 2

25

| nterfaces and Inner Classes, cont

class Test { // [Source: bruceeckel.coni
public static void main(String[] args) {
Parcel 3 p = new Parcel 3();
Contents ¢ = p.cont();
Destination d = p.dest("Tanzani a");
/[l 1llegal -- can't access private cl ass:
/' Parcel 3. PContents pc = p.new PContents();

OOP:Inheritance and Polymorphism, Part 2

26

Anonymous Inner Classes, Example

* When aclassin only needed in one place.
* Convenient shorthand.
* Works for both interfaces and classes.

[/ [Source: bruceeckel.conm

public class Parcel 6 {
public Contents cont() {
return new Contents() {
private int i = 11;
public int value() { return i; }

b
}

public static void main(String[] args) {
Parcel 6 p = new Parcel 6();
Contents ¢ = p.cont();

}
}

OOP:Inheritance and Polymorphism, Part 2 27

Why Inner Classes?

* Each inner class can independently inherit from other classes,
I.e., theinner classis not limited by whether the outer classis
already inheriting from aclass.

* With concrete or abstract classes, inner classes are the only way
to produce the effect of "multiple implementation inheritance”

OOP:Inheritance and Polymorphism, Part 2

28

Summary

* Abstract classes

= Complete abstract class no methods are abstract but instatiation does
not make sense.

= |ncomplete abstract class, some method are abstract.
* Javaonly supports single inheritance.

* Java'fakes' multiple inheritance viainterfaces.

= Very flexible because the object interface is totally separated from the
obj ects implementation.

* (Classes can be nested in Java

= Nameinner classes
= Anonymous inner classes

OOP:Inheritance and Polymorphism, Part 2

29

