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Abstract—Home Automation systems provide a large number
of devices to control diverse appliances. Taking advantage of this
diversity to create efficient and intelligent environments requires
well designed, validated, and implemented controllers. However,
designing and deploying such controllers is a complex and error
prone process. This paper presents a toolchain that transforms
a design in the form of communicating state machines to an
executable controller that interfaces to appliances through a
service oriented middleware. Design and validation is supported
by integrated model checking and simulation facilities. This is
extendable to controller synthesis. This toolchain is implemented,
and we provide different examples to show its usability.
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I. INTRODUCTION

A diversity of services can be provided by home au-
tomation systems. They can control heating systems, gather
temperature or humidity data, manage lighting, or manipulate
household appliances. The goal of home automation is to
coordinate and control these different services in order to
create an intelligent environment. The control of the environ-
ment is generally accomplished through open loop systems
that specify setpoints on devices such as thermostats or light
dimmers. The environment thus consist of a set of discrete
states representing the different possible configurations of the
setpoints. The transitions between the states are triggered
either by events coming from the change of a monitored
variables or by time. The control of the environment and the
configuration of devices can therefore be easily modelled by
timed automaton [1].

Based on these observations, we propose a toolchain for
designing, validating, implementing and executing controllers
for such environments. The controllers are modelled as timed
automaton that are used for the execution without any inter-
mediate compilation. The toolchain uses two existing com-
ponents. Firstly, the HomePort middleware [2], is used to
gather information about available services in an Ambient
Intelligence (AmI) environment, and to send and receive data
from these services. Secondly, the UPPAAL [3] toolbox is
used to model and verify controllers, and as an execution
engine. To link these two components, two modules have been
developed. HomePort2Uppaal gathers necessary information
from HomePort about available devices and services, and
makes it available in UPPAAL for developing controllers. The
UppaalInterpreter enables execution of the control system.

The paper is structured as follows. The components of the
toolchain are presented in Section II. Section III describes the
process of developing, verifying and executing controllers with
the toolchain. In order to demonstrate the applicability of the
proposed solution, experiments are presented in Section IV.
We continue with a discussion of related work in Section V.
Section VI presents future work and Section VII discusses an
alternative approach, and comments on a semantic issue with
reachability properties. Finally, Section VIII concludes on the
paper.

II. TOOLCHAIN OVERVIEW

This section provides an overview of the toolchain, starting
with a description of the two existing components, HomePort
and UPPAAL. This is followed by a description of the two novel
components, HomePort2Uppaal and the UppaalInterpreter. Fi-
nally comes a summary of the development and use process.

A. HomePort

HomePort is a middleware implementing a common inter-
face to heterogeneous home automation networks. It facilitates
the tasks of the control system by enabling it to access and
modify the services of the environment in a unified manner,
regardless of the protocol or technology that a specific device
is using. Moreover, its REpresentational State Transfer (REST)
architecture is easy to interface with. It also provides an event
mechanism allowing the control system to receive notifications
when the state of a service changes.

HomePort plays two roles in the toolchain: to provide a
list of available services and to provide read and write access
to these services.

B. Uppaal

UPPAAL is a toolbox for modelling, simulation and ver-
ification of real-time systems. It is composed of three main
parts: a description language, a simulator, and a model checker.
The description language models system behavior as commu-
nicating state machines with timers. The simulator enables
exploration of possible executions of a model. The model
checker can check safety, liveness and reachability properties
on a model.

Processes communicate through channels and shared vari-
ables. A channel synchronizes a sender and a receiver process.
A transition involving synchronization on a channel can only



be taken when both the sender and receiver are able to
perform the synchronization. Broadcast channels can also be
used to synchronize a sender with multiple receivers. Note
that in a broadcast a sender is always able to synchronize
on the channel, even if no other process is ready to receive
it. To exchange values between processes, synchronous value
passing [4] is used. Synchronous value passing is a modelling
technique where a sender and a receiver synchronize on a
channel and exchange a value by using a shared variable.

Transitions can be guarded by boolean expressions over
clocks and discrete variables. A transition with a guard can
only be taken when the guard evaluates to true. Transitions can
also update the values of variables through update statements
and reset clocks. Finally, select statements can be used to non-
deterministically assign to a temporary variable a value within
a bounded range. The value of the temporary variable can then
be assigned to a variable. Note that a select statement actually
creates as many transitions as there are values in its range,
each transition associating a different value to the temporary
variable.

In the toolchain, UPPAAL is first used to model the con-
troller using the description language through a graphical user
interface. The model checker is then used to verify properties
of the designed model. Finally, the experimental concrete
simulator is used to assist in executing the control system.
The concrete simulator, as opposed to the symbolic simulator,
uses concrete time values rather than intervals.

C. HomePort2Uppaal

The purpose of HomePort2Uppaal is to translate a list
of HomePort services to a UPPAAL template that enables
controller models to access the services. It starts by creating an
empty UPPAAL template, named HomePort. An initial location
is added, which will be the only location of this template. Once
the basis of the template is created, HomePort2Uppaal estab-
lishes communication with a HomePort server and retrieves
its service list. Figure 1 shows a simplified example of such
a list. For each service in the list, get, set, and ev channels
are declared, and the location is populated with corresponding
transitions. A get channel can be used by a controller model to
obtain the value of a service, a set channel to update the value
of a service, and an ev channel to receive a notification when
an event occurs on a service. All channels are declared urgent,
which means that time cannot pass when a transition involving
synchronization on them is active. Moreover, ev channels
are declared as broadcast channels as several processes may
be interested in receiving an event. Having urgent broadcast
channels without guards would prevent time from passing,
since broadcast channels are always active. Thus we use the
guard evLock == 1 on the event transitions to deactivate them.
An “unlock” transition setting the evLock variable to 1 is
added. This transitions is taken when an event is received from
HomePort to enable the event transitions. All event transitions
reset the evLock variable to 0.

To exchange data between this template and others, one-
way unconditional synchronous value passing is used. As get
and ev channels pass data to other processes, they are declared
as sending channels (denoted by ’!’). The set channels are
declared as receiving channels (denoted by ’?’), as they receive
data from other processes.

<?xml v e r s i o n =”1.0” e n c o d i n g=” u t f −8”?>
<d e v i c e l i s t name=” s e r v i c e s . xml ” i d =” 12345 ”>

<d e v i c e desc =” T h e r m o s t a t ” i d =” 1 ” l o c a t i o n =” LivingRoom ”
t y p e =” T h e r m o s t a t ”>

<s e r v i c e desc =” Tempera tu r e ” i d =” 0 ”
v a l u e u r l =” / T h e r m o s t a t / 1 / Tempera tu r e / 0 ”
t y p e =” Tempera tu r e ” u n i t =” C e l s i u s ”>

<p a r a m e t e r i d =” 0 ” max=” 50 ” min=” 0 ” />
</ s e r v i c e>

</ d e v i c e>
<d e v i c e desc =”Window” i d =” 1 ” l o c a t i o n =” LivingRoom ”

t y p e =”Window”>
<s e r v i c e desc =” Sen so r ” i d =” 0 ”

v a l u e u r l =” / Window / 1 / S en so r / 0 ” t y p e =” Se nso r ”
u n i t =”Open / Close ”>

<p a r a m e t e r i d =” 0 ” max=” 1 ” min=” 0 ” />
</ s e r v i c e>

</ d e v i c e>
</ d e v i c e l i s t>

Fig. 1. HomePort Simplified Service List

_var_Thermostat_1_Temperature_0_0 : int[0,50]

var_Window_1_Sensor_0_0 = _var_Window_1_Sensor_0_0, evLock = 0

_var_Thermostat_1_Temperature_0_0 : int[0,50]

_var_Window_1_Sensor_0_0 : int[0,1]

_var_Window_1_Sensor_0_0 : int[0,1]

evLock = 1

var_Window_1_Sensor_0_0 = _var_Window_1_Sensor_0_0

var_Thermostat_1_Temperature_0_0 = _var_Thermostat_1_Temperature_0_0

var_Thermostat_1_Temperature_0_0 = _var_Thermostat_1_Temperature_0_0, evLock = 0

set_Window_1_Sensor_0?

get_Window_1_Sensor_0!

ev_Window_1_Sensor_0!

1

evLock== 1

evLock== 1

ev_Thermostat_1_Temperature_0!

get_Thermostat_1_Temperature_0!

set_Thermostat_1_Temperature_0?

Fig. 2. UPPAAL Template

i n t [ 0 , 1 ] evLock ;
u r g e n t chan g e t T h e r m o s t a t 1 T e m p e r a t u r e 0 ;
u r g e n t chan s e t T h e r m o s t a t 1 T e m p e r a t u r e 0 ;
u r g e n t b r o a d c a s t chan e v T h e r m o s t a t 1 T e m p e r a t u r e 0 ;
i n t [ 0 , 5 0 ] v a r T h e r m o s t a t 1 T e m p e r a t u r e 0 0 ;
u r g e n t chan get Window 1 Sensor 0 ;
u r g e n t chan set Window 1 Sensor 0 ;
u r g e n t b r o a d c a s t chan ev Window 1 Sensor 0 ;
i n t [ 0 , 1 ] var Window 1 Sensor 0 0 ;

Fig. 3. Global Variables Declaration

The channel names are built by prefixing the name of a
service with either get , set or ev . This enables a reverse
translation during the execution phase, in order to retrieve the
name of the service a channel is associated with. A global
variable is also associated with each service. Its name consists
of the name of the service prefixed with var , and followed
by the identifier of the parameter to which this variable is
associated. This variable can be used by any template to access
the state of the service. Minimum and maximum values of
the parameter are used to set bounds on the global variable.
A select statement is used to update the value of a service
for get and ev transitions. Thus, during verification, checks a
controller for all possible values that a service can deliver. It is
also used during the execution to update the value of a service
to its actual value in the environment. The template can then
be used to model a control system that can access and modify



the state of the services.

Figures 1, 2, and 3 show the results of transforming a
HomePort service list to a UPPAAL template. The list of
services in Figure 1 contains two devices: a thermostat with a
temperature service, and a window with a sensor reporting its
state. Given this list, HomePort2Uppaal creates the UPPAAL
template shown in Figure 2, and declares the variables shown
in Figure 3.

D. UppaalInterpreter

The UppaalInterpreter runs an execution of the control
system. The model is first given to a UPPAAL simulator.
The UppaalInterpreter then executes it by telling the simulator
which transitions to take, by running the algorithm shown in
the following pseudo code:

loop
repeat

Update available transitions.
if there is an internal transition then

Choose nondeterministically an internal transition
and take it.

else if an event was received then
Take the “unlock” transition.
Update available transition.
Take the corresponding event transition.

else if there is a Get or Set transition then
Perform the request on the HomePort server.
Take the corresponding transition.

end if
until there are no available transitions
Wait until next transition can be taken or an event is
received.

end loop

The first step of the algorithm is to retrieve all active tran-
sitions from the simulator. It then takes a first active internal
transition that can be taken at the current time. An internal
transition is a transition that does not involve synchronization
with the HomePort process. After taking any transition, the
algorithm is restarted, as the set of available transitions is no
longer valid. Once all internal transitions that do not involve
time passing have been taken, it checks if an event was
received from the HomePort server. In this case, the “unlock”
transition is taken to activate event transitions. The transition
corresponding to the received event and value is chosen among
the possible ones created by the select statement used in event
transitions. When all events are processed, it takes the first
transition involving synchronization with a get or set channel.
When taking such a transition, the corresponding request is
performed on the HomePort server. For get synchronizations,
the transition is chosen based on the value returned by the
HomePort server, similar to event synchronizations. Once
again, after taking a transition, the algorithm is restarted. Once
there are no more transitions that can be taken at the current
time, it waits for the minimum time until a transition can be
taken again, or until an event is received.

Note that available transitions denotes transitions that can
be taken at the current time in the environment. The Uppaal-
Interpreter is responsible for synchronizing the UPPAAL time
with external time. Therefore, the UppaalInterpreter only takes

var_Thermostat_1_Temperature_0_0 = 15
Open

Closed

start

set_Thermostat_1_Temperature_0!

get_Window_1_Sensor_0?

var_Window_1_Sensor_0_0 == 0

ev_Window_1_Sensor_0?

set_Thermostat_1_Temperature_0!

ev_Window_1_Sensor_0?

var_Thermostat_1_Temperature_0_0 = 22

var_Window_1_Sensor_0_0 == 1

Fig. 4. Temperature Controller

transitions that have a target state in which the time is equal to
the external time. The UPPAAL time is updated by specifying
a delay when taking a transition, which corresponds to the
time since the last transition was taken. The UppaalInterpreter
currently uses seconds as a unit, but this could easily be
modified to adapt to different time scales.

An execution trace can also be generated and viewed in
UPPAAL. Analyzing the trace can be useful for debugging
and finding flaws in the controller or in the devices. Figure
4 shows a simple controller for adapting the temperature of a
room depending on the state of a window. Figure 5 shows an
execution trace of this controller from the UppaalInterpreter
interacting with a running HomePort server. The trace is
represented as a message sequence chart. Notice that some
events are not received by any process, because the event
channels are defined as broadcast channels, and can always be
taken, even when no process wants to synchronize on them.

E. Development and Use

Figure 6 shows the different components of the toolchain
and the different steps to go through from the development
to the execution of a control system. The first step is to
retrieve the set of services that are available in the environment,
corresponding to the arrow labeled 1 in the figure. This is
done by the HomePort2Uppaal module making a request to
the HomePort web server, which returns an XML file with a
description of all the services and information on how to access
and use them. HomePort2Uppaal then transforms this list of
services into a UPPAAL template providing communication
channels and variables for other templates to be able to
access and modify the service states. This template can then
be opened in UPPAAL, represented by the arrow labeled 2.
The actual control system can then be modelled as one or
more UPPAAL state machines. The verification and simulation
features of UPPAAL serve to check properties of the controller.
Once the model of the controller has been constructed and
verified, it is exported as a standard UPPAAL XML file.

The process can now move to the use phase, represented
in the figure by the arrows labeled 4. The generated XML
file is given to the UppaalInterpreter, which will execute the
modelled controller, using a UPPAAL simulator. The execution
is done by choosing appropriate transitions in the model, and
by communicating with the HomePort server to get, set or
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Fig. 5. Trace of an Execution of the Temperature Controller

receive events on the services. It also synchronizes the UPPAAL
time with real world time in order to have a faithful real-time
execution.

III. DESIGN, VERIFICATION, IMPLEMENTATION AND
EXECUTION

Setting up an AmI environment can be viewed as a control
problem. Given a set of controllable devices, the problem is to
find a controller able to configure the environment in order to
satisfy parameters that can for example relate to user comfort
or reduction of power consumption. The four steps in this
process are presented in this section, using the simple control
system example introduced in Section II-D.

A. Design

Dorf and Bishop [5] define the design of a control system
as a process composed of seven building blocks, divided into
three groups:

• “establishment of the goals and variables, and def-
inition of specifications (metrics) against which to
measure the performance”,

• “system definition and modeling”, and

• “control system design and integrated system simula-
tion and analysis”.

The first step is thus to establish the goals of the control
system. For our example, the goal is to control the temperature

Use
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Uppaal 
Simulator

Design &  
Verification

Uppaal 
HomePort2Uppaal

HomePortUppaalInterpreter

Controlled
Environment
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2

3
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4

4

Fig. 6. Development and Use

of the room depending on the state of the window. We then
identify the variables to be controlled, here the temperature
of the room. Finally comes the specification, namely regulate
the room temperature depending on the state of the window. It
should not go more than two Celsius degrees under the lowest
desired temperature and two degrees above the highest one.

System definition and modelling includes a system config-
uration that can satisfy the specification. Here we use an open-
loop system that uses a thermostat to regulate the temperature,
and a window sensor to monitor the state of the window.

The different components of the control system are then
modelled. Figure 7 shows models of the thermostat, the win-
dow sensor, and the behavior of the variable to be controlled;
the temperature. The thermostat simply turns on the heater
when the room temperature is less than the setpoint, and turns
it off when greater or equal. The window sensor reports the
state of the window, and synchronizes with the user model.
The temperature is computed depending on the thermostat and
window states. We adapt an extremely simple model for the
temperature: when the thermostat is on and the window closed,
it increases by two degrees per time unit. When the thermostat
is off, it decreases by one degree per time unit with a closed
window, and by two degrees if the window is open. Finally,
the temperature remains unchanged when the thermostat is on
and the window open. We also set lower and upper bounds
for the temperature: 10◦C and 30◦C. This temperature model
is of course a simplification of a real life scenario, but serves
its purpose in this illustrative example.

The next component of the system is a user who interacts
with the window, shown in Figure 8. She opens the window
between 10 and 15, and closes it between 20 and 24. The user



computeTemperature(), s=0

s = 0 s<=1 temperature == 30
s = 0

temperature > 10 && temperature < 30 && s == 1

temperature == 10

ther_state = 1, s = 0

s <= 1

var_Thermostat_1_Temperature_0_0 <= temperature && s == 1
ther_state=0, s=0

var_Thermostat_1_Temperature_0_0 > temperature && s == 1

OpenClosed

ev_Window_1_Sensor_0!

ev_Window_1_Sensor_0!window_channel?

window_channel?

var_Window_1_Sensor_0_0=1

var_Window_1_Sensor_0_0=0

Fig. 7. Temperature and Devices Models

OpenedWindowClosedWindow

t<24t<15

window_channel!

t>20

window_channel!

window_state=1
t>10

t=0, window_state=0

Fig. 8. Model of the user

model synchronizes with the window sensor in order to update
the sensor’s value.

Finally, the controller is shown in Figure 4. It works as a
simple open loop controller setting the desired temperature of
the thermostat depending on the state of the window.

Thanks to the UPPAAL Statistical Model Checking (SMC)
simulator, we are able to run the simulation of the control
system shown in Figure 9. From this simulation we can see that
the controller succeeds to fulfill the design goals, and satisfies
the specifications. However, simulation is not enough to ensure
that the desired properties are satisfied by the control system.
In order to ensure it, we use verification.

B. Verification

Baier and Katoen [6] say that “system verification is used
to establish that the design or product under consideration
possesses certain properties”. Good controllers must possess
certain properties, among which stability is one of the most
important.

0 5 10 15 20 25

0

5

10

15

20

25

Temperature Thermostat state
Desired temperature Window state

Fig. 9. Simulation of the control system

A stable system is defined by Dorf and Bishop as “a
dynamic system with bounded response to a bounded input”.
Different approaches can be taken to verify this property. In
our example, the controller inputs the desired temperature to
the thermostats, which has to react with a bounded output.
We can thus verify that the controlled temperature stays
inside a bounded interval. As we specified in the design, the
temperature should not go more than two degrees above the
maximum desired temperature and more than two degrees be-
low the minimum temperature. We query the UPPAAL verifier
to check that this is satisfied. It is the safety property: A[]
( temperature <= 24 and temperature >= 13). A positive answer
from the model checker ensure that given this modelled
system, the temperature of the room will satisfy the property.

Other properties can also be checked, such as absence
of undesirable deadlock states, or reachability of desirable
locations.

C. Implementation and Execution

After designing and verifying the control system, imple-
mentation and execution remain. Depending on the choice of
technology for the sensors and actuators devices, it can be nec-
essary to write HomePort adapters to communicate with them.
The devices then need to be deployed in the environment, and
the HomePort server to be started. When the communication
through HomePort is established, HomePort2Uppaal can be
used to gather the channel and variable names that need to be
put in place of the names used during the design phase. Our
example uses the actual names for the design of the controller,
thus this is unnecessary. The next step is to get access to a
UPPAAL simulator. This can be done either on a local computer
inside the environment, or using an external server. Finally, the
last step is to run the UppaalInterpreter in order to execute the
controller.

IV. EXPERIMENTS

In order to complete the demonstration of the toolchain,
we use the HomePort demonstrator. It consists of a home



automation system built into a suitcase, accessible through
a HomePort server. The system has three subnetworks, and
contains a window sensor, a thermostat, two light switches,
a light dimmer, a temperature and humidity sensor, and an
access control panel (for more technical details please refer
to [2]). Previously, three scenarios were implemented in Java.
The purpose of the experiments was to reproduce the scenarios
with the presented toolchain. Three scenarios were previously
implemented, and we present the design and verification of
controllers for two of the scenarios, the third being the temper-
ature controller presented in Section III. Note that the variable
names of the models have been shortened in order to improve
readability, and that simulation of the control system is omitted
since it is really simple.

A. Light Control

The first controller aims at saving energy by switching off
the lights when people leave the house, and turn them back
on when they come back. The variables to be controlled are
the state of the lights, and a variable to monitor occupancy.
To detect house occupancy, we create a service toggling
occupancy when a correct pin code is entered on the access
control panel.

The model of the controller is shown in Figure 10. The
house has three lights, two simple lamps connected to a con-
trollable outlet, and a dimmer. At initialization, the controller
retrieves the state of the lights, and the occupancy. If the
house is unoccupied, the states of the lights are saved and
they are turned off. If the house is occupied, the controller just
moves to the atHome location. After this initialization phase,
the controller will react on occupancy events.

The turnOffAndSave() function saves the state of the lights
and set their values to zero, while the reload() function reloads
the previously saved value. Also, as only one synchronization
per transition is allowed, a separate model synchronizes on
the get and set channels of the services; a simple controller
can then synchronize with it in order to update or retrieve the
state of the lights. Another solution could have been to create
a virtual service controlling all lights.

We then verify properties of the designed controller. The
controller must turn off the lights when people are away, thus
whenever the controller is in the away location, the value of the
light states must be zero. Before performing the verification,
we remove the broadcast keyword from the event channels
because the verifier would consider taking an event transition
always possible for a broadcast. However, in our case the lamp
states cannot be modified if no one is at home. Another solu-
tion would be to modify the model by handling events in the
away location and resetting the value to zero when receiving
one. Once the broadcast is removed, the verifier checks the
desired property: A[] LightController .away imply (var Switch 1
== 0 and var Switch 2 == 0 and var Dimmer 1 == 0). The prop-
erty is satisfied. The controller can thus be executed being sure
that it will perform the desired control.

B. Burglar Alarm

The second controller monitors the state of the window
and the house occupancy and starts the alarm if the window

var_occupancy == 1

var_occupancy == 0

get_occupancy?

get_light_sync!

var_occupancy == 1

var_occupancy == 0

away

set_light_sync!

atHome

ev_occupancy?
set_light_sync!

ev_occupancy?
set_light_sync!

start

reload()

turnOffAndSave()

turnOffAndSave()

wait get_Dimmer?

set_light_sync?

get_Switch_2?

get_Switch_1?

set_Switch_2!

set_Dimmer!

set_Switch_1!

get_light_sync?

Fig. 10. Light Controller

is opened while the house is empty. The variable to control is
the state of the alarm.

The model of the controller is shown in Figure 11. The
first step is to get the occupancy of the house. Depending on
this state, the controller moves either to the Home location or
the Away location. From the Home location, it can only move
to the Away location, when the pin code is entered, indicating
that people are leaving the house. In the Away location, if an
event indicates that the window has been opened, it triggers
the alarm. In this setting, the alarm can only be turned off by
entering the correct pin code. Thus, the controller waits for an
event on the occupancy state indicating that people returned
home before turning it off.

Properties of the modeled controller are then verified. The
first property to check is that the alarm cannot be set while
the house is occupied: A[] Burglar .Home imply var alarm == 0.
This property is satisfied. The second is to check that if the
house is empty and the window is opened, the controller will
move to the Intrusion location: Burglar .Away and var window
== 1 −−> Burglar.Intrusion. This property actually does not
hold. In fact, if the window is open while the occupants leave
the house, the alarm is not triggered. This occurs because it is
not desirable to trigger the alarm every time people leave the
house having a window open. In order to solve this issue, the
system could be improved by either informing the user that the
house is not secured, or using other sensors to detect intrusion.

C. Composition of Control Components

Once each of the specific control system has been modeled
and tested, we combined them into a single system in order
to create an AmI environment managing light and temper-
ature, and monitoring intrusion. One important point when
composing control components is the risk of interference that
can occur when several components try to control the same
variable. In fact, this can lead to instability of the control
system. One simple way of avoiding this situation is by having
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Fig. 11. Burglar Alarm Controller

only one component per control system for each controlled
variable. This facilitates verification of stability properties.
In our experiments, as each component has its own control
variable, we can be sure that no interference will occur when
composing the controllers. The composed system can then be
executed by the UppaalInterpreter in order to apply the desired
control on the environment.

D. Outcomes

The toolchain demonstrates a flexible and efficient path
for developing simple controllers for home automation when
compared to using classical programming languages. In fact,
the example system that previously took two days to create in
Java was reproduced in a couple of hours by using the UPPAAL
GUI and the template generated by the HomePort2Uppaal
module. Also, use of an intuitive GUI for controller devel-
opment may enable people not familiar with programming
languages to construct controllers. Verification of properties
of the controllers is also made easy, and helps at insuring that
they satisfy their objectives.

V. RELATED WORK

Different alternatives exist for designing and verifying
controller models. We first mention Simulink [7], a tool for
modelling, simulating and analysing multi-domain dynamic
systems based on a graphical data flow programming language.
It is able to generate C code from the data flow diagrams
for real time implementation. Verification and validation is
made through requirements traceability, coverage analysis and
modelling standards compliance checking.

Another similar tool is Labview [8], also using a graphical
data flow programming language. The graphical code can
be compiled into an executable, and tests can be created to
monitor and validate the system based on specified constraints.

The SCADE suite [9], a model-based development envi-
ronment for critical applications, features a graphical interface
to design models, a verifier and can generate code. Models are
created using a synchronous data flow programming language

called Lustre. Verification of safety properties is also done
using this language.

Ptolemy II [10] is an open source framework for model-
based design and simulations. The design of models is actor-
oriented, where actors are software components concurrently
executing and communicating via interconnected ports. The
model then consists of a hierarchical interconnection of actors.
The semantics of the model is not given by the framework,
but determined by a software component in the model called
a director, implementing the model of a computation. Existing
directors include support for process networks, discrete-events,
or dataflow among others. Validation of the models is done
through simulation.

The proposed toolchain distinguishes itself by the au-
tomated generation of templates to communicate with the
system, and the fact that controller models do not need to
be compiled before being executed. Also, UPPAAL supports
formal verification of the models.

The specialization of the underlying computational domain
to timed automata may at first seem restrictive. However,
it gives the benefits of verification as well as openings for
fully automated synthesis through timed game theory [11]. In
contrast, Simulink, Labview and Ptolemy II aims at much more
general classes of controllers. Thus the computational models
that they support are much more expressive; but this comes
at the expense of analysis options. Essentially, they provide
simulation to validate developed systems. Simulink provides
code generation as well; but interfacing the code to the actual
system requires a development effort. One has to code suitable
S-functions or the like.

A specialization similar to the one proposed here underpins
SCADE. The use of synchronous dataflow (Lustre) as the com-
putational model allows verification and synthesis. However,
the synchronous model may not fit very well to the essen-
tially distributed, asynchronous nature of home automation
controllers. Here the synchronous event based communication
supported by the toolchain admits a closer fit.

Note that model checking is a validation option. It is
not essential for practical development. Thus we have not
discussed other model checkers or analysis tools as this brings
us too far from the topic of developing controllers for home
automation.

VI. FUTURE WORK

Running a UPPAAL server to execute the controller is
constraining for small environments. Work is currently being
done in collaboration with an industrial partner to translate
UPPAAL state machines into lighter state machines that can
be directly executed on resource constrained devices, removing
the need for a UPPAAL server.

The toolchain could also be further improved to integrate
automated controller synthesis. Existing work [12], [13] has
shown that controllers can be synthesized using timed game
theory. The controller problem is modeled as a timed game
and a safe strategy to solve the problem, if one exists, can
be generated using UPPAAL-TIGA [11]. Integrating this in
the toolchain would further reduce the development time for
controllers and ensure that they are safe.



VII. DISCUSSION

The toolchain may be elaborated with test facilities us-
ing UPPAAL-TRON [14], [15]. TRON is a tool for online
black-box conformance testing for systems specified as timed
automata. To perform the tests, it uses a model of the Imple-
mentation Under Test (IUT) and a model of the environment. It
randomly takes available transitions in the environment model
to check that the output produced by the IUT corresponds
to the model. To communicate with the IUT, TRON uses
adapters that translate channel synchronization between the
environment and the model into actual communication with
the IUT. One could use the HomePort template generated
by HomePort2Uppaal as the system model, the model of the
controller as the environment and the HomePort server as
the IUT to execute the controller in a manner similar to the
UppaalInterpreter. Some modifications would have to be made
as TRON only performs tests for a limited amount of time.
The reason for developing the UppaalInterpreter instead of
using TRON is that the tool and the algorithm are simple and
could be implemented for resource constrained devices and be
integrated as a component of the HomePort system.

Finally, experiments with the toolchain showed that the
interpreter is more deterministic than the verifier. This leads to
problems with transitions that are bounded by a time interval.
The interpreter always takes such a transition at the lower
endpoint of the interval, while the verifier allows it at any
point in the interval. This means that, while safety properties
are always sound, reachability properties might not be. The
verifier may predict more reachable states than the ones visited
by the interpreter. For models with deterministic timing behav-
ior, for instance transitions at exact time points, the verifier
and the interpreter behave the same. Moreover, choosing the
lower endpoint of the interval is a valid interpretation of the
transition. We also argue that non-deterministic behavior is not
wanted when designing controllers. If needed, it is possible to
introduce random delays when taking such transitions.

VIII. CONCLUSION

This paper presents a toolchain for Home Automation con-
troller development using timed automata, which accelerates
and eases the development and execution of controllers. It
introduces two novel components developed for the toolchain.
HomePort2Uppaal creates a UPPAAL template from a list
of services to serve as basis for developing controllers. The
UppaalInterpreter enables their execution using a UPPAAL
simulator and applies the actual control through a HomePort
server. With timed automata and the UPPAAL framework, con-
troller properties can be formally verified, increasing reliability
of the control systems. The examples show the benefits of
the toolchain both for development time and verification. The
toolchain easily adapts to other REST oriented middleware, as
only the HomePort2Uppaal component needs to be modified.

As the need for efficient control over appliances and inter-
action with sensors to improve efficiency of house and building
environment is increasing, facilitating their development and
verification is essential. The presented toolchain can help to
create more sustainable and efficient environments.
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