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Abstract—This paper presents a technique for testing software
components with contracts that specify functional behavior, syn-
chronization, as well as timing behavior. The approach combines
elements from unit testing with model-based testing techniques
for timed automata. The technique is implemented in an online
testing tool, and we demonstrate its use on a concrete use case.
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I. INTRODUCTION

Component contracts need, in order to be completely spec-
ified, four levels of constraints [1]: syntactic, behavioral, syn-
chronization and quality of service. Syntactical and behavioral
specifications are well captured by pre-/post-condition lan-
guages such as VDM, SOFL [2] or rCOS [3]. Based on these,
unit tests can be generated to validate that the specifications
are satisfied, as shown in [4], [5], [6]. For specifications in the
form of predicates, the Functional Scenario Form (FSF) [4],
[5] constitute a practical way for generating test inputs. We
recall these notions in Section II.

The synchronization level specifies the protocol of the
component; the way in which its environment should interact
with it. It is specified using regular expressions or equivalently
Finite State Machines (FSM), or Timed Automata (TA) when
timing information is important. Testing that a developed
component satisfies its protocol and real time specifications
is done during integration testing. We recall these notions in
Section III.

A potential problem with separate unit and integration
testing is that integration testing often does not test that the
functional specifications of the component are still satisfied.
Moreover, the behavior of some components is influenced
by their environment, making it impossible to test it before
deployment. An example is a home automation systems (con-
sidered as a component in a smart grid) or control systems
in general that behave differently when deployed in different
environments. Also, the interface to such systems is often
provided through a middleware [7] which may introduce
errors. In order to ensure an integrated test of this kind of
component, Section IV presents an approach that combines
the behavioral, synchronization and timing part of the com-
ponent specifications into a timed automata model suited for
model based testing. It enables different timing constraints
for different executions of a single method. This model is in
Section V used to build a testing tool that combines unit tests
and integration tests. The tool is evaluated in Section VI on a

use case taken from a European research project. We compare
our approach to related work in Section VII, discuss limitations
and potential enhancements in Section VIII, and conclude in
Section IX.

II. UNIT TESTING

Unit testing of a component validates that its methods
return correct output when provided with specific inputs, based
on its contract [8]. Formal syntax and semantics similar to the
ones defined in rCOS [9] and SOFL [2] provide good support
for such specifications. Here we borrow the syntax used in
rCOS. An interface I has a set I.fields of typed variables of
the form x : T , called fields, and a set of method signatures
I.methods of the form m(x : T ; y : V ), where x : T and y : V
are the input and output parameters of the method with their
types. Pre-/post-conditions define the expected output based
on the state of the component (the value of its fields) and
the allowed inputs. The interface also has a set of invariants
representing constraints on the component fields that should
hold at entry and exit of methods. This notation can be used
to generate inputs that cover the different possible executions
of a method, and validating its outputs. To do so, the FSF
transforms the pre-/post-conditions of the component interface
to a part used for test case generation and one used as the
oracle of the test case. Note that deriving the FSF of a method
is based only on its specifications, and not its implementation.
It is therefore likely that different scenarios cover different
program paths, but it is also possible for a single scenario to
be implemented by several program paths. Therefore, testing
a method using its FSF is still considered black box testing.
We recall here this notion.

Let’s assume a method m, and its guarded design
prem(x) ` postm(x, x′) with x and x′ the values of the
variables before and after executing the method, and prem(x)
and postm(x, x′) the pre- and post-conditions of the method.

Definition 1. Let postm ≡
∨n

i=1 Ci ∧ Di, where each
Ci(i ∈ 1, · · · , n) is a predicate called a “guard condition” that
contains no output variable, and where the Ci are mutually
disjoint. Also, Di is a “defining condition” that contains at
least one output variable. Then, a (functional) scenario Fi of
m is a conjunction prem(x) ∧ Ci ∧ Di, and the expression∨n

i=1 Fi is called a Functional Scenario Form (FSF) of m.

Intuitively, a scenario of a method represents one of
its possible normal executions. For example, let’s take a
method authenticate of a component AccountManager,



TABLE I. AN EXAMPLE OF A COMPONENT INTERFACE IN THE
PRE/POST FORMAT

Component AccountManager
Fields int acc_num, int psw, int balance
Methods authenticate(int p, int num; boolean auth){

pre : p > 0 ∧ num > 0

post : p = psw ∧ auth′ ∨ p 6= psw ∧ ¬auth′
}

Invariant balance ≥ 0

qastart qb

c ≤ 10

authenticate
c:=0

add
c:=0

remove
c:=0

c=10

Fig. 1. A TA representing the interaction protocol of a component. This
component requires authentication before requesting any of its functionalities.
After 10 time units of inactivity, authentication should be performed again.

defined in a pre-/post-condition form shown in Table I.
From this definition we can identify two scenarios. One
that is triggered when the password psw is correct, another
that is triggered when it is incorrect. We can thus rewrite
the method in FSF with the two following scenarios:

Scenario 1 p > 0 ∧ num > 0 ∧p = psw ∧auth′
Scenario 2 p > 0 ∧ num > 0 ∧p 6= psw ∧¬auth′

The first part represents the pre-condition, the second part
the guard condition and the third part the defining condition.
The first two thus define the condition on the state of the
component fields for the scenario to execute, while the
defining condition acts as an oracle predicting the result of the
execution. Testing a functional scenario is done by executing
a method in a state where the precondition of the scenario
holds. In a more extensive robustness test, the precondition
could be violated in an additional test case.

III. PROTOCOL AND REAL TIME TESTING

A synchronization specification of the component contract
gives its interaction protocol; in other words the order in which
its methods may be invoked. It thus encodes the state of a
component, as well as the possible transitions from its current
state, when a method of its interface is invoked. When time is
of importance in the component contracts, TA can be used to
capture the timing aspects. The objective is then to model the
component states, the transitions between them and the timing
constraints associated with the transitions. The transitions are
triggered either by calls on a method of the component, or
by time passing. We call transitions that are not triggered by
a method call, time only transitions. These transitions make
it possible to specify timeout constraints as well as delays.
An example of a specification is shown in Figure 1. Such
specifications can be used for conformance and robustness
testing. In the example of Figure 1, one would for example
be interested in testing that the methods add and remove
can be called after authentication, but also that they cannot be
called before.

With this simple model however we cannot test extra-
functional requirements, as for example minimum and maxi-
mum response time for a method. To do so we model each
method call with an input synchronization (denoted by a
trailing “!”) while the return from a method is modeled by an

qastart

qa′ qb c ≤ 10

qc

qd

authenticate!
c := 0

authenticate?
d < 5

add!
c := 0
d := 0 remove!

c := 0, d := 0c = 10

add?
d < 10

remove?
d < 7

Fig. 2. A TA representing the interaction protocol of a component specifying
the maximum execution time for each method.
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Fig. 3. The environment is modeled by a TA corresponding to the component
protocol, where function calls are replaced as shown in this figure.

output action (denoted by a trailing “?”). Note that we assume
that each of the methods provided by the component have an
observable start and an observable end. An example of such
an automaton is shown in Figure 2.

We are now capable of expressing extra-functional timing
requirements for each methods. However, we cannot express
different timing requirements for different scenario execution
of each method. To do so we investigate a different approach.

IV. COMBINED SPECIFICATIONS

To combine the functional and timing specifications, we
divide the component model into three parts. The first part
represents the component environment, triggering the method
calls. The second part represents the component methods,
reacting on method calls, updating variables during execution
and (possibly) returning a value. The third part of the model
is a scenario observer that validates the correct execution of
method scenarios. To include the functional properties of the
component in the model, we augment it with a set of discrete
global variables that consist of:

• the inputs and outputs for each method;

• the observable component fields used in at least one
of the specification predicates.

A. Environment Model

The environment model is a modified version of the com-
ponent protocol model where transitions triggered by method
executions are split between output (the method call) and input
(the method return) as in Figure 2. In addition, the method calls
are augmented with assignments of values to discrete variables
representing the input values of the method. A generic example
is shown in Figure 3. The set of inputs is restricted to the ones
that satisfy the method pre-condition.

B. Component Model

The component model is the parallel composition of its
method models. An example of a method model is shown in
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Fig. 4. Model of a method.
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Fig. 5. Model of a scenario observer.

Figure 4. The first transition is triggered by a method call
from the environment. During the execution of the method, the
component fields are updated. Finally, method call termination
is signaled to the environment and a return value (output)
can be provided. Note that compared to other model based
testing approaches, here the model can violate its specification.
Instead, the conformance with respect to the specification is
checked by an observer of a method scenario.

C. Scenario Observer

For each scenario of each method, we define a scenario
observer. A scenario observer validates the conformance of the
component execution with respect to its functional and timing
specifications. Figure 5 shows a generic scenario observer. A
scenario observer is triggered when the method it is associated
with is called in a state that satisfy the guard conditions of the
specific scenario it should observes. It then checks that the
scenario is executed correctly according to both the functional
and timing specification of the scenario. A scenario observer
can detects two types of errors. Functional faults are detected
when the FErr location is reached by the observer, indicating
that the defining condition of the scenario was violated. Timing
faults are detected when taking the TErr transition indicating
that the timing relation clk ./ cst (where clk is a clock and
cst a constant) was not satisfied.

We have obtained a component model that encodes both
the functional specification of the component as well as its
protocol and timing requirements. We will now interpret this
information for testing.

V. TESTING TOOL

To interpret the models, we built an online testing tool in
Java, based on previous work in interpreting TA [10]. The
tool is implemented as a Java library providing an interface
for loading the component model as well as an instance of
the component in the form of a Java object. The tool is
implemented in Java and as such only targets testing of soft
real time systems. However, the theory could be used and

implemented differently to test hard real-time as well. The
testing process has two phases:

Initialization where the information contained in the
model is parsed to generate required data
structures;

Execution where the TA is interpreted to generate test
inputs and validate the outputs.

A. Testing Objectives

The objective of the testing tool is to detect functional and
timing errors. In addition, it provides statistics on execution
time of each scenario enabling a profiling of each of them.
To obtain such statistics, each scenario is executed a defined
number of times. As we cannot guarantee that all scenarios
are tested, we terminate the test when all executable scenarios
given the state of the model have been tested enough times.

B. Initialization Phase

At initialization, the model is parsed to load information
about methods and scenarios. Method names are extracted
from the channel names, and scenario constraints are extracted
from observers. Each scenario constraint is passed to the Choco
solver [11], which computes the domain of each variable given
the constraint. This will be used to generate method inputs
and check if the component fields satisfy a given scenario
constraint. Note that time only transitions are also extracted
and considered as a special type of scenario without associated
method. This ensures that they are tested as many times as any
method scenario.

C. Execution Phase

The execution of a test case is divided into two parts. First,
the scenario to be executed is chosen, based on the current state
of the component and the number of times each executable
scenario has been tested. In case of ambiguity a scenario is
chosen at random. Once selected, the method is executed with
adequate inputs that satisfy the scenario constraints. In practice
the input selection is implemented using a select statement that
generates a single transition for each possible assignment of the
inputs. This may lead to an explosion of the number of possible
assignments which we discuss in Section VIII. After selecting
the inputs and invoking the method, the transition representing
the method call is taken in the model. At the end of execution,
the return value and possibly modified fields are updated in
the model (by taking corresponding transitions in the method
model), and the transition representing the method termination
is taken. Timing information is recorded, and eventually timing
error, and in case of functional error the test is stopped and the
error highlighted. The testing process thus consists of choosing
a scenario and executing it, using the TA model to validate the
timing and functional requirements and the specified protocol.
Doing so we collect information that is used to generate a test
result.

D. Test Result

As already mentioned, if a functional error is detected,
it is immediately reported. If none are found, a summary
of the scenario execution is presented, indicating if timing



errors have been observed and providing for each scenario:
the number of test performed, the average, maximum and
minimum execution time, and the success rate with respects
to the timing constraints.

VI. USE CASE

As illustration of the testing technique, we use a component
that is part of a demonstration for the projects Arrowhead1

and TotalFlex2. The objective in these projects is to improve
the balance between energy consumption and production using
the flexibility offered by some appliances. The flexibility
of devices is encoded using the concept of flexoffer [12].
Flexoffers are then sent by appliances to an entity called an
aggregator that combines the flexibility of multiple devices to
make it easier to handle. More information on the concepts and
system architecture can be found in [13]. In the demonstration
system, two types of flex offers are created: from heat pumps,
providing energy flexibility, and from washing machines, pro-
viding time flexibility. In order to preserve a maximum of
flexibility, the aggregator is expected to aggregate these two
sets of flex offers separately into at least two aggregated flex
offers. Finally, the timing requirements are specified so that the
demonstration can be conducted without too much delay when
showing example of aggregation. Note that in a production
context the aggregation would also be required to be time
bounded as decisions about energy planning need to be taken
fast.

The component interface of an aggregator has four methods
and six fields, shown in Table II. Its protocol is shown in
Figure 6. The timing constraints of each scenario are added
to their FSF to facilitate the presentation. The fields represent
in order, the total number of flex offers that were added, the
number of flex offers of type heat pump, the number of flex
offers of type washing machine, the number of aggregated flex
offers, the number of scheduled aggregated flex offers and the
number of scheduled flex offers. The first method provided by
the component is addFlexOffer, used to add new flexoffers
of a certain type. The two scenarios of this method reflect
the possibility of adding two different type of flex offers, and
the different timing constraints the fact that it takes longer
to generate a flex offer for a heat pump than for a washing
machine. The second method is the aggregate method, that
performs the aggregation. Here three scenarios are defined, that
depicts the fact that when only one type of flexoffer is available
then only one aggregated flexoffer should be obtained. The last
two methods perform the scheduling (assigning a consumption
period and value) and disaggregation operations (the reverse
of aggregation).

For testing, the component interface is wrapped into an
adapter object that provides the adequate bindings between
the variables of the interface and their implementation. For
example, the number of flexoffers is obtained by getting the
list of available flexoffers and return its length. Adapters for
component interfaces are commonly used for online testing,
and enable the testing of different component implementations.
To be able to add large numbers of flexoffers but avoid issues
with the select statement, we use a scaling factor for the

1http://www.arrowhead.eu/
2http://totalflex.dk/

TABLE II. THE INTERFACE OF THE AGGREGATOR COMPONENT.

Component Aggregator
Fields int nb_fo, int nb_hp_fo, int nb_wm_fo, int

nb_agg_fo, int nb_agg_sch, int nb_fo_sch
Methods addFlexOffers(int num, int type)

scenario1 : num > 0 ∧ num ≤ 10∧
type = HP ∧ nb hp fo′ = nb hp fo + num ∧ clk ≤ 5
scenario2 : num > 0 ∧ num ≤ 10∧
type = WM ∧ nb wm fo′ = nb wm fo + num ∧ clk ≤ 2

aggregate()
scenario1 : nb wm fo > 0 ∧ nb hp fo > 0 ∧ nb agg fo′ > 1
∧clk ≤ 2 ∗ nb fo

scenario2 : nb wm fo = 0 ∧ nb hp fo > 0 ∧ nb agg fo′ ≥ 1
∧clk ≤ 2 ∗ nb fo

scenario3 : nb hp fo = 0 ∧ nb wm fo > 0 ∧ nb agg fo′ ≥ 1
∧clk ≤ 2 ∗ nb fo

schedule(){
scenario1 : nb agg fo > 0 ∧ nb agg sch′ = nb agg fo ∧ clk ≤ nb fo

disaggregate()
scenario1 : nb agg sch > 0 ∧ nb fo sch′ = nb fo ∧ clk ≤ nb fo

Invariant nb fo = nb hp fo + nb wm fo

astart b c

d

addFlexOffer

addFlexOffer

aggregate

aggregate

scheduledisaggregate

Fig. 6. The protocol of the aggregator component.

addFlexOffer method, that we varied between 101 to 105.
Note that this does not impact the testing results but only their
interpretation, and that fixing the select statement issue would
make it possible to test without this scaling factor. For each
test, the maximum number of execution per scenario was set to
30. We can draw two types of results from these experiments.
Regarding the component, we did not detect any violation of
the functional requirements, which increases our trust in it. For
timing requirements, the generation of flexoffers for heatpump
violated the constraints when trying to generate more than
105 flexoffers. All other methods satisfied their constraints.
Regarding the testing tool, we note that test case generation
did not noticeably impact the execution of the test, and that
the fact that two methods had only one scenario influenced
the coverage of other method scenarios. Since in location c in
Figure 6 only schedule is active, the testing process stops,
even though the scenarios of the methods addFlexOffer and
aggregate were tested only half this number of times.

VII. RELATED WORK

To solve the select statement issue, a symbolic representa-
tion of variable could be used, as in [14]. The authors present
an extension of TA and Input Output Transition Systems that
we will consider for future work. However, we note that the
objectives mentioned in that paper differ from ours in that they
use offline test case generation.

A natural choice of tool to interpret the presented models
could have been UPPAAL TRON [15], an online conformance
testing tool for TA. However, the random exploration of the
model would make it less likely to test different scenarios of
a method. In order to do so, a constraint solver seems to be
better. We also experimented with generating test cases using



reachability queries as proposed in [16]. However, the use of
discrete variables and select statements leads to state space
explosion rapidly when using multiple variables. Even when
a test case can be generated, the computation time is higher
than that of the constraint solver.

VIII. DISCUSSION AND FURTHER WORK

A limitation of the tool comes from the implementation of
the select statement in UPPAAL. A select statement assigns a
value within an interval to a temporary variable, which can
then be used to update a local or global variable. In UPPAAL,
select statements are replaced with a set of transitions that
correspond to each possible assignment of a variable. The
number of transitions per select statement is thus equal to
the length of the select interval. This implies that if several
select statements are defined on a single edge, the number of
transitions generated from them will be equal to the product of
their interval length. When this number grows large, it becomes
impossible to select the correct transition within an acceptable
time. This limits the scalability of the tool with respect to the
number of inputs and their domain. However, even though this
implementation of the select statement can be useful for model
checking and exploring the entire set of possible values for
each variable, for testing its interest is limited. Instead, we plan
a different implementation where one can choose which value
to assign to a variable within a single transition. The Timed
Input Output Symbolic Transition System defined in [14] is a
possible solution.

We also note that the construction of the models could
be automated. In fact, the model presented in Section IV can
be derived from a TA model of the component protocol, the
specification of the component interface in FSF and the timing
requirements for each scenario. These timing requirements are
easily integrated into the FSF by adding a conjunction with a
clock constraint to each scenario constraint as we showed in
the use case. This would further simplify the testing process
and make it easier to integrate into development methodologies
such as rCOS or SOFL.

Finally, the experiments showed that depending on the
topology of the protocol and the number of scenarios per
method, it can be difficult to obtain a good coverage. Proposing
different criteria for stopping the tests could help at improving
coverage. An example could be for the user to specify a
sequence of method calls to be repeated a number of times.

IX. CONCLUSION

In this paper we proposed a technique that allows the mod-
eling of functional, synchronization and timing requirements
of component contracts. The technique combines aspects of
unit testing and integration testing. This allows the validation
of functional requirements while testing the protocol of the
application. We then showed how we used these models to
develop an online testing tool that checks the conformance
of a component implementation under test with respect to the
models. The tool also generates statistical information about
the method execution timing constraints. We demonstrated the
use of this tool on a concrete use case taken from ongoing
research project in the domain of the energy efficiency.
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