To Do and Not To Do: Constrained Scenarios for
Safe Smart House

Thibaut Le Guilly*, Jacob H. Smedegard, Thomas Pedersen*, Arne Skou*
Department of Computer Science
Aalborg University
Aalborg, Denmark
*{thibaut,tp,ask } @cs.aau.dk

Abstract—A smart house is a complex system, and config-
uring it to act as desired is difficult and error prone. In this
paper we extend a previously developed framework based on
timed automata for designing safe and reliable home automation
scenarios to make it easier to use. To do so we abstract it
with an Event-Condition-Action language to create intelligent
scenarios, and constraints that prevent scenarios with undesirable
behaviors to be applied. This language is itself abstracted by a
graphical user interface that enables the creation of scenarios
by manipulating graphical blocks representing elements of the
language. We have designed and implemented a prototype system
to test our approach, and we report on a qualitative user study
that was conducted.

I. INTRODUCTION

The technical complexity of intelligent environments leads
to two main issues: reliability and usability. Weiser mentions
at the end of his seminal paper [1] that the machine should
fit the human environment. In order to fit, it is essential
that such systems behave predictable and according to their
specifications. This has led to a growing interest in the appli-
cation of formal software engineering methods to ubiquitous
environments. The use of modeling tools such as the Spin
model checker [2], or the ambient calculus and logic [3] to
support the development of these environments, are among the
many recent examples [4] of this interest. Following a similar
desire to increase reliability, we introduced in [5] a toolchain
to facilitate the development of home automation controllers
modeled as timed automaton, and enable their execution. This
toolchain enables the precise specification and verification of
home automation systems, ultimately increasing the trust in
complex intelligent systems. However, hiding the complexity
of such systems is essential to make them accessible to users.

Designing a specification for a home automation controller
is a task that requires the active participation of the end-user
over time and is not a single up-front investment. Users do
not know exactly what to expect from a home automation
system before acquiring it [6] and preconceived ideas about
automation scenarios often do not hold once in actual use.
Davidoff et al. [7] highlight the dynamic nature of activities in
a regular American household. They show that these activities
are a complex mix of interactions between people, that require
varying equipments and devices, and can easily break down
when pieces of the puzzle are missing. They further stress
the need for understanding periodic changes, exceptions and
improvisation.

From these observations, we draw that a home automation

system must allow for dynamic changes of its configuration,
and enable the users to create, modify and mix scenarios
to fit with the current activity. Here a possibility is to use
non-intrusive systems that learn from inhabitants behavior and
adapt to their actions [8]. However, such systems can lead to
uncertainty for the user as to whether he or the system is in
control. Here we prefer Rogers’ [9] vision of engaged living,
where “technology is designed to enable people to do what
they want”. We thus want a system that enables the user to
provide a full specification of the system over time through
experimentation and discovery. However, it is not always easy
for the user to decide which scenarios would fit his needs
and his environment. Moreover, some scenarios, if wrongly
specified, can easily lead to an undesired configuration of the
house, and thereby to frustrated users. Here, the analogy with
the notion of fir from Alexander [10] teaches us that it is often
easier to decide what does not fit an environment, or what
is undesirable. Therefore, enabling the user to constrain the
control of the environment with a list of undesired behaviors
makes it possible for him to safely experiment and discover.
Here, formal methods, and Timed Automata (TA) [11] in par-
ticular, provide a good framework for specifying and verifying
scenarios against constraints. We recall our previous work
on modeling and verifying home automation controllers with
TA in Section II. While TA are useful for performing model
checking and verifying models against requirements, they are
too complex to be handled by regular users and need to be
abstracted away.

The first step in this abstraction is to use a higher level
language to define the scenarios. We borrow from Augusto
and Nugent [12] the use of a temporal Event-Condition-Action
language to model such scenarios. Here we propose to reuse
this language to define constraints which represent actions that
the system should not perform given certain conditions. Such
a language can easily be translated to TA, which makes it
possible to verify that the scenarios created by the user do
not violate the constraints. We discuss this in Section III.
However, this language still does not provide an easy way to
model the scenarios for users. To solve this issue, we propose
a user interface based on the notion of blocks that abstract this
language. We present this interface and its associated backend
in Section IV, and a qualitative experiment we conducted with
it in Section V.

We note that there has been much research on automating
smart houses, based on scenarios, user interfaces or machine
learning. We thus review the most related to our approach in

Section VII. Finally, the work presented in this paper opens
up to different opportunities for future work that we present
in Section VI before concluding in Section VIII.

Our contributions in this paper is summarized as follow:

e we provide a semantics for an Event-Condition-Action
(ECA) language for smart houses in the form of
TA, making it possible to verify the scenarios against
undesired states of the house;

e we propose to reuse the ECA language to model
undesired configuration of the house;

e we have implemented a working prototype system and
an associated user interface;

e we report on findings from a user study relevant for
the construction of GUI on top of an ECA language,
the modeling of scenario by users and the use of
constraints on the scenarios.

II. BACKGROUND

The system presented in this paper is built upon a toolchain
that facilitates the design, verification and execution of home
automation controllers modeled as TA. For a better understand-
ing, we recall the basics of this toolchain and refer the reader
to the paper presenting it [5] and the UPPAAL tutorial [13] for
more information. As depicted in Figure 1, it is composed of
four components. The first one, Homeport [14], is a REST ori-
ented middleware that provides a common interface to devices
belonging to different networks. It is used in the toolchain as
the interface to access and control the services provided by
the home automation system. The second main component is
UPPAAL [13], a toolbox for modeling, simulating and verifying
systems modeled as networks of TA. In the toolchain, UPPAAL
is used for the creation and validation of the controllers, and
its simulator is used as part of their execution. The Uppaal
GUI allows for creation of TA and presents an interface to
the simulation and verification engine of Uppaal. The two
remaining components create the link between the services
provided by the home automation system through HomePort
and the UPPAAL models. The HomePort2Uppaal tool is used
to create a UPPAAL model for the services, which controllers
can interact with to get or set their states. An example of such
a model can be seen in Figure 2. Finally, the Uppaallnterpreter
is the one executing the controllers. It takes as input a UPPAAL
system, runs it through the UPPAAL simulator, and chooses the
appropriate transitions in the models that correspond to the
actual state of the environment. This toolchain thus supports
the design, verification and execution of controllers in a smart
house. The use of TA provides the possibility to verify that the
control models satisfy desired properties. However, the use of
the UPPAAL interface for the design makes it difficult to use
by non expert users. A more accessible interface, abstracting
the complexity of the TA, is thus necessary to attract a wider
range of users. A first step in abstracting the complexity is to
think about scenarios in the house rather than controllers.

III. HOME AUTOMATION SCENARIO

In order to define the notion of scenarios in a home
automation setting, we first need to define the environment
upon which scenarios will be defined.

Provides a list of
services in the system

Provides a model
of the system

HomePort2UpPpPAAL

Design and

verify
H Aut ti
. % HomePort

UpPPAALINterpreter

UPPAAL

Provides a model Applies the control

of the controllers

Fig. 1. Overview of the toolchain components

A. Home Automation Environment

A home automation environment is composed of elements
divided into three categories. The first category is sensors,
which provide observations on environment variables, such as
temperature, movement, or luminosity. They report the values
of these variables, and their changes. The second category is
actuators, which provide control over the environment. They
can be set to different states and report on their current state.
Finally the last category is the one of controllers, coordinating
the actions of actuators based on the observations provided by
sensors and the state of actuators. As we will see, scenarios
are part of the controllers category.

B. Rule Based Scenarios

A scenario is a controller, modifying the state of the
system when observing specific changes in the environment.
We can add to this definition that some scenarios will only
modify the system when in a specific state. This can be easily
expressed using ECA rules, that were first introduced for active
databases management [15] and later used in Smart Homes
context [12]. This early work defines the event part as “The
event that triggers the rule (i.e. causes the system to evaluate
the rule’s condition”. Applied to home automation, an event
is a modification of the observable state of the environment,
therefore a change in a measurement by a sensor or the
modification of the state of an actuator. The condition is then
defined as “A collection of queries that are evaluated when a
rule is triggered by its event”. In home automation, the queries
that compose the conditions perform relation checks on the
current observable state of the environment, a measurement
reported by a sensor or the state of an actuator at the time
the query is evaluated. Finally an action is “what is executed
when the rule is triggered and its condition is satisfied”. In
home automation, that corresponds to the modification of the
state of one or more actuators, for example opening a window
or turning off a light.

The most complex part of ECA rules is the event part. It
can be primitive (a single event) or composite (a sequence of
events). It becomes even more complex when adding temporal
relations between the events, giving the possibility to define
many types of temporal events [16]. As stressed in [17], this
complexity needs to be hidden or at least reduced in the
user interface to be manageable by non expert users. To do
so, we limit ourselves to single events, and single events
with duration. It enables us to reduce the complexity but still
keeping acceptable expressiveness. In fact, if complex events

are interesting to model advanced scenarios, they are difficult
to represent, and therefore even more difficult to define for
non expert users. Expressing them in the form of TA would
however be possible for future studies.

a) Single Event: This is the most simple type of event.
It is composed of only one event, and does not embed any
temporal information. It can be used to define simple scenarios
such as “when I press a button, turn on a lamp”.

b) Single Event with Duration: In the language defined
n [12], a scenario such as “when I press a button for more
than ten seconds” needs to be expressed as an event “press a
button” and a condition expressing the absence of an event
“stopped pressing a button” for ten seconds. In order to
simplify scenario definitions, we propose the notion of a single
event with duration to represent a service that changes state
and keeps it for a minimum period of time. It enables modeling
such scenarios with a reduced complexity and in a more natural
way. Note that the TA representation of this language element
reuses the definition of [12], as we will see later.

C. ECA Semantics

To ensure the correct execution of scenarios, and enable
the use of the underlying toolchain, we provide a semantics
for each type of language elements using TA. To facilitate
the understanding of the models, we take as an example a
lamp. For a more detailed explanation of this model, we refer
the reader to [5]. The model of this lamp is shown in Figure
2. In this example, the state of the lamp is modeled by a
variable, lamp_state. It has two states, 0 (off) and 1 (on).
To enable controllers to access and modify its state, the model
of the lamp has three channels. In UPPAAL, channels are used
to synchronize and pass values between processes. When a
process (in particular here a scenario) wants to get the state
of the lamp, it synchronizes with the lamp process on the
get_lamp_state channel. During the synchronization, the
temporary variable _lamp_state is assigned the value of the
current lamp state, fetched from the physical lamp device. This
value is then stored in the global variable lamp_state for
the synchronizing process to access it. The “!”” symbol means
that the lamp is the sender and the “?” symbol that it is the
receiver. The set_lamp_state channel is used when a pro-
cess wants to update the state of the lamp. Again value passing
is used to transfer the value through the variable 1amp_state
and notify the lamp model. Finally, the ev_lamp_state
channel is used to notify interested processes when the state
of the lamp changes. It is similar to the get channel, except
that it is broadcast, meaning that several processes can receive
an event notification.

Figure 3 shows the assigned semantics of the different
language elements described in Section III-B. The model of
a single event, Figure 3a, waits for an event notification from
the lamp and checks whether the value corresponds to the one
specified. This block expresses the event “when the lamp is
turned on”. The other type of event, the simple event with
duration, Figure 3b, is composed of a single event, followed
by a location that checks that the state does not change for
a specified amount of time. The depicted example expresses
the event “when I turn on a lamp for more than 15 time
units”. Note that the variable c represents a clock, whose value

int [0,1] lamp_state;

chan get_lamp_state;

chan set_lamp_state;

chan broadcast ev_lamp_state;

get_lamp_state!
lamp_state = _lamp_state

ev_lamp_state! set_lamp_state?
lamp_state = _lamp_state @

Fig. 2. Model of a lamp. The upper part is the declaration of the variables
representing its state, and the three channels that can be used by controllers to
get, set or receive events on its state. The automaton represent the transitions
corresponding to these three actions.

lamp state == 0
(é)
Start @

ev_lamp_state? lamp_state==1

(a) Simple Event

lamp state == 0

ev_lamp_state?

lamp_state == 1

lamp state ==0

c<=15
A\

lamp_state==1
c=0

(b) Simple Event with Duration. Note that ¢ is a clock. Its
value evolves with time passing.

lamp state ==1
©£- e C ©

get_lamp_state? lamp_state == 0

(¢) Condition

b

Start \amp state = 1
amp_stat

(d) Action

start (© (©)

ev lamp state? c==15

Fig. 3. Models of the Blocks. Note that the three dots indicates that other
blocks can be inserted there.

increases with time passing, reset at the moment the event is
observed. This clock is used to check whether an event on
the state of the service of interest is observed within a time
interval, in this example 15 time units. A condition, Figure 3c,
gets the state of a service and checks that it has the desired
value. This example expresses the condition “the lamp is off”.
An action, Figure 3d, sets the state of the service to a specified
value. In this case, “turn on the lamp”. Note that conditions
are optional, that both conditions and actions can be combined
in sequences and that the model always return to its initial
location, so that it can be triggered again.

D. Scenario Constraints

In order to leverage the model checking possibilities of
the TA models, we need to have requirements to check them

window_state !=1

window_state ==1

O occupancy —\© >O

set_window_state? Bad

Fig. 4. An example of a scenario constraint.

against. Here we propose these requirements to be a set of
constraints set by the user which represent actions that should
not be performed by the system when the house is in a
particular state. A simple example here is “if the room is not
occupied, do not open the window”. Therefore a constraint is
composed of a condition, that represents a specific state of the
house (in our example the house being empty), and an action
that should not be performed by the system (in our example
opening the window). If the user later on defines a scenario
such as “when the humidity goes above 50%, then open the
window”, the system will detect that the previous constraint is
violated (the humidity can increase while the house is empty)
and warn the user of the conflict. As we will see later, the
system is capable of generating a condition that makes the
scenario acceptable, and suggest it to the user. In this case
transforming the scenario into “when humidity goes above
50%, if the house is not empty, then open the window”.

In order to model constraints, we use observer automata,
that observe if the undesired behavior can occur in the system,
given the set of scenarios. An example of such a constraint
model is shown in Figure 4. Here the first edge listens for a
transition updating the state of the window (a set transition)
while the house is not occupied. If this update led to the
window being open, the observer moves to the Bad location,
otherwise it goes back to its initial state. By checking the
reachability of the location labeled as Bad, using the CTL
formula AO-Constraint.Bad, we can verify that no scenario
can perform the undesired action. Note that it would be easy to
model more complex constraints, involving several conditions
and/or several actions, or even temporal relations between
those. However, we restrict ourselves to simple constraints to
evaluate if they can be understood by users. We now move on
to discuss the implemented system.

IV. HOMEBLOCK

The HomeBlock system is composed of two parts, a
backend and a GUI.

A. HomeBlock Backend

The backend is a modified version of the toolchain that
was previously developed, which is used to verify scenarios
against constraints, gather information about the environment
and execute the control. The main modification consists of the
inclusion of a web server. This web server provides services to
get, add, remove scenarios and constraints on the fly in ECA
form and transform them into TAs to be verified and executed.
Secondly, a Graphical User Interface (GUI) that facilitates the
creation and management of scenarios and constraints. The
interaction flow between the GUI and the backend is depicted
in Figure 5. The backend first provides the interface with the
set of available devices and their services in the environment,
as well as the already existing scenarios and constraints. The
user then creates or modifies a scenario or a constraint and

1. Provide list of devices,
existing scenarios and constraints

. Load scenario
/constraint

S Backend

5a. If conflict, A\/ 5b. If no conflict,
execute scenarios

notifies the user
Interaction flow between the backend and the GUI

4. Verify scenarios
against constraints

GUI

2. Create/modify
scenario/constraint

Fig. 5.

saves it, sending it to the backend. The backend then checks
for possible conflicts between scenarios and constraints, e.g.
whether the bad location of a constraint is reachable. If this
is the case, the backend proposes the user the appropriate
condition for solving the conflict. If no conflict is found, the
backend (re-)executes the scenarios.

However, in order to verify the absence of conflicts, we
need the scenarios and constraint specifications. As writing
scenarios based on the ECA language is still complicated for
the average non-programmer, we turn to visual programming
that fits well with the concept of ECA.

B. HomeBlock GUI

The HomeBlock GUI consists of a visual programming
tool for scenario creation. It is developed using HTMLS
technologies making it usable on any device with a web
browser!. Our focus is to foster experimentation through rapid
iteration and in-situ programming. We abstract the underly-
ing ECA language into a simple drag and drop block-based
programming language. The design is focused on minimizing
the mental load on users and allow them to select, order and
experiment as they please when designing. The main screen of
the application, used to create scenarios, is composed of three
parts, as shown in Figure 6. The top part consists of a menu
to access the functionalities of the application and set a name
for the scenario. The second part consists of a list of device
categories, each represented by an icon showing a graphical
representation of these categories. In fact, a modern household
with smart devices can contain a large number of devices,
which makes a full list of concrete devices impractical. The
last icon, the question mark, act as a wildcard for the entire
set of devices, in case the user is not sure of which category
the device he is looking for belongs to. Finally, the last part
consists of the graphical representation of the scenario itself.
This last part is itself divided in three parts, one for each
element of the ECA language. The user can drag and drop
device icons into one of the empty blocks to instantiate a new
event, condition or action in the scenario. When dropping the
device, the user is prompted with the popup window shown
in Figure 7. Here he can select in order, the desired device
(limited to the devices corresponding to the type that was
dropped), the specific service in the device, a logical operator
(is, greater than, less than, ..., only if the service can take
more than two values) and a value. When creating an event,
he can optionally choose a minimum duration for which the
event should hold (thus creating a simple event with duration).
The block can then be added to the scenario, and appears as
instantiated in the scenario view, as shown in Figure 8.

IThe source code of the interface is available at: https:/github.com/Tibo-
lg/HomePortInterface

NEW MANAGE SAVE NAME:

OLOCOWE®®

Then do this:

When this happens: But only when:

Drag an electrical appliance
here! ' here!

Fig. 6. Main screen of the interface used to build scenarios. The menu enables
the user to navigate between the different functionalities of the applications.
The device type icons can be drag and dropped to create new blocks.

Block Builder

Choose a device:
Left window by balcony

Select what should happen:

Open Close Motor v is)| Choose value +|

Add a minimum duration:

Choose Value
Closed
None + | Opened

Cancel

Fig. 7. Popup window used to build blocks. Here this window is the one used
to create events. Windows for creating conditions and actions differ slightly.

When this happens: But only when: Then do this:

Bathroom
Drag an electrical appliance | Drag an electrical appliance

Humidit
umidity sensor here! ' here!

Humidity >= 50

Bathroom Bathroom

Thermometer fl Window

Temperature >= 20 Set Open Closeto Opened

Bathroom

() Thermostat

Set Temperature to 20

Fig. 8. An example of a completed scenario.

If the house is in this state: Then the house should never perform this action:

Bedroom Bedroom

7H Left Window

Set Open Close to Opened

Occupancy sensor

Occupancy =0

Fig. 9. Example of a created constraint.

Creating constraints is done in a similar manner, except
that here only a condition and undesired action under that
condition are specified. An example of this screen is shown in
Figure 9. When the user tries to upload a scenario that violates
a constraint, the popup window showed in Figure 10 appears,
proposing him to add a condition that will make the scenario
acceptable. In this example, the user tried to create a scenario
opening the bedroom window when the temperature increases
above 22°C. This violates the constraint of Figure 9. Therefore
the system proposes to add the condition “if the room is not
empty” to make this scenario acceptable.

The last point we mention about this GUI is the possibility
of using templates. When a single scenario can be applicable to
several rooms or set of devices in the house, re-programming
it for each of them is time consuming and error-prone. Saving
templates enables the re-use of scenarios, potentially even
to share scenarios between users, as it is the case for the
HomeMaestro system [18]. An example of a template can

Unsafe Scenario

This scenario conflicts with a constraint of the environment. You can solve it by adding the following
condition to the scenario.

Bedroom

Occupancy sensor

Occupancy != 0

[0] cancel

Fig. 10. Example of the popup window warning the user of a conflict and
proposing him to add a condition to the scenario to solve it.

When this happens: But only when: Then do this:

s ~

—>23

'
Drag an electrical appliance Drag an electrical appliance
here! ' here!

: O

—=1 Set—to 1

Fig. 11. An example of a template to be filled in by the user.

be seen in Figure 11. This template models a scenario which
opens the window of a room when the temperature gets higher
than 23°C and the room is occupied.

The interface also enables the user to manage scenarios and
constraints, by easily activating or deactivating them, editing
them or deleting them.

V. EXPERIMENTS

This section describes a small user study conducted to
gauge the reception of the interface in users with no prior
experience with home automation. Our study is exploratory
with a focus on understanding the users mental model when
tasked with designing automation rules.

A. Design

We performed semi-structured interviews with 5 partici-
pants of varying ages and professions listed in Table I. Each
session was 30-45 minutes during which we asked them to
solve 4 tasks using our prototype interface. Each session was
recorded, transcribed and analyzed for common patterns. Each
task consisted of specifying a small automation scenario set in
a virtual house. Since a virtual house does not allow for in-situ
programming, we created floor plans and furnished 3D snap-
shots from within the house showing the placement and type of
smart devices installed in the house. This enables participants
to immerse themselves in the concepts and for us to elicit
responses from them in regards to their mental model as to
causal relationships, naming and implicit relations. Participants
were selected such that non of them had any experience with
programming or living with smart technologies. Non of the
participants had any special interest in computers, but U1, U3
and U4 were comfortable with using them in general. The
sessions were conducted in Danish as all participants where
native Danes with secondary English language skills.

We chose a bias towards experienced home owners, conse-
quently leading to a higher mean age. The tasks (Table II) are
designed to elicit responses to different aspects. Tasks 1 and
2 are used to understand the mental model of the user, and if
they can, after designing the first scenario, recreate a slightly

TABLE 1. UNIQUE ID, AGE AND OCCUPATION OF PARTICIPANTS.

ID Age Gender Occupation

Ul 50 F Head of Division

U2 71 M Mechanical Engineer

U3 46 F Head of Division

U4 20 F Student of Medicine with Industrial Spec.
Ub 65 F Retired Receptionist

modified version of it, phrased differently. Task 3 requests the
user to create a constraint on the scenarios. Finally Task 4 asks
the user to create a more complex scenario, that violates the
constraint created in Task 3, triggering an error message from
the system.

TABLE II. CONTENT OF THE DIFFERENT TASKS.
Task number Task description

1 When the switch by the dining table is turned on, turn on the lamp
over the table.

2 Turn on the dimmable lamp over the sofa table at 50% when the
switch by the hallway is turned on.

3 The light should never turn off in the bathroom while someone is
in there.

4 When the switch at the main entrance is turned on for more than 5

seconds, turn off the light in the bathroom, bedroom and hallway
and lower the temperature in the living room to 17 degrees.

B. Findings

When analyzing the transcriptions and video recording
from the sessions, several trends emerged.

1) Identification of routines: When described an automa-
tion scenario, all participants were able to discover patterns in
their own lives that could be transformed into similar scenarios.
These scenarios were often representations of specific fixed
rituals, such as going from room to room to turn off electrical
appliances left on by the family when leaving home in the
morning, or protecting the home. “In my own house, I know
that when it rains then the windows should close” (U1).

2) Translating into scenarios: All of the participants were
able to understand the iconography. After identifying how
the abstract device icons could be transformed into specific
ones, they were all comfortable with dragging the icon around,
dropping them into the empty boxes. In general the participants
quickly learned the iconography of the floor plan. In an in-situ
setting this could be mimicked by real-world device renderings
in the UI for improved correspondence without a digital floor
plan. We note however that the naming had an important
impact on the ability to identify the devices. For example,
two different naming schemes were applied to two switches.
All participants were able to quickly identify the switch named
“Switch by the dining table”, whereas the other switch, named
“Switch by the hallway” located right beside the opening to the
hallway was deemed much more confusing by the participants.
There was a general consensus that a naming scheme tied
to the furniture and or general usage for the area was more
appropriate.

When translating a task into a scenario, participants were
at first goal oriented, focusing on the action to be performed.
Participants generally preferred to fill out the scenario in a
left to right manner, which led to confusion when designing
the scenario for Task 1. Moreover, except for U4, they were
not able to decode the labels until presented with concrete
example. This resulted in misinterpretations, the event field

being thought as the one for the action. For example, some
participants tried to fit the time duration of the event field
to their mental model of action. “In 5 seconds, the light will
turn on.”(U2). “When the button is on, then it will turn off
within a minute” (U1, even though 30 seconds was selected).
In general, we note that U4 showed much stronger skills in
translating tasks to ECA, with a strong focus on reading and
parsing the accompanying labels to each input field.

3) Programming by example: After experimenting and cre-
ating a correct scenario for Task 1, the participants were able
to reapply the pattern for Task 2 and 4, noting the similarities
in structure between the tasks in the follow-up interview. U3
even observed how the specific pattern of turning on a lamp
would be perfect for templating, a feature implemented, but
not experimented during the study. In general programming by
example, using templates or predefined scenarios, appears to
be suitable for the participants and would minimize the current
reliance on labels, reducing the programing task to mapping
scenarios to concrete devices.

4) Required vs optional: All participants noted difficulties
in understanding which fields were required and which were
optional in modal boxes (Figure 7). Most participants at first
tried to select as many options as possible, while trying to
make up a reason and meaning for a specific setting. Similar
problems could be observed with regards to condition field
in scenarios, where leaving it empty felt as something was
missing. “It looks like it is missing something in the middle,
but I have no idea what it should be. ”, “(why do you
believe that it should be used?) because it is there.” (U4).
Emphasizing the difference between events, conditions and
actions could help, possibly separating conditions from the
causal relationship between events and actions.

5) Designing constraints and identifying bad scenarios:
All of the participants felt comfortable with designing con-
straints in the system, with a clear understanding of how they
were different from the scenarios in Tasks 1 and 2. Both U4
and Ub suggested restrictions on when the light should turn
off when asked to think up an example of a constraint before
being asked to design Task 3. During Task 3, both U1 and U4
noted that while they understood the usefulness of constraints,
they found that this particular one would not fit with their daily
routines or did not take into account pets roaming the house.
This highlights the importance for inhabitants to understand
the automation of their living space and enable them to act
upon it.

Linking the error message triggered by the design of the
scenario in Task 4 with the constraint designed in Task 3
proved to be more challenging. When faced with the message
stating that the scenario violated a constraint, the reactions
varied. While all were able to decipher the message and apply
the change to the scenario, not all were able to link it to the
previously designed constraint. U4 was however immediately
able to identify the link between the constraint and the error. At
the same time, he was able to understand the use of conditions
in scenarios “ oohhh! Now I understand the box in the middle!”
(U4). After this realization, U4 was able to identify a number
of scenarios in which conditions were necessary and used
correctly. Highlighting the *why’ when presenting the error is a
first step to solve this issue, making it explicit as to where this
constraint comes from. When constraints have been designed

months or years in advance, it would not be fair to expect
even the most observant user to remember the exact reason
for adding a constraint. One solution could be to add name,
description and the visualization of the specific constraint.

VI. DISCUSSION AND FUTURE WORK

In light of the experiments that were conducted, a number
of ideas and possibilities for improvement emerged. Apart
from improving the graphical representation to be more in-
tuitive, a deeper integration of templating and programming
by example could be helpful to help ease users into scenario
creation. Suggesting templates based on installed devices is
another possible extension of this. Another approach to be
tested (more goal oriented compared to our sequential pro-
gramming approach), would be a wizard supporting the user
in the creation of scenarios. The notion of time in the interface
is also an interesting point. We initially thought that the event
was the easiest part to put timing constraint. It seems however
that having time in actions could also be an interesting path
to explore. Finally, it would be interesting to do an in depth
user study going into detail as to how specific groups (such
as programmers and non-programmers for example) approach
scenario creation.

Another type of improvement that is foreseen is on the
backend and the utilization of the verification engine. Veri-
fication could be used for checking feasibilities of scenarios,
detect conflicts between them, or support the user in debugging
scenarios by finding the cause of undesired behaviors. Some
work also needs to be done in improving the verification time.
We noticed in fact that some devices with large input values,
such as dimmers for example, lead to long verification time.
Reducing or abstracting these values into intervals could sig-
nificantly improve the verification. Compositional verification
is also another direction that will be explored to improve this
step of the process.

VII. RELATED WORK

The work presented in this paper follows a trend in ap-
plying formal method to reason about reliability of intelligent
environments. Apart from the works already mentionned in
the introduction [2], [3], [4], we can mention the work done
in [19]. In this work the authors formalize a Smart Home
environment using Petri-Nets which enables a formal analysis
of the environment. This is similar to the work that we have
previously done in [5] using TA.

We divide the rest of the related work into three categories.
Firstly we discuss research done on the use of scenarios to
build specifications for intelligent environments. Secondly we
describe research projects that have developed user friendly
programming interfaces for home automation, be it tangible,
block building or textual interfaces. Lastly we mention ma-
chine learning approaches that solve complexity issues by
learning from the user.

A. Rule Based Scenario

The work of Augusto and Nugent [12] is the first noticeable
appearance of the concept of Event-Condition-Action (ECA)
in smart homes, in which an event triggers an action if a
certain condition is met. They bring together Active Databases

concepts and Temporal Reasoning to define an ECA language
with temporal constrains. They provide a detailed explanation
of the expressive power of the language and a formal definition
of the different elements. We reuse their concept of ECA
language to model scenarios and constraints and translate them
into TA. However the language we developed is intentionally
less expressive in order to keep complexity at an acceptable
level of simplicity for the user. We also note that our system
does not record events, which implies that language elements
in a single scenario must be related in a sequential order.

To enable flexible and simple programming of indirect
control in smart environments, Garcia et al. [17] make use of a
context-aware middleware combined with an ECA language.
We note that their work is rather general as their focus is
on all types of smart environments and not only on home
automation. The ECA language they use is designed to isolate
the complexity of the scenario, and flexibility is provided by
the use of wild cards that represent sets of entities instead
of single entities. They conducted a user study to evaluate the
language over two groups, those with programming experience
and those without. The study shows that both groups can
easily differentiate events from conditions in the language,
but that natural language does not make the distinction clear
for non programmers. This shows that ECA languages can be
understood by people, and that graphical representation might
help non technical people to use them. In order to remove time
complexity, they introduce timers that replace time relations
between events. However, the user study did not take into
account timed scenarios, so there is no confirmation that timers
are a good way of reducing time complexity for the users.
Moreover, the Ul provided as examples are not discussed in
details and are not evaluated.

Qiao et al. [16] present visual ECA rules with temporal
events. They first define an ECA language extended with Met-
ric Temporal Logic (MTL) that allows them to express more
complex scenarios. They then propose a visual representation
for these rules and the relations between events, conditions and
actions. They finally provide a GUI aimed for users to design
ECA rules. If the ability to use MTL within the ECA rules can
be appealing to experienced user, the added complexity might
confuse the ones not used to temporal logic. A similar remark
can be made on the GUI, which is rather technical and seems
directed toward experienced users.

B. Tangible programming tools

Drawing on observations on context-aware applications,
Lee et al. [20] present a smartphone app, GALLAG, for
tangible programming in a home automation setting where
device actions are programmed by recording user actions. The
focus of Lee et al. is mainly on small and simple applications
that provide reminders and audible rewards when the user
performs actions in a fake household setting. The approach
is similar to that of HomeMaestro [18]. Both solutions make
use of a simple If-then relationship between input and output,
however GALLAG only allows for tangible programming
to be used in the If. Neither solution provides support for
temporal relationships, nevertheless Lee et al. do provide ways
to virtually add temporal requirements.

C. Machine learning approaches

A different approach to creating scenarios and interaction
in a smart home is to use machine learning techniques, taken
by the Nest thermostat®. This thermostat learns from the user
behavior to generate personalized heating and cooling schedule
to improve comfort and energy consumption. It also provides
a smart phone and web-based access to the schedule and to
control the thermostat in real time, giving raise to a better
interaction compared to classic thermostats. User experiences
with this intelligent thermostat have been reported in [21].
Although the results cannot be directly generalized to all
learning systems, and more studies are needed to understand
and improve user interactions with such systems, they provide
interesting insights on users’ reactions and expectations. They
first show a frustration from the users due to a lack of control
and understanding of how the system generates the schedule.
In some cases, that led to the user overriding the automated
schedule with a manual one. Facilitating the creation of intel-
ligence by the user itself might thus improve its collaboration
with the system. Even though the intelligent features of the
thermostat did not satisfy all the users, they generally found
it more enjoyable to use than a classic thermostat, mostly due
to its interactive design and the smart phone access to it. This
shows that it is essential to provide well designed interfaces
that enable the user to have a sense of control over the system.

In this paper we have focused on enabling users to program
their own environment to help them understand it, and propose
them to tell the system what it should not do. We note
that during our survey of related work we have not found
any proposal for constraining the control to allow users to
experiments safely with creating scenarios.

VIII. CONCLUSION

In this paper, we have presented a framework enabling the
specification of scenarios and constraints preventing users from
defining scenarios leading to undesired configuration of the
environment. The specification language is based on an ECA
paradigm and we provided a semantics of this language in the
form of TA, making possible a formal verification of scenarios
with respect to the constraints. We have then presented a
prototype implementation of this framework composed of a
backend that performs the translation of the language and the
verification, and a user interface aimed at facilitating the design
of the scenarios. We finally presented a user study that provides
interesting findings for developing user interfaces on top of
an ECA languages, simplifying scenario specifications and
the understanding of constraints for restraining scenarios. This
opens up for further work and experiments, and applications
of formal methods to intelligent environments.

ACKNOWLEDGMENTS

The authors would like to thank Jesper Kjeldskov and Anders P.
Ravn for valuable conversations throughout the writing of this paper.
This research is partially founded by the Danish project TotalFlex and
the European Projects Arrowhead and Intrepid 3.

Zhttp://nest.com
3totalflex.dk, arrowhead.eu, fp7-intrepid.eu

(1]

(2]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

M. Weiser, “The computer for the 21st century,” Scientific american,
vol. 265, no. 3, pp. 94-104, 1991.

J. C. Augusto and M. J. Hornos, “Software simulation and verification
to increase the reliability of intelligent environments,” Advances in
Engineering Software, vol. 58, pp. 18 — 34, 2013.

A. Coronato and G. D. Pietro, “Formal design of ambient intelligence
applications,” Computer, vol. 43, pp. 60-68, 2010.

F. Corno and M. Sanaullah, “Design-time formal verification for smart
environments: an exploratory perspective,” Journal of Ambient Intelli-
gence and Humanized Computing, pp. 1-19, 2013.

P. Dalsgaard, T. Le Guilly, D. Middelhede, P. Olsen, T. Pedersen,
A. Ravn, and A. Skou, “A toolchain for home automation controller
development,” in Software Engineering and Advanced Applications
(SEAA), 2013 39th EUROMICRO Conference on, 2013, pp. 122-129.

A. B. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home automation in the wild: challenges and opportunities,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI "11. New York, NY, USA: ACM, 2011, pp. 2115—
2124.

S. Davidoff, M. Lee, C. Yiu, J. Zimmerman, and A. Dey, “Principles
of smart home control,” in UbiComp 2006: Ubiquitous Computing, ser.
Lecture Notes in Computer Science, 2006, pp. 19-34.

P. Valiente-Rocha and A. Lozano-Tello, “Ontology and SWRL-based
learning model for home automation controlling,” in Ambient Intelli-
gence and Future Trends-International Symposium on Ambient Intelli-
gence (ISAmI 2010), ser. Advances in Intelligent and Soft Computing,
2010, vol. 72, pp. 79-86.

Y. Rogers, “Moving on from Weisers vision of calm computing: Engag-
ing ubicomp experiences,” in UbiComp 2006: Ubiquitous Computing,
ser. Lecture Notes in Computer Science, P. Dourish and A. Friday, Eds.
Springer Berlin Heidelberg, 2006, vol. 4206, pp. 404—421.

C. Alexander, Notes On The Synthesis Of Form.
Press, 1964.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183 — 235, 1994.

J. C. Augusto and C. D. Nugent, “The use of temporal reasoning and
management of complex events in smart homes,” in ECAI, vol. 16.
Citeseer, 2004, p. 778.

G. Behrmann, A. David, and K. Larsen, “A tutorial on Uppaal,” in
Formal Methods for the Design of Real-Time Systems, ser. Lecture Notes
in Computer Science, M. Bernardo and F. Corradini, Eds. Springer
Berlin Heidelberg, 2004, vol. 3185, pp. 200-236.

T. Le Guilly, P. Olsen, A. Ravn, J. Rosenkilde, and A. Skou, “Homeport:
Middleware for heterogeneous home automation networks,” in Per-
vasive Computing and Communications Workshops (PERCOM Work-
shops), 2013 IEEE International Conference on, 2013, pp. 627-633.

D. McCarthy and U. Dayal, “The architecture of an active database
management system,” SIGMOD Rec., vol. 18, no. 2, pp. 215-224, 1989.

Y. Qiao, H. Wang, K. Zhong, and X. Li, “Visual event-condition-action
rules with temporal events,” in Eighth Real-Time Linux Workshop, 2006,
p. 275.

M. Garcia-Herranz, P. A. Haya, and X. Alaman, “Towards a ubiquitous
end-user programming system for smart spaces.” J. UCS, vol. 16, no. 12,
pp. 1633-1649, 2010.

T. Karagiannis, E. Athanasopoulos, C. Gkantsidis, and P. Key, “Home-

maestro: Order from chaos in home networks,” Microsoft Research,
Tech. Rep., 2008.

S. W. Loe, S. Smanchat, S. Ling, and M. Indrawan, “Formal mirror
models: an approach to just-in-time reasoning for device ecologies,”
International Journal of Smart Home, vol. 2, no. 1, pp. 15-32, 2008.

Harvard University

J. Lee, L. Garduiio, E. Walker, and W. Burleson, “A tangible program-
ming tool for creation of context-aware applications,” in Proceedings
of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, ser. UbiComp’13, 2013, pp. 391-400.

R. Yang and M. W. Newman, “Learning from a learning thermostat:
Lessons for intelligent systems for the home,” in Proceedings of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp’13, 2013, pp. 93-102.

