Part 1

This 1s What a Part Would
Look Like

Chapter 1

Modelling and Analysis of Component
Faults and Reliability

1.1 Introduction i 3
I P N O 3 1 P 5
1.2 A Development and Analysis Processooian 5
1.2.1 Ideal Modelo 6
1.2.2 Modeling Faults ... 7
1.2.3 Fault Tree Analysiscooiiiiiiiiiiiiiiiiian. 8
1.2.4 Reliability Assessmentcooiiiiiiiiiiiiaan.. 10
1.3 Example ... 11
1.3.1 Ideal Model ... 11
1.3.2 Modeling Faults ... 13
1.3.3 Fault Tree Analysisccoooiiiiiiiiiiiiiiiiniiineen.. 14
1.3.4 Reliability Assessmentcooiiiiiiiiiiiiian.. 15
1.4 Discussion, Conclusion, Related and Further Work 17
141 DISCUSSION .ttt 18
1.4.2 ConcluSionoiiiiiiiiiiii i 18
1.4.3 Related Work ... 18
1.4.4 Further Worko 20

Abstract: This chapter presents a process to design and validate models of
reactive systems in the form of communicating timed automata. The mod-
els are extended with faults associated with probabilities of occurrence. This
enables a fault tree analysis of the system using minimal cut sets that are
automatically generated. The stochastic information on the faults is used to
estimate the reliability of the fault affected system. The reliability is given
with respect to properties of the system state space. We illustrate the process
on a concrete example using the UPPAAL model checker for validating the
ideal system model and the fault modeling. Then the statistical version of the
tool,UPPAAL-SMC, is used find reliability estimates.

4 Modelling and Analysis of Component Faults and Reliability

1.1 Introduction

Dependability of software systems in its widest meaning [3] is an area
which calls for application of rigorous reasoning about programs. This is in
particular the case for embedded software, where programs interact closely and
continuously with a larger environment. Therefore, it has been investigated by
developers of formal methods through decades. Here, Kaisa Sere with Elena
Troubitsyna [24] have done seminal work which through the passed years has
been continued with integration into development processes [27]. The work
presented here has a similar perspective. It was inspired by model based test-
ing of real-time systems [22] and analysis of service oriented home automation
systems [12]. In these contexts, it is interesting to consider how models de-
veloped for testing or interaction analysis can be reused for safety analysis
and perhaps even answer questions about the reliability of the overall system,
because models are not inexpensive. It is a major development effort to build
useful models of software and, even more so, of the context in which the soft-
ware is embedded. The contribution in this paper is thus a systematic process,
where behavior models are reused in safety analysis and reliability analysis of
embedded systems.

The initial models have to describe the dynamics of a system, not only
structural properties. They could come from Model Based Development
(MBD) in the form of state charts or state machines for the software; for
the environment there might be some form of tractable hybrid automata [16],
perhaps in the form of timed automata [1] (TA). In other cases the models
could come from model based testing or other analyzes. Whatever the origin,
we assume that they describe the behavior of ideal, correct systems which are
not affected by any faults.

Since the software is embedded in physical systems, faults will inevitably
occur due to wear and tear. Software component failures may also be included.
Although, they may often be hidden in electronic components with built-in
intelligence. Faults are essentially events that affect the behavior of the system
as a whole; they may be classified in many ways as described by Avizienis in
particular, see [3] for further work. However, we assume that a list of likely
faults is known for the system under consideration.

In a conventional process faults are used in a safety analysis without con-
sidering behaviors, but as pointed out in e.g. [15], faults are related to dy-
namics of a system. A further step is to integrate the analysis with behavioral
models of a system. Here we are fortunate to be able to build on the work of
Shéfer [23] who uses phase automata as the system model and the duration
calculus to assign semantics to fault trees, and Thums et al. [26] who use TA
for modeling and Computational Tree Logic (CTL) [13] for fault tree seman-
tics. Finally, Bozzano et al. [9] have gone a step further and automated the

Modelling and Analysis of Component Faults and Reliability 5

synthesis of fault tree from system modeled as Kripke structures, a result we
extend to TA. Thus, there is a solid basis for model based safety analysis.

There is, however, a catch when augmenting an ideal model with faults and
thus introducing failure modes. It should not be the case that faults provide
desired functionality! This issue has been investigated by Liu and Joseph [20],
who present suitable healthiness conditions. They are employed in a TA setting
in [30] which is the formulation used here.

A system with failing components may be saved from failure by augmenting
it with fault-tolerance mechanisms as done in [30]. Yet, this is costly, and
there is still a probability of failure. The real question is: how reliable is
the system? Here, a stochastic model is needed. By assigning probabilities to
faults, an automata model becomes a Markov process, or if non-determinism
is involved, a Markov Decision Process. Both can be handled with model
checking techniques, see for instance [5, 14]. It may not be realistic to model
check a larger model to get a figure for the reliability; so since the basic fault
probabilities are estimates anyway, it is feasible to use the ideas of statistical
hypothesis testing and get an answer with some chosen degree of likelihood.
This is mechanized in Statistical Model Checking (SMC) [19] which we apply
in this paper.

1.1.1 Overview

The systematic approach outlined above is presented succinctly in Sec-
tion 1.2. In order to demonstrate the approach, we apply it to a concrete use
case using the model checker UPPAAL [8] and its statistical version UPPAAL-
SMC [11] in Section 1.3. Finally, we discuss limitations, related work and
provide a conclusion and possible future work in Section 1.4.

1.2 A Development and Analysis Process

The development process motivated in the introduction has as objective
to enable reliability assessment of reactive systems. The overall process, illus-
trated in Figure 1.1, is as follows:

1. Design and verify an ideal model of the system that correctly imple-
ments its requirements. As in any system modeling process, the models
are derived from requirements and available components. Different types
of requirements exist, from functional ones, that express the function-
ality that the system should provide to extra-functional ones, which for
example constrain the time in which a function of the system should
execute.

6 Modelling and Analysis of Component Faults and Reliability

This kind of model is well known from model based development and
forms a basis for verification of correctness of a system design.

2. Augment the ideal model with failure modes to produce a faulty model
and verify that they invalidate some requirements.

This is a novel step. It aims at analyzing requirements which are orthog-
onal to those for the ideal model. A borderline case is safety requirements
prohibiting states that can cause harm to the larger environment of the
system.

3. From the augmented model a fault tree for safety analysis can be derived.
It enables to detect the weak points of the system and strengthen them
if necessary.

4. Associate failure modes with failure rates to obtain a probabilistic model.
It allows an assessment of system reliability. When validation fails, the
previously generated fault tree can be used to determine if the compo-
nent structure should be updated or its reliability improved. This is a
novel step in conventional software development, but it is known from
safety analysis. Since failures are stochastic in nature, analyzing them
requires an estimate of the probability of their occurrence. Exactly how
they are found is a gray area, ideally they are obtained through statis-
tical experiments; but this requires testing many similar components.
This is hardly feasible for complex components, so in practice they are
most likely estimates based on experience. Nevertheless, it is assumed
that Mean Time To Failures (MTTF) and failure rates are known in
advance for both requirements and components.

This process is an iterative one, and failure in one of the validation steps
implies a need to step back and modify the model or the properties specified,
as illustrated by the dashed lines in Figure 1.1.

1.2.1 Ideal Model

Tractable models are usually finite state abstractions of the concrete sys-
tem. Modeling the behavior of its components involves representation of their
states, the transition between those, and their interactions with other compo-
nents and possibly global state variables. The requirements are translated to
predicates, usually in some dynamic logic in the case of reactive systems. The
requirements are then checked to hold for the model. In general, two types
of properties can be verified. Safety properties say that bad states are never
entered, while liveness properties say that the system keeps on moving, in
particular that it avoids deadlocks. Simulation is also of interest in this step,
to observe the system evolution for a given period and ensure that it behaves
as expected at least for the observed runs. In our setting it is an essential step
in the process. Fault modeling does not make sense for an inherently faulty

Modelling and Analysis of Component Faults and Reliability 7

Start =0 0N - ------- X

|
1. Ideal . v
N
Model glsﬁes'
Functional
Requirements

Reliability
Requirements

v
—>| abilistic atisfiesD)—> End

I
I

I

I

|

: 4. Prob-
|

I Model
I

I

I

FIGURE 1.1: The process

system, or conversely it is hard to inject specific faults with any effect in a
system that does not have to satisfy any properties.

1.2.2 Modeling Faults

We recall that a failure is a transition from the system providing correct
service to incorrect service. The state of the system when delivering incor-
rect service is called an error state. Finally, the cause of an error is called a
fault. When the system delivers correct service in the absence of faults, the
model is augmented with component faults, represented as transitions from
normal states to error states. For convenience, error states may be duplicated.
The obtained model is called a Fault-Affected Automaton [30]. We recall its
definition here.

Definition 1. (Fault-Affected Automaton) A fault-affected (or F-affected)
automaton is an automaton with identified faulty transitions to error loca-
tions.

e LU ERR is the union of the two finite and disjoint sets of normal and
error locations.

8 Modelling and Analysis of Component Faults and Reliability

e [y € L is the initial location, it is a normal state, thus the system starts
correctly.

Fault transitions in the set F' are the only transitions moving to error locations.

In order to ensure the correctness of the fault modeling, one needs to check
the following healthiness condition. Given an F-affected automaton M of a
correct automaton model S:

H 1. M\F = S, meaning that when removing faulty transitions, the obtained
model is bisimilar with the correct model.

Finally, for any f € F, each fault-affected model M\{F\{f}}, should
invalidate at least one of the properties of S. This is to ensure that each
fault is significant in the model. Insignificant faults can be ruled out using
Fault Tree Analysis, described in Section 1.2.3. Note that in some cases, a
combination of faults leads to an error state, while their individual occurrence
does not. In that case we would consider their combination as a fault in the
set F', and we would need to check that the occurrence of this composite fault
leads to a violation of a system property.

Note that although these conditions are formulated for automata, they can
be interpreted for transition systems in general, see [20].

1.2.3 Fault Tree Analysis

Fault Tree Analysis (FTA) is used to determine the possible causes of a
system failure, and enables one to identify critical components in a system
architecture. It is a top down approach in which a top level event (TLE), rep-
resenting a failure, is decomposed into simpler events composed by boolean
connectives. These events can be further decomposed until a level of elemen-
tary events is reached. Boolean logic is then used to analyze the possible com-
binations of elementary events that can lead to the failure. The basic syntax of
fault trees is composed of event symbols, representing top level-, intermediate-,
or basic events, and logic gates that express boolean relations between events.
Research in this area has provided better semantics for the syntax of fault
trees, enabling the specification of event duration and sequencing [15] for ex-
ample. With advances in modeling formalisms and tools, it has been made
possible to ensure the correctness and completeness of FTA with regards to
models decorated with faults [23, 26]. Recent research has also shown the pos-
sibility of automatic generation of fault trees from fault-affected models [9].

Here we show how to automatically generate fault trees with minimal cut
sets using CTL. In order to generate fault trees we need to compute minimal
cut sets. A cut set is a set of failures that lead to a TLE. A minimal cut set is
a cut set reduced to include only necessary and sufficient failures for the TLE
to occur.

For systems modeled as state machines, we define cut sets and minimal cut
sets as follows. Given a set of faults F', an initial state I and a failure TLE,

Modelling and Analysis of Component Faults and Reliability 9

Algorithm 1 Minimal Cut Sets

if IsCutSet(() then
return ()
end if
Waiting := {FS € F | |FS| =1}
mCS =0
while Waiting # () do
for all F'S € Waiting do
if TsCutSet(FS) then
Waiting := Waiting \ F.S
mCS :=mCSUFS
end if
end for
Waiting := PairwiseUnion(W aiting)
end while
return mCS

CS C Fis a cut set for TLE iff there exist a run of the system, starting from
I, visiting all faulty states in C'S before the failure state T'LE. The cut set
C'S is minimal, iff there is no cut set C'S” of T LE which is smaller, C'S" c CS.
Given mCS = {mCSy,--- ,mCS,} the set of minimal cut sets for a failure
TLE and a set of faults F', we note that mCS C P(F).

It is possible to check if a set of faults F'S is a cut set by checking if there
exist a path where all faults in the cut set are active together with the failure,
while faults outside of the cut set are not:

EO TLE AFSA—(F\ FS) (1.1)

We recall that E< ¢ means that for some paths in the model, there exist
a state where ¢ holds.

To construct fault trees, Formula 1.1 can be used to decide the set of
minimal cut sets for a given model, by iterating F'S through P(F), starting
from the sets with the smallest cardinality to ensure their minimality. This is
realized by Algorithm 1.

The function IsCutSet checks if its argument is a cut set using For-
mula 1.1. The algorithm starts by checking if the empty set is a cut set. If it is,
then either the fault set F' is incomplete or the TLE can be reached without
any error being triggered (which probably indicates an issue with the model
or the specifications). The algorithm explores the power set of F, checking
for each element if it is a cut set. Since the power set is explored from the
bottom, a cut set is minimal, once it is found. When a cut set is found, it is
removed from the Waiting set, as none of its supersets can be a minimal cut
set. Once all sets in Waiting have been checked, the PairwiseUnion function
is applied to it to move on to sets of higher cardinality.

10 Modelling and Analysis of Component Faults and Reliability

/

{A}

\ {B} @
0
FIGURE 1.2: Example of Power Set Exploration

Figure 1.2 shows an example exploration of the set of faults {A, B,C}.
The algorithm finds that C' is a minimal cut set in itself, thus no other sets
containing C' are explored. A and B are not minimal cut sets. The pairwise
union function joins them into the set {A, B}, which is found to be a minimal
cut set. In this case the set of minimal cut sets is mCS = {{4, B}, {C}}.

In addition to identifying critical components and ruling out insignificant
faults as already mentioned, FTA can be used to determine if components,
or sets of components are in series or in parallel. Components in parallel
will belong to one minimal cut set, while components in series will belong to
separate minimal cut sets. This can be valuable as most representations of
system models do not enable an easy visualization of this information.

1.2.4 Reliability Assessment

This step requires that the stochastic process is formulated with tractable
distributions. The realism can always be discussed; but it is necessary to keep
the model simple in order to get results. A component can fail in two ways,
either temporarily (e.g. an unreliable communication channel) or permanently
(e.g. a physical component breaking). Transient faults can be modeled using
probabilistic branching, while permanent faults are modeled using probability
distributions. Assuming constant failure rates, permanent failure transitions
are modeled using an exponential distribution with parameter A = 1/MTTF.
This information is inserted into the model to determine the unreliability of
the system—the probability that it fails after a given period.

Unreliability is expressed as a property over the global state space of the
system. The probability of this property being verified is then estimated using
statistical model checking (SMC), with two different possibilities. Firstly using
hypothesis testing to validate that the probability of failure in a given time
interval is less than a threshold, the time interval and threshold being part of
the system requirements. Secondly using probability estimation to obtain an
estimation of the system unreliability within a confidence interval.

Modelling and Analysis of Component Faults and Reliability 11

1.3 Example

To illustrate the process, we apply it on an example system, simple enough
so that models can be shown here and easily understood. We use UPPAAL and
its statistical version UPPAAL-SMC to verify the model of the system and
estimate its reliability. Note that UpPPAAL and UPPAAL-SMC were chosen
because they make it possible to apply the process on the same model, using
model checking for verifying the correct modeling of faults in a first part and
then using statistical model checking for evaluating reliability in a second part.
We start by creating an ideal model of the example system.

1.3.1 Ideal Model

The system is a gas tank, shown in Figure 1.3. It is composed of five
components:

e the tank structure,

e an input valve, controlling the incoming flow of gas in the tank,

e an output valve, externally controlled, providing gas,

e a sensor, measuring the level of gas in the tank,

e a controller, controlling the input valve based on the sensor’s output.

Its function is to deliver gas when requested from its output valve. We assume
this tank to have a capacity of 10L. When the gas level drops below 2L,
the controller opens the input valve to refill the tank, until the level reaches
8L. If the level of the tank rises above 10L, it explodes. Obviously this is an
undesirable event. Another requirement is that the tank should always be able
to provide gas from its output valve, therefore it should never be empty. Now
that we have specified the system and its requirements we continue to model
it.

The first thing is to extract the variables from the specifications. We have:

e the level of the tank,

e the state of the sensor,

e the state of the input valve,
e the state of the output valve.

The declaration of these variables is shown in Listings 1.1. Constants are used
to improve the clarity of the models. Note that the level of the tank and the
sensor are initialized to a value that corresponds to a normal state of the

12 Modelling and Analysis of Component Faults and Reliability

—E MAX
PUt T GH
Low Output

FIGURE 1.3: Gas Tank Example

system, where the level of the tank satisfies the requirements and the sensor
reports a correct value.

Listing 1.2: Channel and Time Def-

inition
Listing 1.1: Variable Definitions broadcast chan levelSync;
const int MAX 10; broadcast chan stop;

broadcast chan open;

t int HIGH = 8;
gggzt iﬁt LOW _ 22 broadcast chan close;
const int CLOSED — 0; broadcast chan updateSensor;

const int OPEN 1;
const int INIT_LEVEL

Listing 1.3: Level calculation
const int MINUTE = 1;

const int HOUR = 60xMINUTE; void calcLevel () {
const int DAY = 24xHOUR; if (input == OPEN){
const int YEAR = 365%DAY; level++;
int level = INIT_.LEVEL; if (output == OPEN){
int output = CLOSED; level ——;
int input = OPEN; }
int sensor = INIT_.LEVEL; if(level < 0){
level = 0;
}
}

We detail the models shown in Figure 1.4. First, we use a ticker (Fig-
ure 1.4a) to discretize time and enforce a time unit among the models. The
tank (Figure 1.4c) updates the level variable through the function calcLevel ()
shown in Listing 1.3. It also triggers the update of the sensor value. The sen-
sor reports the level of the tank, and notifies of any changes. The input valve
opens or closes when told to do so. At each time unit, the output valve can be
opened or closed. Since its state is externally controlled, we create two prob-
abilistic branches with equal weight to indicate that each time the transition
is taken, there is an equal probability the valve is opened or closed. Finally,
the controller implements the previously introduced specifications.

Note that components can synchronize and exchange information between
each others using the channels listed in Listing 1.2. A “!” indicates that the
automaton is initiating the synchronization, and possibly sending a wvalue,
while a “?” indicates that the automaton is waiting for synchronization, and
possibly receiving a value. Note that it is required for SMC that all channels
be broadcast, meaning that more than one automaton can receive a synchro-

Modelling and Analysis of Component Faults and Reliability 13

P AO —(level > MAX) v
Py: A0 —(level = 0) e
Ps;: AO (level > LOW Alevel < HIGH)

TABLE 1.1: Specifications expressed as UPPAAL properties

nization, and that a sender can synchronize even when no receiver is waiting
for synchronization.

The model is verified against the system specifications; that it should not
rupture, and should never be empty. We verify them with UPPAAL using the
CTL formulas shown in Table 1.1. We recall that AO ¢ means that for all
paths and all state of the model, ¢ holds.

P, ensures that with the given design of the system, the tank cannot
rupture. P, ensures that the tank cannot be empty. Ps ensures that the control
is satisfactory.

Theorem 1. The properties P;_3 are satisfied by the network of TA in Fig-
ure 1.4.

Proof. The properties are verified using UPPAAL. O

Other features of UPPAAL can be used to analyze the model. For instance
the simulator can be used to get an indication of how the model evolves.
The verifier can be used to track certain values for a set of simulations and
visualize how they evolve. An example of this can be seen in Figure 1.5, where
the value of level has been tracked for one simulation. This shows that the
system evolves as expected.

1.3.2 Modeling Faults

In our example, we assume that only the input valve and the sensor can
fail, and that their respective MTTF is 15 years and 20 years. We also consider
that when the input fails, it stays open, and that when the sensor fails it stops
reporting values, in effect stopping the controller. In order to keep the models
clear, we propose to separate the modeling of the faults from the model of
the components, as shown in Figure 1.6. Note that Figure 1.6e is not a fault
model but an observer automaton. This is used to make queries more clear by
using the rupture variable rather than level > M AX. Note also that the use
of the id parameter in the sensorFail[id] synchronization is in anticipation
to the instantiation of several sensor in a later step.

Theorem 2. None of the properties P;_3 are satisfied by the fault affected
model of the system.

Proof. Counter examples are found using UPPAAL. O

14 Modelling and Analysis of Component Faults and Reliability

t==1
ick!
@K] Elc_k-o close? DC)><] open?
t<=1 - input = CLOSED input = OPEN
(a) Ticker (b) Input Valve
tick?

levelSync?

Init Sensor = level
levelSync!

calcLevel() updateSensor!

(c) Tank (d) Sensor

sensor > LOW && sensor < HIGH
sensor <= LOW
open!

1 1
output = CLOSED;~ " f
I

~7 output = OPEN
I
} updateSensor?
|

ensor >= HIGH
close!

Closed @fick? tick? é Open

(e) Output Valve (f) Controller

FIGURE 1.4: Models of the System Components

Simulations (1)

@
E
S 4.4 Elevel

22 44 66 88 110 132 154 176 198
time

FIGURE 1.5: Simulation

Note that we have assumed only permanent faults and simple failure mod-
els. However, transient faults can also be modeled using probabilistic branch-
ing as in Figure 1.7a which shows a model of an unreliable sensor. Figure 1.7b
shows a complex observer that models a failure occurring when two out of
ten measurements are erroneous. We however do not use these model in our
analysis to keep the example simple.

Having a fault decorated model, we move on to FTA to obtain an overview
of the combinations of faults leading to failure of the system.

1.3.3 Fault Tree Analysis

We construct the fault tree using the FTA explained in Section 1.2.3. We
take as TLE the rupture of the tank. The queries run by the algorithm are
shown in Table 1.2. Using this analysis, we can observe that both the input

Modelling and Analysis of Component Faults and Reliability 15

inputFail? inputFail! Fail
input = OPEN
close? open?
input = CLOSED input = OPEN 1:(15*YEAR)
(a) Input with Faulty Transition (b) Input Failure
levelSync?

Init S€nsor = level sensorFail[id]!
0—¢ ®
sensorFail[id]? updateSensor! 1:(20*YEAR)

(c) Sensor with Faulty Transition (d) Sensor Failure
level > MAX
ruptureC!

rupture = true

(e) Monitor for tank rupture

FIGURE 1.6: Fault-Affected Component Models

level != sensor
tick?
0 level != sensor
Q (—0
S Failure
level == sensor
level == sensor
level_sync? . && counter ==9 oo ounter <9
sensorFail?
A tick?
updateSensor!” & counter++
(a) Unreliable Sensor (b) Complex Failure Observer

FIGURE 1.7: Unreliable Sensor and Associated Complex Failure Observer

valve and the sensor are single points of failure of the system. Single points
of failure are usually not desirable, but can be acceptable if they are highly
reliable. In order to estimate this we assess the reliability of the system.

1.3.4 Reliability Assessment

The example system can fail in two different ways. Either the tank ruptures
or it becomes empty. Both are considered reliability issues, since they prevent
normal operation. Only tank rupture is considered a safety issue, considering
that it may endanger lives. These two cases are captured by the specifications

ES rupture A —Input.Fail A Sensor.Fail v
ES rupture A Input. Fail A\ —~Sensor.Fail v

TABLE 1.2: Output of the FTA

16 Modelling and Analysis of Component Faults and Reliability

of properties P, and P, in Table 1.1. In order to conduct the analysis, we need
to set up reliability and safety requirements. We specify the followings:

1. the probability of system failure within one year should be lower than
10%,

2. the probability of catastrophic event within three years should be lower
than 5%.

A system failure corresponds to a transition from a state in which the
system delivers correct service to one where it does not. A catastrophic event
is a failure of the system that impacts the system environment, in this case the
rupture of the tank. Note that a catastrophic event implies a system failure,
while the opposite is not true.

We start by evaluating unreliability within one year of service. We thus
ask the question,

“What is the probability Par(Ci<iyear (rupture V level = 0)) 27,

assuming a time unit in minutes. We consider that we want an uncertainty
of ¢ = 0.03 and that we want a 95% confidence that the result is correct.
Therefore we set the significance level to a = 0.05.

With a time of 31 minutes', we obtain an approximation interval of
[0.0924592, 0.152456], which goes above the required 10%. We can therefore
not guarantee that the model satisfies the requirements.

We then assess the safety of the system; that the probability of catastrophic
event during a three years period is less than 5%. Given the extended time
period, we use hypothesis testing, that requires a lower number of simulations
than probability evaluation. We thus ask the question, given the fault affected
model M of the system,

“is Par(Ce<syearrupture) > 0.0527,

assuming a time unit in minutes. We set probabilistic deviations of 6 = +0.001
and the probabilities of Type I and II errors of a = § = 0.05. With a verifica-
tion time of 2 hours and 24 minutes we get a positive answer, indicating that
the safety requirement of the system is not met.

Note that we use minutes as the time unit as the number of simulations
required using seconds makes the estimation process excessively long. This is
obviously a drawback of SMC, since the execution time depends heavily on
the length of each trace. However, compared to analytical solutions this is
expected to scale better, since the generation of traces can be parallelized.

The probability of failure is too high w.r.t. the specifications. We need to
strengthen the critical points of the system revealed by the FTA in order to
obtain an acceptable reliability. To do so, different possibilities are available.

1All experiments are run on an i7 quad core 2.10GHz laptop with 8GB of RAM.

Modelling and Analysis of Component Faults and Reliability 17

Safety Input safetyFail2
Tank
sensor > HIGH
updateSensor?
. . fety =1
(a) Input pipe upgraded with a safety sarety
valve (b) Safety Valve Model
safetyFail! Fail
1:(50*YEAR)

(c) Safety Valve Failure Model

FIGURE 1.8: Safety valve

The easiest would be to increase the reliability of the individual components.
However, this is not always possible, due to cost or physical constraints. An-
other is to add additional safety or redundant components to the system. In
this case we add a safety valve to the input and a redundant sensor.

The safety valve closes the input pipes when the tank level exceeds the
level HIGH. This safety valve is directly connected to the sensor, and as it is
simpler than the input valve, we consider its reliability to be higher (MTTF
of 50 years). The safety valve, its model, and failure model are shown in
Figure 1.8. The function calcLevel () of Listing 1.3 is updated to take it into
account by constraining the increase of the level of the tank to when the safety
valve is open.

The redundant sensor is introduced in the system by instantiating a new
Sensor and SensorFail process in the model.

After introducing these additional components, the FTA is performed
again. Its outputs indicates that the fault tree is composed of two minimal
cut sets, one containing the failures of the input and safety valves, the other
the failures of the two sensors. The absence of minimal cut set with a single
components indicates the absence of single point of failure.

The statistical estimation of system reliability and safety is then per-
formed again. We first obtain an estimation of reliability within the interval
[0.0321459, 0.0919823] after 24 minutes. In order to convince ourselves of the
results, we use hypothesis testing that, after 39 minutes confirms the result.
We are thus 95% confident that the unreliability of the system within a 1 year
period is less than 10%.

The hypothesis testing for the system testing with the updated model
results in a negative answer after 11 hours and 28 minutes. We thus have
obtained a satisfactory model of the system with regards to its specifications.

18 Modelling and Analysis of Component Faults and Reliability

1.4 Discussion, Conclusion, Related and Further Work
1.4.1 Discussion

The process presented in this paper relies on TA and model checking.
Model checking raises the issue of the scalability of the process, due to the
state space explosion problem. This is a well known problem and abstraction
and optimization techniques can be used to reduce the state space and render
model checking feasible. The choice of UPPAAL as the tool for model check-
ing also reduces verification time as it seems to be the most efficient tool for
model checking TA [29]. The second question regarding scalability is about
the statistical model checking of the TA augmented with probabilistic tran-
sitions. The complexity of statistical model checking depends on the length
of the traces to be generated, and the confidence requested for the statistical
results. We have seen this in our experiments, where the combination of high
time granularity and large time intervals make statistical model checking time
consuming.

Regarding the choice of the tool, we note that UPPAAL-SMC is said to
perform better [11] than the PRISM [18] tool for statistical model checking.
However, PRISM also enables probabilistic model checking, which can be more
efficient than SMC when applicable. We could thus imagine modeling the
system and faults in UPPAAL and use model checking to ensure the correctness
of the modeling, and perform probabilistic model checking when feasible using
PRISM.

1.4.2 Conclusion

In this chapter, we presented a process to design and validate systems
modeled as network of TA. The models are extended with fault transitions to
error states that can be used in the application of two novel steps. We first
showed how to perform an FTA based on these extended models, that helps
identifying single points of failure and ensuring the correctness of the models.
An algorithm to generate complete and correct fault trees with minimal cut
sets was presented to facilitate FTA. The second novel step showed how to
augment the fault decorated models with probabilities to perform reliability
analysis of the system. We finally illustrated this process on a example, using
UppPAAL and UPPAAL-SMC as tool support. Being based on model checking,
the process is inherently limited in terms of the size of the system to be ana-
lyzed. However, this is a well known problem, and techniques for abstraction,
reduction and simplification are available to help reducing it.

Modelling and Analysis of Component Faults and Reliability 19
1.4.3 Related Work

Reliability and safety are broad areas of research that have focused the
attention of many researchers.

Regarding relation between formal models and FTA, we mention the work
of Sere and Troubitsyna [24] who use FTA to refine formal specifications
written with the action system formalism [4]. The difference with our work is
that the fault tree is used to refine the system model, while we derive it from
the system model and use it as to validate and analyze the model.

Assessing safety through linking system reliability and components relia-
bility using probabilistic models is also the objective of the work of Mclver et
al. [21]. The link is made through establishing probabilistic data refinement
by simulation and is limited to sequential models. Troubitsyna takes this work
further by using it in combination with the action system formalism, enabling
its application to reactive systems in [28].

Regarding reliability analysis based on formal stochastic system models,
we mention the work of Kwiatkowska et al. [17] using the PRISM tool [18].
Here our work emphasizes more the analysis process than the tool usability.

PRISM is also used by Tarasyuk et al. [25] to introduce reliability as-
sessment in the Event-B refinement process. Here our work differs in that
the process emphasizes fault modeling and incorporates FTA for identifying
critical components.

Another use of statistical model checking in the context of reliability and
safety analysis is shown by Arnold et al. [2] with the DFTCalc tool. This tool
focuses on FTA to compute system reliability and MTTF. The difference in
their work is that the fault tree serves as the basis of the analysis while we
derive it from a formal model of the system. The advantage of DFTCalc is
to have a more expressive syntax for fault tree (SPARE and Priority AND
gates), but the correctness and completeness of fault trees cannot be checked.
Moreover, using formal models and UPPAAL also allows for checking safety
and liveness properties.

Bozzano et al. [9] present a set of algorithmic strategies that enable the
generation of a fault tree with minimal cut sets. The algorithms are de-
signed for systems modeled as Kripke structures, and are implemented in the
FASP/NuSMV-SA safety analysis platform [10]. The algorithm we propose
rely only on the use of reachability queries. We also mention [6, 7] who pro-
pose to use retrenchment technique for modeling faults. A (concrete) faulty
system is thus related to an (abstract) ideal system via a retrenchment re-
lation. They then present algorithms for generating resolution trees first for
timeless acyclic combinational circuits, and then for cyclic combinational cir-
cuits with clocks. Resolution trees can then be transformed into conventional
fault trees, with the advantage that they provide more detailed relations be-
tween the faults, compared to the fault tree generated by our algorithm that
only contain minimal cut sets.

20 Modelling and Analysis of Component Faults and Reliability

1.4.4 Further Work

To make the process more useful and interesting for safety and reliability
analysis, improving the generation of fault trees is an essential point. As al-
ready mentioned, the fault trees generated by our algorithm are flat, in the
sense that they only provide minimal cut sets. It is however important to be
able to visualize the nested relations between the faults, and generating nested
trees would provide more insights. Generated such trees using a combinatorial
approach is possible, but would not scale well. Applying on-the-fly algorithms
such as the ones used in [9] would improve the performance, and should be
investigated.

Another challenge is to make the process easier to use for practitioners in
the fields of reliability and safety analysis. While preparing this paper, we have
recognized two direct enhancements to UPPAAL to improve its applicability
in this area. The first is to enable the specification of faults in the UPPAAL
GUI and the second is to implement Algorithm 1 in UPPAAL.

Currently, UPPAAL does not provide any contextual understanding of TA,
their states or transitions. Adding such contexts, by for example differentiating
between system and environment models, normal and erroneous states, could
facilitate modelling. Moreover, adding a notion of faults and fault affected
models would enable the automation of several steps of the process presented
here. The tool could for example automatically verify that requirements are
met by the ideal model, and that each specified fault invalidates at least one
of them.

With a specified set of faults and failures, Algorithm 1 could be imple-
mented in the tool and generate a visual representation of the fault tree. The
algorithm can currently be executed using the command-line interface to the
UpPAAL verifier, but including it in the GUI would increase its usability. The
reliability assessment could also be automated, and we are working on an ex-
tension that calculates the probability for each minimal cut set to trigger the
TLE. This way the most likely path to a failure can be determined.

Adding features such as these will make UPPAAL more usable for practi-
tioners and support the use of formal methods in industrial applications.

Bibliography

[1]

2]

Rajeev Alur and David L. Dill. A theory of timed automata. TCS,
126(2):183 — 235, 1994.

Florian Arnold, Axel Belinfante, Freark Van der Berg, Dennis Guck,
and Marille Stoelinga. DFTCalc: A tool for efficient fault tree analysis.
In Friedemann Bitsch, Jrmie Guiochet, and Mohamed Kaniche, editors,
Computer Safety, Reliability, and Security, volume 8153 of Lecture Notes
in Computer Science, pages 293-301. Springer Berlin Heidelberg, 2013.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secur. Comput., 1(1):11-33, January
2004.

R.J.R. Back and K. Sere. From action systems to modular systems. In
Maurice Naftalin, Tim Denvir, and Miquel Bertran, editors, FME ’9:
Industrial Benefit of Formal Methods, volume 873 of Lecture Notes in
Computer Science, pages 1-25. Springer Berlin Heidelberg, 1994.

Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

Richard Banach and Marco Bozzano. The mechanical generation of fault
trees for reactive systems via retrenchment I: combinational circuits. For-
mal Aspects of Computing, 25(4):573-607, 2013.

Richard Banach and Marco Bozzano. The mechanical generation of fault
trees for reactive systems via retrenchment II: clocked and feedback cir-
cuits. Formal Aspects of Computing, 25(4):609-657, 2013.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
Uppaal. In Formal Methods for the Design of Real-Time Systems, vol-
ume 3185 of Lecture Notes in Computer Science, pages 200-236. Springer
Berlin Heidelberg, 2004.

Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic
fault tree analysis for reactive systems. In Automated Technology for
Verification and Analysis, volume 4762 of Lecture Notes in Computer
Science, pages 162—176. Springer Berlin Heidelberg, 2007.

21

22

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

Bibliography

Marco Bozzano and Adolfo Villafiorita. The FSAP/NuSMV-SA safety
analysis platform. International Journal on Software Tools for Technology
Transfer, 9(1):5-24, 2007.

Peter Bulychev, Alexandre David, Kim G. Larsen, Marius Mikucionis,
Danny Bggsted Poulsen, Axel Legay, and Zheng Wang. UPPAAL-SMC:
Statistical model checking for priced timed automata. In Herbert Wik-
licky and Mieke Massink, editors, Quantitative Aspects of Programming
Languages and Systems, Proceedings of the 10th Workshop on, volume 85
of FElectronic Proceedings in Theoretical Computer Science, pages 1-16.
Open Publishing Association, 2012.

Peter H. Dalsgaard, Thibaut Le Guilly, Daniel Middelhede, Petur Olsen,
Thomas Pedersen, Anders P. Ravn, and Arne Skou. A toolchain for
home automation controller development. In 39th Furomicro Confer-
ence on Software Engineering and Advanced Applications, SEAA 2013,
Santander, Spain, September 4-6, 2013, pages 122-129, 2013.

E.Allen Emerson and Edmund M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Science of Computer
Programming, 2(3):241 — 266, 1982.

Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis
Yannakakis. Multi-objective model checking of markov decision processes.
Logical Methods in Computer Science, 4(4), 2008.

Kirsten M. Hansen, Anders P. Ravn, and Victoria Stavridou. From safety
analysis to software requirements. Software Engineering, IEEE Transac-
tions on, 24(7):573-584, Jul 1998.

T. A. Henzinger. The theory of hybrid automata. In LICS 1996, pages
278-292. IEEE, 1996.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Prob-
abilistic model checking for performance and reliability analysis. SIG-
METRICS Perform. Eval. Rev., 36(4):40-45, 2009.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of
LNCS, pages 585-591, 2011.

Kim Guldstrand Larsen and Axel Legay. Statistical model checking past,
present, and future - (track introduction). In Leveraging Applications
of Formal Methods, Verification and Validation. Specialized Techniques
and Applications - 6th International Symposium, ISoLA 2014, Imperial,
Corfu, Greece, October 8-11, 2014, Proceedings, Part II, pages 135-142,
2014.

[20]

[25]

Bibliography 23

Zhiming Liu and Mathai Joseph. Specification and verification of fault-
tolerance, timing, and scheduling. ACM Trans. Program. Lang. Syst.,
21(1):46-89, 1999.

Annabelle Mclver, Carroll Morgan, and Elena Troubitsyna. The prob-
abilistic steam boiler: a case study in probabilistic data refinement. In
IRW/FMP 98, Proceedings of, 1998.

Petur Olsen, Johan Foederer, and Jan Tretmans. Model-based testing of
industrial transformational systems. In Testing Software and Systems -
23rd IFIP WG 6.1 International Conference, ICTSS 2011, Paris, France,
November 7-10, 2011. Proceedings, pages 131-145, 2011.

Andreas Schifer. Combining real-time model-checking and fault tree
analysis. In FME 2003: Formal Methods, volume 2805 of Lecture Notes
in Computer Science, pages 522-541. Springer Berlin Heidelberg, 2003.

Kaisa Sere and Elena Troubitsyna. Safety analysis in formal specication.
In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM99
Formal Methods, volume 1709 of Lecture Notes in Computer Science,
pages 1564-1583. Springer Berlin Heidelberg, 1999.

A. Tarasyuk, E. Troubitsyna, and L. Laibinis. From formal specifica-
tion in Event-B to probabilistic reliability assessment. In Dependability
(DEPEND), 2010 Third International Conference on, pages 24-31, July
2010.

Andreas Thums and Gerhard Schellhorn. Model checking FTA. In FME
2003: Formal Methods, volume 2805 of Lecture Notes in Computer Sci-
ence, pages 739-757. Springer Berlin Heidelberg, 2003.

Elena Troubitsyna. Dependability-explicit engineering with Event-B:
Overview of recent achievements. CoRR, abs/1210.7032, 2012.

Elena A. Troubitsyna. Reliability assessment through probabilistic re-
finement. Nordic Journal of Computing, 6(3):320-342, 1999.

Farn Wang. Efficient verification of timed automata with bdd-like
data structures. International Journal on Software Tools for Technol-
ogy Transfer, 6(1):77-97, 2004.

Miaomiao Zhang, Zhiming Liu, Charles Morisset, and Anders P. Ravn.
Design and verification of fault-tolerant components. In Methods, Models
and Tools for Fault Tolerance, volume 5454 of Lecture Notes in Computer
Science, pages 57-84. Springer Berlin Heidelberg, 2009.

