How to give a research talk

Thomas D. Nielsen

September 2008
The purpose of your talk ...

... is not to

- impress the audience with your brainpower
- tell them all you know about the topic
- present all the technical details
The purpose of your talk ...

... is to

- give the audience a taster for your work
- present the key ideas, intuitions, and results
- make the audience interested
Preparing the presentation

Deciding on what to say and what to omit

- Who is the primary audience?
- If only one thing should be remembered from the talk, what should it be (be specific, what is the key idea)?
Preparing the presentation

Deciding on what to say and what to omit

- Who is the primary audience?
- If only one thing should be remembered from the talk, what should it be (be specific, what is the key idea)?

In general

Convey the essential part of your paper, but don’t overwhelm the audience with too much material.

- It is better to leave out certain details than to give a superficial treatment of everything or to overrun your time.
- Adopt a nonuniform approach when preparing the presentation.

That does not mean holding back important details - merely omitting less important ones!
Structuring the presentation

Guiding the audience

People often use a contents slide:

- Introduction
- Bayesian networks
- Graph concepts
 - Domain graphs
 - Triangulated graphs
 - Join graphs
 - Join trees
- Junction trees
- Message passing

Reconsider!

Instead

- it can be useful to show an outline slide at the start of a section, to help the audience stay on track (or help those who got distracted or lost to rejoin you).
Structuring the presentation

Introduction

Remember: If you bore the audience the first few minutes, you may never get them back ⇒ jump right in!
- Give an example to motivate the problem you are working with!
- Avoid launching into technical details that will confuse the audience.
Structuring the presentation

Introduction

Remember: If you bore the audience the first few minutes, you may never get them back ⇒ jump right in!
- Give an example to motivate the problem you are working with!
- Avoid launching into technical details that will confuse the audience.

Conclusion

For conferences, end your presentation with a contributions/conclusions slides to help the audience remember what to take home from the presentation.
- What should be the last thing the audience sees?
- Don’t be afraid to include open problems.
Structuring the presentation

Introduction

Remember: If you bore the audience the first few minutes, you may never get them back ⇒ jump right in!
- Give an example to motivate the problem you are working with!
- Avoid launching into technical details that will confuse the audience.

The body

... What to put in ...

Conclusion

For conferences, end your presentation with a contributions/conclusions slides to help the audience remember what to take home from the presentation.
- What should be the last thing the audience sees?
- Don’t be afraid to include open problems.
What to put in?
What (not) to put in?

It is usually difficult to follow highly abstract presentations!

Definition

1. **X**: mixed n-dimensional random vector. $Y = (Y_1, \ldots, Y_d)$, $Z = (Z_1, \ldots, Z_c)$ its discrete and continuous parts. A function $f : \Omega_X \mapsto \mathbb{R}_0^+$ is a Mixture of Truncated Exponentials potential (MTE potential) if for each fixed value $y \in \Omega_Y$ of the discrete variables Y, the potential over the continuous variables Z is defined as:

 $$f(z) = a_0 + \sum_{i=1}^{m} a_i \exp \left\{ \sum_{j=1}^{c} b_{i}^{(j)} z_j \right\}$$

 for all $z \in \Omega_Z$, where a_i, $b_{i}^{(j)}$ are real numbers.

2. f is an MTE potential if there is a partition D_1, \ldots, D_k of Ω_Z into hypercubes and in each D_i, f is defined as above.

Ask yourself

Have I illustrated this concept/definitiontheorem ... with an example?
What (not) to put in?

Examples

Use examples to motivate and help the audience

- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

What to include?
What (not) to put in?

Examples

Use examples to motivate and help the audience

- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience

- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

Examples

Use examples to motivate and help the audience
- Convey basic intuition
- Illustrate main idea
- Show extreme cases
- ...

Triangulation

Triangulation by elimination

Eliminating a node: Make all its noneliminated neighbors complete and remove the node.
What (not) to put in?

People can only read or take in very limited information: six or seven things on a slide is quite enough.

- Slides shouldn’t repeat what you plan to say, but rather emphasize it.
- Plan to talk about what’s on the slides rather than read them.
What (not) to put in?

People can only read or take in very limited information: six or seven things on a slide is quite enough.

- Slides shouldn’t repeat what you plan to say, but rather emphasize it.
- Plan to talk about what’s on the slides rather than read them.

Contents

- Don’t overwhelm the audience with mathematical details. Remember to explain the (non-standard) notation being used. Maybe include a few backup slides.

Technical details

$$Q = \frac{1}{2} \sum_{i=1}^{N} \text{tr}(\Gamma_{y_i}^{-1} \mathbb{E}(\mathbf{X} \mathbf{x}^T | \mathbf{D}_i)) + \sum_{i=1}^{N} \mu_{y_i}^T \Gamma_{y_i}^{-1} \mathbb{E}(\mathbf{X} | \mathbf{D}_i) - \sum_{h=1}^{\text{sp}(Y)} \frac{\#y_h \mu_{y_h}^T \Gamma_{y_h}^{-1} \mu_{y_h}}{2} - \ldots$$

- Use descriptive slide titles.
- Avoid a presentation that is just dozens of pages of text.
- Use figures! But be also sure to explain them.
- Use colors (when it is meaningful).
What (not) to put in?

People can only read or take in very limited information: six or seven things on a slide is quite enough.

- Slides shouldn’t repeat what you plan to say, but rather emphasize it.
- Plan to talk about what’s on the slides rather than read them.

Rule of thumb: about 2–3 minutes pr. slide.
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the
Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal.
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too.
Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively.
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless there
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless there is...
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless there is a
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shift the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless there is a point.
Working out the slides

Style

- Do not use non-single-color backgrounds, transition effects, and similar eye candy. It shifts the focus from what is important, the contents.
- Avoid jitter when using overlays.
- Avoid using the reveal technique too excessively unless there is a point.
- Use a sans-serif font for your slides.
- Handwritten slides are fine, but use permanent ink.
The presentation

How to give a research talk

September 2008
Point at the screen not at the laptop
Speak to someone at the back of the room
Make eye contact with the audience (don’t talk to the screen). This makes them more “involved” and also helps you “read” their reactions.
Use rehearsal talks, rehearsal talks, rehearsal talks, ...

"If you’re going to make friends, Larry... you must learn there is a fine line between eye contact and the piercing stare of a psychopath."
Point at the screen not at the laptop
Speak to someone at the back of the room
Make eye contact with the audience (don’t talk to the screen). This makes them more “involved” and also helps you “read” their reactions.
Use rehearsal talks, rehearsal talks, rehearsal talks, ...

Most importantly: Be enthusiastic!
Looking up material

<table>
<thead>
<tr>
<th>Find articles</th>
<th>with all of the words</th>
<th>junction tree</th>
<th>10 results</th>
<th>Search Scholar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with the exact phrase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with at least one of the words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>without the words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>where my words occur</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Return articles written by:</th>
<th>Jensen</th>
<th>e.g., "PJ Hayes" or McCarthy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Publication</th>
<th>Return articles published in</th>
<th>e.g., J Biol Chem or Nature</th>
</tr>
</thead>
</table>
Looking up material

Lazy propagation: A junction tree inference algorithm based on lazy evaluation - [tag]
AL. Martens, FY. Jensen - Artificial Intelligence, 1999 - Elsevier
... L AZY propagation: A junction tree inference ... The cliques of the junction tree are
connected by separators such that the so-called junction tree property holds. ...
Cited by 72 - Related articles - Web Search - All 7 versions

From Influence Diagrams to Junction Trees
... This approach involves a special triangulation of the underlying graph, the con-
struction of a junction tree with special properties, and a message ...
Cited by 137 - Related articles - View as HTML - Web Search - Find in bibliotek.dk - All 4 versions

Optimal Junction Trees
FY. Jensen, FY. Jensen - To appear in Proceedings of the Tenth Conference on ..., 1931 - ca.wisc.edu
... In the next part, we give a simple algorithm for constructing an optimal junction
tree from a triangulated network; ..., construct a junction tree over the cliques. ...
Cited by 105 - Related articles - View as HTML - Web Search - Find in bibliotek.dk - All 10 versions

Hugin---A Shell for Building Bayesian Belief Universes for Expert Systems
SK. Andersen, KG. Olesen, FY. Jensen, FY. Jensen - Proceedings of the Eleventh International Joint Conference ..., 1989 - dl.iiit.ac.in
... transforms into a tree structure, a junction tree. Here ... as a tree, a junction
tree, and by providing the operations for propagation ...
Cited by 253 - Related articles - View as HTML - Web Search - All 4 versions

An algebra of Bayesian belief universes for knowledge-based systems
FY. Jensen, KG. Olesen, SK. Andersen - Networks(New York, NY), 1980 - cats.inist.fr
... model: Models probabilistic: Causal probability: Causality: Causality: Structure arborescent;
Tree structure: Estructura arborescente; Belief universes: Junction tree.
Cited by 149 - Related articles - Web Search - Find in bibliotek.dk - All 4 versions

Blocking Gibbs Sampling in Very Large Probabilistic Expert Systems
... paper suggests and evaluates a variant of Gibbs sampling (Geman & Geman 1984) involving
simultaneous sampling of sets of variables using the junction tree ...
Cited by 65 - Related articles - View as HTML - Web Search - Find in bibliotek.dk - BL Direct - All 7 versions
Looking up material

Results 1 - 10 of about 137 citing *Jensen: From Influence Diagrams to Junction Trees*. (0.24 seconds)

1. **Graphical Models in R**
 SL Lantuizen - Resampling Methods in R: The 2002 Package - ucdex
 Vol. 2/3, December 2002 39 R graphical Models in R
 A new initiative within the R project Steffen L. Lantuizen What is this? In September 2002 a small group of people gathered in Vienna for the brainstorming workshop of a new journal 2002 with the...
 Cited by 1433 - Related articles - View as HTML - Web Search - Find in bibliotek.dk - All 43 versions

2. **Bayesian Networks and Decision Graphs** - [aa.dk](http://scholar.google.de/scholar?hl=en&lr=&q=Bayesian+Networks+and+Decision+Graphs)
 FY Jensen - 2001 - books.google.com
 Cited by 1085 - Related articles - Web Search - Find in bibliotek.dk - All 8 versions

3. **Probabilistic Networks and Expert Systems**
 RG Cowell - 1999 - books.google.com
 Cited by 998 - Related articles - Web Search - Find in bibliotek.dk - All 2 versions

4. **Dynamic Bayesian Networks: Representation, Inference and Learning**
 KP Murphy - 2002 - cs.berkeley.edu
 Page 1. Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy BA Hons. (Cambridge University) 1992 MS (University of Pennsylvania) 1994 A dissertation submitted ...
 Cited by 534 - Related articles - View as HTML - Web Search - All 9 versions

Learning Bayesian networks
RE Neapolitan - Proceedings of the 13th ACM SIGKDD international conference 2007 - portal.acm.org
Google, Inc. Subscribe (Full Service), Register (Limited Service, Free),
Login, Search: The ACM Digital Library The Guide, ...
Cited by 594 - Related articles - Web Search - Get This in Print at HQT - Find in bibliotek.dk - All 3 versions

Bucket elimination: A unifying framework for probabilistic inference - [ucl.edu](http://scholar.google.de/scholar?hl=en&lr=&q=Bucket+elimination%3A+A+unifying+framework+for+probabilistic+inference)
R Dechter - Learning in Graphical Models, 1996 - books.google.com
BUCKET ELIMINATION: A UNIFYING FRAMEWORK FOR PROBABILISTIC INFERENCE R. DECHTER Department of Information and Computer Science University of California, Irvine dechter@ics. ucl. edu Abstract. Probabilistic inference algorithms for ...
Looking up material
Looking up material
Looking up material
Looking up material

The presentation

How to give a research talk September 2008
A couple of references

