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Abstract. This paper provides a comprehensive summary of equiva-
lence checking results for infinite-state systems. References to the rele-
vant papers will be updated continuously according to the development
in the area. The most recent version of this document is available from
the web-page http://users-cs.au.dk/srba/roadmap/.

1 Introduction

The growing interest in verification of infinite-state systems during the last
decade led to the situation where many new results and novel approaches were
invented. The first attempt to map the fundamental techniques and results for
the equivalence checking problems was done by Moller in his overview paper “In-
finite Results” [46], followed by the paper “More Infinite Results” [7] by Burkart
and Esparza focusing on the model checking problems.

A large survey of equivalence and model checking techniques “Verification
on Infinite Structures” appeared in the handbook of process algebra [4] due to
Burkart, Caucal, Moller and Steffen. Yet another overview paper “Equivalence-
Checking with Infinite-State Systems: Techniques and Results” [35] by Kučera
and Jančar contains some recent techniques for simulation and bisimulation
checking.

Although these comprehensive survey papers provide a valuable overview
of proof techniques, the state-of-the-art advances so rapidly that many papers
contain outdated information even before they are published.

The main objective of the presented work is to offer a complete overview
of known decidability and complexity results for equivalence checking in the
most studied classes of infinite-state systems. The most recent version of this
document is available from the web-page http://users-cs.au.dk/srba/roadmap/
and we

would like to encourage you

to send notifications about improvements of the results presented in this paper
to the author. Any such improvement will be promptly incorporated into this
document and the updated version will appear at the URL mentioned above.



We hope that the overview we provide will stimulate further research on
fundamental equivalence checking problems for infinite-state systems and it will
eventually lead towards a definitive closing of all the gaps in the mosaic of infinite
results.

2 Basic Definitions

In this section we introduce the classes of infinite-state processes by means of
process rewrite systems (PRS). Process rewrite systems are an elegant and uni-
versal approach defined by Mayr [41] and they contain many of the formalisms
studied in the context of equivalence checking.

Let Const be a set of process constants. The classes of process expressions
called 1 (process constants plus the empty process), P (parallel process expres-
sions), S (sequential process expressions), and G (general process expressions)
are defined by the following abstract syntax

1: E ::= ε | X
P: E ::= ε | X | E||E
S: E ::= ε | X | E.E
G: E ::= ε | X | E||E | E.E

where ‘ε’ is the empty process, X ranges over Const, the operator ‘.’ stands for
a sequential composition and ‘||’ stands for a parallel composition. Obviously,
1 ⊂ S, 1 ⊂ P, S ⊂ G and P ⊂ G. The classes S and P are incomparable and
S ∩ P = 1.

We do not distinguish between process expressions related by a structural
congruence, which is the smallest congruence over process expressions such that
the following laws hold:

– ‘.’ is associative,
– ‘||’ is associative and commutative, and
– ‘ε’ is a unit for ‘.’ and ‘||’.

Let α, β ∈ {1,S,P,G} such that α ⊆ β and let Act be a set of actions. An
(α, β)-PRS [41] is a finite set

∆ ⊆
(
αr {ε}

)
×Act× β

of rewrite rules, written E
a−→ F for (E, a, F ) ∈ ∆.

An (α, β)-PRS determines a labelled transition system where states are pro-
cess expressions from the class β (modulo the structural congruence), Act is
the set of labels, and the transition relation is the least relation satisfying the
following SOS rules (recall that ‘||’ is commutative):

(E
a−→ E′) ∈ ∆
E

a−→ E′
E

a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E||F a−→ E′||F



(G,G)-PRS
PRS

(S,G)-PRS
PAD

(P,G)-PRS
PAN

(S,S)-PRS
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(1,G)-PRS
PA

(P,P)-PRS
PN

(1,S)-PRS
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(1,P)-PRS
BPP

(1, 1)-PRS
FS

Fig. 1. Hierarchy of process rewrite systems

Many classes of infinite-state systems studied so far — e.g. basic process al-
gebra (BPA), basic parallel processes (BPP), pushdown automata (PDA), Petri
nets (PN) and process algebra (PA) — are contained in the hierarchy of pro-
cess rewrite systems presented in Figure 1. This hierarchy is strict w.r.t. strong
bisimilarity and we refer the reader to [41] for further discussions. It is worth
mentioning that even the class (G,G)-PRS is not Turing powerful since e.g.
the reachability problem (i.e. whether from a given process expression we can
in finitely many steps reach another given process expression) remains decid-
able [41].

An (α, β)-process is a pair (P,∆) where ∆ is an (α, β)-PRS and P ∈ β is a
process expression.

An (α, β)-process (P,∆) is normed iff for all E ∈ β such that P −→∗ E it
is the case that E −→∗ ε. In other words, from every reachable state in (P,∆)
there is a computation ending in the empty process ‘ε’.

In some papers, the definition of normedness requires only the fact that from
every reachable state there is a terminating computation, not necessarily ending
in the empty process. However, e.g. for BPA, in order to achieve a reasonable
notion of normedness, it is also assumed that every process constant used in the
system can perform a transition, i.e., it has at least one rewrite rule associated
to it. This alternative definition implies the notion of normedness introduced
above. Moreover, the definition we gave becomes more interesting even for the
models like PDA, PN, PAD, PAN and PRS where our notion of normedness
guarantees deadlock freedom (here the empty process is not understood as a
deadlock). This means that e.g. in the case of PDA the stack can always be



emptied, and in the case of PN all tokens in places can be removed. Considering
simply the possibility of termination without reaching the empty process usually
does not restrict the power of the models sufficiently.

We will now introduce the notion of strong and weak bisimilarity [45, 48]. A
binary relation R over process expressions is a strong bisimulation iff whenever
(E,F ) ∈ R then for each a ∈ Act:

– if E
a−→ E′ then F

a−→ F ′ for some F ′ such that (E′, F ′) ∈ R
– if F

a−→ F ′ then E
a−→ E′ for some E′ such that (E′, F ′) ∈ R.

Processes (P1, ∆) and (P2, ∆) are strongly bisimilar, written (P1, ∆) ∼ (P2, ∆)
iff there is a strong bisimulation R such that (P1, P2) ∈ R. Given two processes
(P1, ∆1) and (P2, ∆2) with disjoint sets of process constants contained in ∆1

and ∆2, we write (P1, ∆1) ∼ (P2, ∆2) iff (P1, ∆1 ∪∆2) ∼ (P2, ∆1 ∪∆2).
Assume that Act contains a distinguished silent action τ . A weak transition

relation is defined as follows:
a

=⇒def
= (

τ−→)∗◦ a−→ ◦( τ−→)∗ if a ∈ Actr {τ}, and
a

=⇒def
= (

τ−→)∗ if a = τ .
A binary relation R over process expressions is a weak bisimulation iff when-

ever (E,F ) ∈ R then for each a ∈ Act:

– if E
a−→ E′ then F

a
=⇒ F ′ for some F ′ such that (E′, F ′) ∈ R

– if F
a−→ F ′ then E

a
=⇒ E′ for some E′ such that (E′, F ′) ∈ R.

Processes (P1, ∆) and (P2, ∆) are weakly bisimilar, written (P1, ∆) ≈ (P2, ∆)
iff there is a weak bisimulation R such that (P1, P2) ∈ R. Given two processes
(P1, ∆1) and (P2, ∆2) with disjoint sets of process constants contained in ∆1

and ∆2, we write (P1, ∆1) ≈ (P2, ∆2) iff (P1, ∆1 ∪∆2) ≈ (P2, ∆1 ∪∆2).

3 Studied Problems

In this section we define the basic decidability problems studied in the area of
equivalence checking of infinite-state systems.

Strong/Weak Bisimilarity (∼/≈)
The problem is to decide whether a pair of processes from a given class of systems
is strongly/weakly bisimilar. Bisimilarity was originally introduced by Park [48]
and Milner [45] and it is perhaps the most studied behavioural equivalence be-
cause of many pleasant properties it enjoys.

Strong/Weak Bisimilarity with Finite-State Systems (∼ FS/≈ FS)
The problem is to decide whether a process from a given class of systems is
strongly/weakly bisimilar to a given finite-state process. Questions of this nature
are interesting because they enable to relate a complex behaviour of infinite-
state systems with their finite-state specifications. Moreover, recent development
showed that many of these problems become computationally feasible and in
some instances they are solvable even in polynomial time.



Strong/Weak Regularity (∼ reg/≈ reg)
The problem is to decide whether for a process from a given class of systems
there exists a finite-state process such that the two processes are strongly/weakly
bisimilar. The interest in regularity checking is based on the fact that for bisimi-
larity checking of finite-state processes we already have efficient polynomial time
algorithms [25, 47]. A positive answer to the regularity question for a given pair
E and F of infinite-state processes, together with the possibility of algorithmic
construction of bisimilar finite-state processes provides an immediate answer to
bisimilarity checking between E and F .

Remark 1. In the hierarchy of process rewrite systems there is a very close and
obvious relationship between strong regularity checking of normed processes and
the boundedness problem: a normed process is strongly regular if and only if it
has only finitely many (on the syntactical level) reachable states. This property,
however, does not hold for weak regularity.

4 Summary of Known Results

This section gives a summary of currently known decidability and complexity
results for the systems in the PRS-hierarchy. We consider both unnormed and
normed systems and for each decision problem we provide the best complexity
bounds achieved so far.

Each box in the tables below contains the information whether the considered
problem is decidable or not, and in the positive case we present the best known
upper bound in the upper part of the box and lower bound in the lower part.

4.1 BPA (Basic Process Algebra)

BPA normed BPA

∼ ∈ 2-EXPTIME [5, 19]

EXPTIME-hard [26]

∈ P [13], Rem. 2

P-hard [1]

≈ ?

EXPTIME-hard [43]

?

EXPTIME-hard [43]

∼ FS
∈ P [37]

P-hard [1]

∈ P [13]

P-hard [1]

≈ FS
∈ P [37]

P-hard [1]

∈ P [37]

P-hard [1]

∼ reg
∈ 2-EXPTIME [6, 5]

PSPACE-hard [54]

∈ NL [33]

NL-hard [54]

≈ reg
?

EXPTIME-hard [43]

?

NP-hard [56, 60]



Remark 2. Recently an O(n8polylog n) has been described in [38].

4.2 BPP (Basic Parallel Processes)

BPP normed BPP

∼ ∈ PSPACE [18]

PSPACE-hard [53]

∈ P [14], Rem. 3

P-hard [1]

≈ ?, Rem. 4

PSPACE-hard [56]

?, Rem. 4

PSPACE-hard [56]

∼ FS
∈ P [28], Rem. 5

P-hard [1]

∈ P [14], Rem. 5

P-hard [1]

≈ FS
∈ PSPACE [22]

P-hard [1]

∈ P [37]

P-hard [1]

∼ reg
∈ PSPACE [27]

PSPACE-hard [53]

∈ NL [33]

NL-hard [53]

≈ reg
?

PSPACE-hard [56]

?

PSPACE-hard [56]

Remark 3. Recently an O(n3)-algorithm has been described in [24].

Remark 4. At INFINITY’02 Jančar conjectured [17] that the method later pub-
lished in [18] might be used to show decidability of weak bisimilarity for BPP.

Remark 5. The complexity analysis provided in [28] gives a running time in
O(n4).



4.3 PDA (Pushdown Automata)

PDA normed PDA

∼ decidable [50], Rem. 6

nonelementary [2]

decidable [58]

nonelementary [2]

≈ undecidable [55] undecidable [55]

∼ FS
∈ PSPACE [36]

PSPACE-hard [40]

∈ PSPACE [36]

PSPACE-hard [40], Rem. 7

≈ FS
∈ PSPACE [36]

PSPACE-hard [40]

∈ PSPACE [36]

PSPACE-hard [40], Rem. 8

∼ reg
?

EXPTIME-hard [36, 54], Rem. 9

∈ P [10], Rem. 10

NL-hard [54]

≈ reg
?

EXPTIME-hard [36, 54], Rem. 9

?

EXPTIME-hard [36, 54], Rem. 8,9

Remark 6. Additional useful references concerning deterministic PDA are [51],
[52] and [59].

Remark 7. The reduction from [40] (Theorem 8) uses unnormed processes but
can be modified to work also for the normed case. An important observation is
that the stack size of the PDA from Theorem 8 is bounded by the number of
variables in the instance of quantified boolean formula from which the reduction
is done.

Remark 8. Lemma 3 in [55] gives a polynomial time reduction from weak bisim-
ilarity between two pushdown processes (and between a pushdown process and
a finite-state process) to the normed instance of the problem. The reduction
moreover preserves the property of being weakly regular.

Remark 9. In [36] a polynomial time reduction from the acceptance problem of
alternating linear-bounded automata to strong bisimilarity of normed PDA is
provided. Even though there are infinitely many reachable configurations in the
constructed PDAs, one can observe that only a fixed part from the top of the
stack is relevant for the construction. Hence it is possible to ensure that the
PDAs are strongly regular and Theorem 2 from [54] can be applied.

Remark 10. Strong regularity of normed PDA is equivalent to the boundedness
problem (Remark 1). Boundedness (even for unnormed PDA) is decidable in
polynomial time using the fact that the set of all reachable configurations of a
pushdown process is a regular language L [3] and a finite automaton A recogniz-
ing L can be constructed in polynomial time (see e.g. [10]). The check whether
A generates a finite language can also be done in polynomial time.



4.4 PA (Process Algebra)

PA normed PA

∼ ?

EXPTIME-hard [26]

2-NEXPTIME [12]

P-hard [1]

≈ undecidable [57]
?

EXPTIME-hard [43]

∼ FS
coNEXPTIME [11]

P-hard [1]

coNEXPTIME [11]

P-hard [1]

≈ FS
decidable [22]

P-hard [1]

decidable [22]

P-hard [1]

∼ reg
?

PSPACE-hard [53]

∈ NL [34]

NL-hard [53]

≈ reg
?

EXPTIME-hard [43]

?

PSPACE-hard [56]

4.5 PN (Petri Nets)

PN normed PN

∼ undecidable [16] undecidable [16], Rem. 11

≈ undecidable [16] undecidable [16], Rem. 11

∼ FS
decidable [23]

EXPSPACE-hard [39], Rem. 12

decidable [23]

P-hard [1]

≈ FS undecidable [20]
?

EXPSPACE-hard [39], Rem. 12

∼ reg
decidable [20]

EXPSPACE-hard [39], Rem. 13

∈ EXPSPACE [49], Rem. 1

EXPSPACE-hard [39], Rem. 13

≈ reg undecidable [20]
?

EXPSPACE-hard [39], Rem. 13

Remark 11. The technique for proving undecidability of strong bisimilarity for
Petri nets from [16] can be slightly modified to ensure that the constructed nets
are normed. Essentially, it is enough to add extra transitions which enable to
remove all tokens from places. Moreover, whenever such an extra transition is
fired the two nets are forced to become bisimilar.



Remark 12. The problem whether a given place p of a PN can ever become
marked is EXPSPACE-hard (follows from Lipton’s construction [39], for a more
accessible proof see e.g. [9]). We can now easily see that this problem is reducible
in polynomial time to strong nonbisimilarity between PN and FS. All transitions
in a given Petri net N are assigned the same label ‘a’ and we add one more place
q (initially marked) and an extra transition labelled by ‘a’ which takes a token
from the place q and returns it back. Moreover we add another transition labelled
by ‘b’ which can be fired whenever there is a token in the place p. Let P be a
finite-state process defined by P

a−→ P . The following property is immediate: the
place p can become marked iff N is not strongly bisimilar to P . This reduction
works also for normed PN and weak bisimilarity: we take our modified net N
and for each its place we add one extra transition labelled by ‘τ ’ such that the
transition takes a token from the place and removes it. To the finite-state process
P we add the rewrite rule P

τ−→ ε. The net N is now normed and moreover it
is weakly bisimilar to P iff the place p can never become marked.

Remark 13. Regularity of normed PN is equivalent to the boundedness problem
(Remark 1). Boundedness of PN is decidable in EXPSPACE, more precisely in
space 2cn logn for some constant c [49]. Moreover, the boundedness problem of
normed PN is EXPSPACE-hard because it can be easily seen to be polynomi-
ally equivalent to the boundedness problem of general (unnormed) PN and this
problem is EXPSPACE-hard [39] (see also [9]).

4.6 PAD

PAD normed PAD

∼ ?

nonelementary [2]

?

nonelementary [2]

≈ undecidable [55] undecidable [55]

∼ FS
decidable [15]

PSPACE-hard [40]

decidable [15]

PSPACE-hard [40], Rem. 7

≈ FS
decidable [22]

PSPACE-hard [40]

decidable [22]

PSPACE-hard [40], Rem. 8

∼ reg
?

EXPTIME-hard [36, 54], Rem. 9

decidable [44], Rem. 1

NL-hard [54]

≈ reg
?

EXPTIME-hard [36, 54], Rem. 9

?

EXPTIME-hard [36, 54], Rem. 8,9



4.7 PAN

PAN normed PAN

∼ undecidable [16] undecidable [16], Rem. 11

≈ undecidable [16] undecidable [16], Rem. 11

∼ FS
decidable [29]

EXPSPACE-hard [39], Rem. 12

decidable [44], Rem. 1

P-hard [1]

≈ FS undecidable [20]
?

EXPSPACE-hard [39], Rem. 12

∼ reg
?

EXPSPACE-hard [39], Rem. 13

decidable [44], Rem. 1

EXPSPACE-hard [39], Rem. 13

≈ reg undecidable [20]
?

EXPSPACE-hard [39], Rem. 13

4.8 PRS (Process Rewrite Systems)

PRS normed PRS

∼ undecidable [16] undecidable [16], Rem. 11

≈ undecidable [16] undecidable [16], Rem. 11

∼ FS
decidable [29]

EXPSPACE-hard [39], Rem. 12

decidable [44], Rem. 1

PSPACE-hard [40], Rem. 7

≈ FS undecidable [20]
?

EXPSPACE-hard [39], Rem. 12

∼ reg
?

EXPSPACE-hard [39], Rem. 13

decidable [44], Rem. 1

EXPSPACE-hard [39], Rem. 13

≈ reg undecidable [20]
?

EXPSPACE-hard [39], Rem. 13

5 Weakly Extended Process Rewrite Systems

In [31], Křet́ınský, Řehák and Strejček extended the classes from the PRS-
hierarchy by adding a finite control-unit with monotonic behaviour. Unlike the



finite control-unit with unrestricted behaviour (which makes the model Turing
powerful already for state-extended PA processes), the restriction on monotonic
behaviour preserves the decidability of reachability. In this section we shall briefly
introduce the extension and list the main results regarding the model.

Let Q be a finite set of control-states and Act a set of actions. Let α, β ∈
{1,S,P,G} such that α ⊆ β. A state-extended (α, β)-process rewrite system

((α, β)-sePRS) is a finite set ∆ of rewrite rules of the form pE
a−→ qF where

p, q ∈ Q, a ∈ Act, E ∈ αr {ε} and F ∈ β.

Remark 14. Some of the state-extended classes have been studied before, e.g.,
(1,P)-sePRS is also known as the class of multiset automata or parallel pushdown
processes.

A given (α, β)-sePRS ∆ generates a labelled transition system T (∆) where
states are pairs of control-states and process expressions over β (modulo the
previously introduced structural congruence), the set of actions is Act and the
transition relation is given by the following SOS rules (recall that ‘||’ is commu-
tative).

(pE
a−→ qF ) ∈ ∆

pE
a−→ qF

pE
a−→ qE′

p(E.F )
a−→ q(E′.F )

pE
a−→ qE′

p(E||F )
a−→ q(E′||F )

An (α, β)-sePRS ∆ is called a weakly extended (α, β)-process rewrite system
((α, β)-wPRS) iff there is a partial ordering ≤ on Q such that all rewrite rules

pE
a−→ qF from ∆ satisfy that q ≤ p.

The main result (valid for all the classes from the wPRS hierarchy) is that the
reachability problem is decidable [30]. The technique from [30] was later extended
in [29], where the authors prove the decidability of the problem “given a formula
of Hennessy-Milner logic, is there a reachable state satisfying the formula?”.
This in particular implies that strong bisimilarity between finite-state processes
and (G,G)-wPRS is also decidable [22]. On the other hand, weak bisimilarity on
wBPA and wBPP is undecidable [32]. This refines the undecidability border of
weak bisimilarity, which is still open both for BPA and BPP.

6 Equivalence Checking across the Models

A polynomial-time algorithm deciding strong bisimilarity between a normed
BPA process and a normed BPP process has been recently presented in [21].
It improves the previously known exponential upper bound from [8].

Acknowledgments. I would like to thank Ivana Černá, Petr Jančar, Antońın
Kučera, Mogens Nielsen and Paulo Borges Oliva for reading a draft of this paper.
My special thanks go to Richard Mayr for his help, suggestions and numerous
comments.



7 Record of Updates

– 16. 10. 2013: Michael Benedikt, Stefan Göller, Stefan Kiefer and Andrzej S.
Murawski proved a nonelementary lower-bound of strong bisimilarity on
(normed) pushdown automata [2], improving the previously known EXPTIME-
hardness [36].

– 6. 6. 2013: The decidability result [15] for bisimulation checking between PA
and FS has been updated to coNEXPTIME [11], a result achieved by Stefan
Göller and Anthony Widjaja Lin.

– 6. 4. 2013: Petr Jančar published an explicit proof of 2-EXPTIME upper
bound for strong bisimilarity on BPA [19].

– 29. 12. 2012: Stefan Kiefer improved the PSPACE-hardness [54] result for
deciding strong bisimulation on BPA to EXPTIME-hardness. The result
implies also EXPTIME-hardness of strong bisimilarity on PA.

– 10. 6. 2008: There is a new update in strong bisimilarity for normed BPA,
which is decidable inO(n8polylog n) thanks to S lawomir Lasota and Wojciech
Rytter.

– 10. 6. 2008: A section about equivalence checking across the different models
has been added and it includes now a polynomial time algorithm to decide
strong bismilarity between normed BPA and normed BPP. Thanks to Petr
Jančar, Martin Kot and Zdeněk Sawa.

– 21. 6. 2007: There are two new updates in the BPP section: strong bisimilarity
between BPP and FS is decidable in time O(n4) thanks to Martin Kot and
Zdeněk Sawa and strong regularity is decidable in PSPACE due to Martin
Kot.

– 20. 2. 2006: A new section dealing with weakly extended process rewrite sys-
tems (Section 5) has been added. My thanks go to Vojtěch Řehák and Jan
Strejček for providing me the references and for their comments.

– 10. 1. 2006: Mojmı́r Křet́ınský, Vojtěch Řehák and Jan Strejček showed in [29]
the decidability of reachability of a state satisfying a given Hennessy–Milner
formula for PRS extended with monotonic control-state unit. This implies,
in particular, the decidability of strong bisimilarity between PRS and finite-
state systems [22].

– 3. 6. 2004: Petr Jančar and Martin Kot published an O(n3) algorithm for
strong bisimilarity of normed BPP [24].

– 9. 9. 2003: Petr Jančar proved in [18] that strong bisimilarity for unnormed
BPP is in PSPACE.

– 9. 9. 2003: The EXPTIME hardness results from [42] were published in pro-
ceedings of EXPRESS’03 [43].

– 19. 12. 2002: Richard Mayr [42] improved the complexity lower bounds for
weak bisimilarity of normed BPA and for weak regularity of unnormed BPA
to EXPTIME.
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