
Undecidability of Weak Bisimilarity

for PA-Processes

Jǐŕı Srba?

BRICS??

Department of Computer Science
University of Aarhus

Ny Munkegade bld. 540
8000 Aarhus C, Denmark

srba@brics.dk

Abstract. We prove that the problem whether two PA-processes are
weakly bisimilar is undecidable. We combine several proof techniques to
provide a reduction from Post’s correspondence problem to our prob-
lem: existential quantification technique, masking technique and dead-
lock elimination technique.

1 Introduction

The increasing interest in formal verification of concurrent systems has height-
ened the need for a systematic study of such systems. Of particular interest is
the study of equivalence and model checking problems for classes of infinite-state
processes [2]. To explore the decidability borders of automatic verification and
to analyze in detail the situations where such verification is possible, is one of
the main goals for theoretical research in this area. The primary focus of this
paper is on equivalence checking problems, considering bisimilarity as the notion
of behavioural equivalence.

The positive development in strong bisimilarity checking for many classes of
infinite-state systems had led to the hope that extending the existing techniques
to the case of weak bisimilarity might be a feasible step. Some of the recent
results, however, contradict this hope. Opposed to the fact that strong bisimi-
larity is decidable between Petri nets (PN) and finite state systems [7], Jančar
and Esparza proved in [6] that weak bisimilarity is undecidable. Similarly, strong
bisimilarity is decidable for pushdown processes (PDA) [11], whereas weak bisim-
ilarity is not [14]. Strong bisimilarity of Petri nets is undecidable [5], however,
it is at the first level of the arithmetical hierarchy (Π0

1 -complete). On the other
hand, weak bisimilarity of Petri nets lies beyond the arithmetical hierarchy [4].

In this paper we further confirm the inherent complexity of weak bisimilarity
by showing its undecidability for PA-processes. PA (process algebra introduced

? The author is supported in part by the GACR, grant No. 201/00/0400.
?? Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

by Baeten and Weijland [1]) is a formalism which combines the parallel and
sequential operator but allows neither communication nor global-state control.
This makes the proof more difficult than for PDA [14] and PN [5]: the undecid-
ability argument for PDA uses a finite-state control unit and the proof for PN
relies on the possibility of communication.

Our proof of undecidability of weak bisimilarity for PA is by reduction from
Post’s Correspondence Problem (PCP). For a given instance of PCP we construct
a pair of PA processes that are weakly bisimilar if and only if the PCP instance
has a solution. We use a game-theoretic characterization of weak bisimilarity
(our players are called ‘attacker’ and ‘defender’) and combine several techniques
to achieve our result.

– The first technique (we call it here existential quantification) was first used
by Jančar in [4] and explicitly formulated by Srba in [13]. It makes use of
the fact that the defender in the bisimulation game has a strategy to decide
on a continuation of the game in case of nondeterministic branching. This
enables to encode existential quantification. In our case of weak bisimilarity
it moreover provides a technique for generating arbitrarily long sequences of
process constants (representing solutions of a given PCP instance).

– The second technique, used by Mayr in [8] and called the masking technique,
deals with the following phenomenon. Assume that X is an unnormed process
constant that performs an action ‘a’ and becomes X again. Whenever X is
added via parallel composition to any process expression γ, it is capable of
masking every possible occurrence of the action ‘a’ in γ.

– Finally, we adapt the technique of deadlock elimination from [12] into our
context, in order to make the proofs more transparent.

PRS

��
��

�
<<

<<
<

PAD

��
��

�
<<

<<
< PAN

��
��

�
<<

<<
<

PDA PA PN

BPA

<<<<<
�����

BPP

<<<<<
�����

FS

<<<<<
�����

Fig. 1. PRS-hierarchy

Many of the infinite-state systems stud-
ied so far can be uniformly defined by means
of process rewrite systems (PRS) — see Fig-
ure 1 for the PRS-hierarchy from [9]. As a
result of our contribution, we can now as-
sert that weak bisimilarity is undecidable for
all systems on the third level of the PRS-
hierarchy, i.e., for pushdown processes (PDA),
PA-processes (PA) and Petri nets (PN).

On the other hand, the questions for the
systems on the second level, namely for ba-
sic process algebra (BPA) and basic parallel
processes (BPP), still remain open. The tech-
niques used for undecidability of weak bisim-
ilarity for PDA, PA and PN do not seem to be applicable to BPA and BPP, as
these systems on the second level lack the ability of remembering global informa-
tion and they do not allow to mix the sequential and parallel operator. Moreover,
we think that weak bisimilarity of BPA and BPP is likely to be decidable.

2 Basic Definitions

Let Const be a set of process constants. The class of process expressions over
Const is given by E ::= ε | X | E.E | E||E where ‘ε’ is the empty process,
X ranges over Const, ‘.’ is the operator of sequential composition, and ‘||’ stands
for a parallel composition. We do not distinguish between process expressions
related by a structural congruence, which is the smallest congruence over process
expressions such that ‘.’ is associative, ‘||’ is associative and commutative, and
‘ε’ is a unit for ‘.’ and ‘||’. We shall adopt the convention that the sequential
operator binds tighter than the parallel one. Thus for example X.Y ||Z means
(X.Y)||Z.

Let Act be a set of actions such that Act contains a distinguished silent
action τ . We call the elements of the set Act r {τ} visible actions. A PA process
rewrite system ((1, G)-PRS in the terminology of [9]) is a finite set ∆ of rules of
the form X

a−→ E, where X ∈ Const, a ∈ Act and E is a process expression. Let
us denote the set of actions and process constants that appear in ∆ as Act(∆)
resp. Const(∆) (note that these sets are finite).

A PA system ∆ determines a labelled transition system where the states are
process expressions over Const(∆), and Act(∆) is the set of labels. The transition
relation −→ is the least relation satisfying the following SOS rules (recall that
‘||’ is commutative).

(X a−→ E) ∈ ∆

X
a−→ E

E
a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E||F a−→ E′||F
As usual we extend the transition relation to the elements of Act∗. We write
E −→∗ E′ whenever E

w−→ E′ for some w ∈ Act∗ and say that E′ is reachable
from E. The notation E −→ E′ means that there is an a ∈ Act such that
E

a−→ E′. We also write E 6 a−→ if there is no E′ such that E
a−→ E′, and E 6−→

if E 6 a−→ for all a ∈ Act. By |w| we denote the length of w for w ∈ Act∗, and we
use |S| to stand for the cardinality of a set S.

A process constant X ∈ Const(∆) is called a deadlock iff X 6−→. In the usual
presentation of PA it is often assumed that ∆ contains no deadlocks.

A PA process is a pair (P, ∆) where ∆ is a PA process rewrite system and P
is a process expression over Const(∆).

Let E
τ∗
−→ E′ mean that E

τn

−→ E′ for some n ≥ 0. A weak transition relation
is defined as follows: a=⇒def= τ∗−→ ◦ a−→ ◦ τ∗−→ if a ∈ Act r {τ}, and a=⇒def= τ∗−→ if
a = τ . As before we extend the weak transition relation to the elements of Act∗

and write E 6 a=⇒ whenever there is no E′ such that E
a=⇒ E′.

Now we introduce the concept of weak bisimilarity. Let ∆ be a fixed PA
system. A binary relation R over process expressions is a weak bisimulation iff
whenever (E, F) ∈ R then for each a ∈ Act(∆): if E

a−→ E′ then F
a=⇒ F ′ for

some F ′ such that (E′, F ′) ∈ R; if F
a−→ F ′ then E

a=⇒ E′ for some E′ such that
(E′, F ′) ∈ R. Processes (P1, ∆) and (P2, ∆) are weakly bisimilar, and we write
(P1, ∆) ≈ (P2, ∆), iff there is a weak bisimulation R such that (P1, P2) ∈ R. If
∆ is clear from the context we write only P1 ≈ P2.

Bisimulation equivalence has an elegant characterisation in terms of bisim-
ulation games [16, 15]. A bisimulation game on a pair of processes (P1, ∆) and
(P2, ∆) is a two-player game between an ‘attacker’ and a ‘defender’. The game
is played in rounds. In each round the attacker chooses one of the processes and
makes an a−→-move for some a ∈ Act(∆). The defender must respond by mak-
ing an a=⇒-move in the other process under the same action a. Now the game
repeats, starting from the new processes. If one player cannot move, the other
player wins. If the game is infinite, the defender wins. The processes (P1, ∆)
and (P2, ∆) are weakly bisimilar iff the defender has a winning strategy (and
nonbisimilar iff the attacker has a winning strategy).

The following proposition will be useful later and it simply rephrases a stan-
dard result that weak bisimilarity is a congruence w.r.t. to the parallel operator.

Proposition 1. If the defender has a winning strategy from a pair E and F then
he also has a winning strategy from E||γ and F ||γ for any process expression γ.

3 Undecidability of Weak Bisimilarity

We show that the problem whether (P1, ∆) ≈ (P2, ∆) for a given pair of PA
processes (P1, ∆) and (P2, ∆) is undecidable. For technical convenience we use
the power of deadlocks to achieve this result, however, at the end of this section
we discuss a simple technique for deadlock elimination. Thus the undecidability
result is valid even for PA without deadlocks.

Let us first define Post’s correspondence problem (PCP): given a nonempty
alphabet Σ and two lists A = [u1, . . . , un] and B = [v1, . . . , vn] where n > 0 and
uk, vk ∈ Σ+ for all k, 1 ≤ k ≤ n, the question is to decide whether the (A, B)-
instance has a solution, i.e., whether there is an integer m ≥ 1 and a sequence
of indices i1, . . . , im ∈ {1, . . . , n} such that ui1ui2 . . . uim = vi1vi2 . . . vim .

According to the classical result due to Post, this problem is undecidable [10].
Let us consider an (A, B)-instance of PCP where

A = [u1, . . . , un] and B = [v1, . . . , vn].

We construct a PA system ∆ and a pair of processes (P1, ∆) and (P2, ∆) such
that the (A, B)-instance has a solution if and only if (P1, ∆) ≈ (P2, ∆).

Let SF(α) denote the set of all suffixes of a sequence α ∈ Σ∗, i.e., SF(α) def=
{α′ ∈ Σ∗ | ∃α′′ ∈ Σ∗ such that α = α′′α′}. Note that ε ∈ SF(α) for any α. We
can now define the set of process constants Const(∆) and actions Act(∆) by

Const(∆) def= {Uuk | 1 ≤ k ≤ n} ∪ {V vk | 1 ≤ k ≤ n} ∪
{T w | w ∈

n⋃

k=1

SF(uk) ∪
n⋃

k=1

SF(vk)} ∪
{X, X ′, X ′

1, Y, Y ′, Y1, Z, C, C1, C2, W, D}

Act(∆) def= {a | a ∈ Σ} ∪ {ιk | 1 ≤ k ≤ n} ∪
{x, y, z, c1, c2, τ}.

Remark 1. In what follows D will be a distinguished process constant with no
rules associated to it (deadlock). Hence in particular α.D.β || γ ≈ α || γ for any
process expressions α, β and γ.

To make the rewrite rules introduced in this section more understandable,
we define the system ∆ in four stages. It is important to remark here that
whenever we define the rules for some process constant Q ∈ Const(∆), we always
give all the rules for Q at the same stage. Our ultimate goal is to show that
(X ||C, ∆) ≈ (X ′||C, ∆) if and only if the given (A, B)-instance of PCP has a
solution. The first part of the system ∆ is given by the following rules:

Uuk
ιk−→ ε Uuk

τ−→ T uk for all k ∈ {1, . . . , n}
V vk

ιk−→ ε V vk
τ−→ T vk for all k ∈ {1, . . . , n}

T aw a−→ T w T aw τ−→ T w for all a ∈ Σ and w ∈ Σ∗ such that

aw ∈
n⋃

k=1

SF(uk) ∪
n⋃

k=1

SF(vk)

T ε τ−→ ε.

This means that for a given k ∈ {1, . . . , n} the process constants Uuk and V vk

can perform e.g. the following transitions (or transition sequences): Uuk
ιk−→ ε,

V vk
ιk−→ ε, Uuk

uk=⇒ ε, V vk
vk=⇒ ε, Uuk

τ=⇒ ε, V vk
τ=⇒ ε. The intuition is that

a solution i1, . . . , im ∈ {1, . . . , n} of the (A, B)-instance is represented by a pair
of processes Uui1 .Uui2 . · · · .Uuim and V vi1 .V vi2 . · · · .V vim . These processes can
perform the sequences of visible actions ui1ui2 . . . uim and vi1vi2 . . . vim , respec-
tively, or they can perform the actions corresponding to the indices, namely
ιi1ιi2 . . . ιim . Moreover, since there is no global state control, the processes can
produce also a combination of the actions from Σ and {ι1, . . . , ιn}. In order to
avoid this undesirable behaviour, we add (via parallel composition) a process
constant C1 or C2 such that C1 masks all the actions from Σ and C2 masks all
the actions testing the indices. The reason for adding Z will become clear later.

The rewrite rules for C1, C2 and Z are given by:

C1
a−→ C1 for all a ∈ Σ

C2
ιk−→ C2 for all k ∈ {1, . . . , n}

Z
z−→ ε Z

τ−→ D.

Lemma 1. It holds that

Z.Uui1 .Uui2 . · · · .Uuim || C1 ≈ Z.V vj1 .V vj2 . · · · .V vj
m′ || C1

if and only if

m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′.

Proof. “⇒”: Assume that (i) m 6= m′, or (ii) m = m′ and let `, 1 ≤ ` ≤
m = m′, be the smallest number such that i` 6= j`. It is easy to show that
Z.Uui1 .Uui2 . · · · .Uuim || C1 6≈ Z.V vj1 .V vj2 . · · · .V vj

m′ || C1. In case (i), assuming
w.l.o.g. that m > m′, the attacker can perform in the first process a sequence
of actions zιi1ιi2 . . . ιim of length m + 1 and the defender cannot answer by any
corresponding sequence of the same length from the second process (m > m′).
Hence the attacker wins. In case (ii), the attacker again performs the sequence
zιi1ιi2 . . . ιim in the first process. The only appropriate sequence of the same
length that the defender can perform in the second process is zιj1ιj2 . . . ιjm′ —
obviously no τ rules can be used otherwise the defender loses (his sequence gets
shorter). The attacker wins because ιi`

6= ιj`
.

“⇐”: We show that Z.Uui1 .Uui2 . · · · .Uuim || C1 ≈ Z.V vi1 .V vi2 . · · · .V vim || C1.
Let U(`) def= Uui` .Uui`+1 . · · · .Uuim and V (`) def= V vi` .V vi`+1 . · · · .V vim for all `,
1 ≤ ` ≤ m. By definition U(m + 1) def= ε and V (m + 1) def= ε. Let us consider the
following relation R.

{ (Z.U(1)||C1 , Z.V (1)||C1) } ∪
{ (D.U(1)||C1 , D.V (1)||C1) } ∪
{ (U(`)||C1 , V (`)||C1) | 1 ≤ ` ≤ m + 1 } ∪
{ (T w.U(`)||C1 , V (`)||C1) | 2 ≤ ` ≤ m + 1 ∧ w ∈ SF(u`−1)} ∪
{ (U(`)||C1 , T w.V (`)||C1) | 2 ≤ ` ≤ m + 1 ∧ w ∈ SF(v`−1)}

It is a routine exercise to check that R is a weak bisimulation. Moreover, it
satisfies that (Z.Uui1 .Uui2 . · · · .Uuim || C1, Z.V vi1 .V vi2 . · · · .V vim || C1) ∈ R. ut
Lemma 2. It holds that

Z.Uui1 .Uui2 . · · · .Uuim || C2 ≈ Z.V vj1 .V vj2 . · · · .V vj
m′ || C2

if and only if

ui1ui2 . . . uim = vj1vj2 . . . vjm′ .

Proof. “⇒”: Let σ
def= Uui1 .Uui2 . · · · .Uuim and ω

def= V vj1 .V vj2 . · · · .V vj
m′ , and

let u
def= ui1ui2 . . . uim and v

def= vj1vj2 . . . vjm′ . Hence σ
u=⇒ ε and ω

v=⇒ ε, and
u and v are the longest sequences (and unique ones among the sequences of the
length |u| resp. |v|) of visible actions from Σ that σ and ω can perform. From
the assumption that u 6= v it is easy to see that Z.σ||C2 6≈ Z.ω||C2.
“⇐”: We show that Z.Uui1 .Uui2 . · · · .Uuim || C2 ≈ Z.V vj1 .V vj2 . · · · .V vj

m′ || C2

assuming that ui1ui2 . . . uim = vj1vj2 . . . vjm′ . Let α ∈ SF(ui1ui2 . . . uim) =
SF(vj1vj2 . . . vjm′). We define two sets U(α) and V (α). The intuition is that
U(α) contains all the states reachable from Uui1 . · · · .Uuim such that α is the
longest sequence of visible actions from Σ that these states can perform, and
similarly for V (α).

Let us fix the following notation: Uum+1 . · · · .Uum
def= ε, V vm′+1 . · · · .V vm′ def= ε

(here ‘ε’ stands for the empty process), and um+1 . . . um
def= ε, vm′+1 . . . vm′

def= ε
(here ‘ε’ means the empty sequence of actions).

U(α) def= {Uui` .Uui`+1 . · · · .Uuim | 1 ≤ ` ≤ m ∧ ui`
ui`+1 . . . uim = α} ∪

{T w.Uui` .Uui`+1 . · · · .Uuim | 2 ≤ ` ≤ m + 1 ∧ w ∈ SF(ui`−1) ∧
wui`

ui`+1 . . . uim = α}

V (α) def= {V vj` .V vj`+1 . · · · .V vj
m′ | 1 ≤ ` ≤ m′ ∧ vj`

vj`+1 . . . vjm′ = α} ∪
{T w.V vj` .V vj`+1 . · · · .V vj

m′ | 2 ≤ ` ≤ m′ + 1 ∧ w ∈ SF(vj`−1) ∧
wvj`

vj`+1 . . . vjm′ = α}.
We remind the reader of the fact that 1 ≤ |U(α)|, |V (α)| ≤ 3 for all α. For
example if m ≥ 2 then U(uim) = {Uuim , T ε.Uuim , T uim}. Moreover, if E ∈
U(α) and F ∈ V (α) then E

α=⇒ ε and F
α=⇒ ε, and α is the longest sequence

of actions from Σ satisfying this property. Let us consider the following relation
R where U(1) def= Uui1 .Uui2 . · · · .Uuim , V (1) def= V vj1 .V vj2 . · · · .V vj

m′ , and β
def=

ui1ui2 . . . uim = vj1vj2 . . . vjm′ .

{ (Z.U(1)||C2 , Z.V (1)||C2) } ∪
{ (D.U(1)||C2 , D.V (1)||C2) } ∪
{ (E||C2 , F ||C2) | E ∈ U(α) ∧ F ∈ V (α) ∧ α ∈ SF(β)} ∪
{ (C2 , C2) }

As in the previous lemma, it is easy to check that R is a weak bisimulation.
Moreover (Z.Uui1 .Uui2 . · · · .Uuim || C2, Z.V vj1 .V vj2 . · · · .V vj

m′ || C2) ∈ R. ut
We continue with the definition of ∆ by adding rules which enable the de-

fender to generate a solution of the (A, B)-instance (if it exists).

X
x−→ Y X ′ x−→ X ′

1

X
x−→ X ′

1

X ′
1

τ−→ X ′
1.V

vk for all k ∈ {1, . . . , n}
X ′

1
τ−→ Y ′.V vk for all k ∈ {1, . . . , n}

Y
y−→ Y1 Y ′ y−→ Z

Y ′ y−→ Y1.D

Y1
τ−→ Y1.U

uk for all k ∈ {1, . . . , n}
Y1

τ−→ Z.Uuk for all k ∈ {1, . . . , n}
See Figure 2 for fragments of transition systems generated by (X, ∆) and (X ′, ∆).
The following lemma explains the purpose of the rules defined above.

Lemma 3. Consider a bisimulation game from (X, ∆) and (X ′, ∆). The de-
fender has a strategy such that after two rounds the players reach a pair of
states Z.σ and Z.ω where σ = Uui1 .Uui2 . · · · .Uuim and ω = V vj1 .V vj2 . · · · .V vj

m′

(m, m′ ≥ 1), and where σ and ω were chosen by the defender; or the defender
wins by reaching a pair of weakly bisimilar states.

Proof. In the first round of the bisimulation game played from (X, ∆) and
(X ′, ∆) the attacker has only one possible move: X

x−→ Y . If the attacker

X

x

��

x

$$HH
HHH

H X ′

x��
X ′

1 X ′
1

τ
��

Y

y
��

Y ′.ω

y

��

y

$$HHHHH

Y1

τ
��

Y1.D.ω (≈ Y1)

Z.σ
τ

{{vvv
vvv z

$$HHHHHH Z.ω
τ

{{vvv
vvv z

$$HHHHHH

D.σ (≈ ε) σ D.ω (≈ ε) ω

Fig. 2. Fragments of transition systems generated by (X, ∆) and (X ′, ∆)

plays any other move (X x−→ X ′
1 or X ′ x−→ X ′

1) then the defender can make
the resulting processes syntactically equal and he wins. The defender’s answer
to the move X

x−→ Y is by X ′ x=⇒ Y ′.ω for some ω = V vj1 .V vj2 . · · · .V vj
m′ such

that m′ ≥ 1.
In the next round played from Y and Y ′.ω the attacker is forced to continue

by Y ′.ω
y−→ Z.ω. Similarly as in the first round: if the attacker chooses any

other move, the defender can make the resulting processes weakly bisimilar (here
we use the fact that Y1 ≈ Y1.D.ω). The defender can now choose some σ =
Uui1 .Uui2 . · · · .Uuim such that m ≥ 1 and plays Y

y
=⇒ Z.σ. Hence the defender

either won or he chose nonempty σ and ω and forced the attacker in two rounds
to reach the pair Z.σ and Z.ω. ut

We finish the definition of ∆ by adding the rules:

C
c1−→ C1 C

c2−→ C2 C
z−→ C||W

W
τ−→ W.Uuk W

τ−→ W.V vk for all k ∈ {1, . . . , n}
W

τ−→ ε.

The intuition is that while playing a bisimulation game from X ||C and
X ′||C, the defender can generate a solution of the (A, B)-instance by forcing
the attacker to reach the states Z.σ||C and Z.ω||C (see Lemma 3) such that
σ = Uui1 .Uui2 . · · · .Uuim and ω = V vi1 .V vi2 . · · · .V vim where i1, . . . , im is a solu-
tion of the (A, B)-instance (if it exists). The attacker waits with using the rule
C

c1−→ C1 or C
c2−→ C2 until the pair Z.σ||C and Z.ω||C is reached and then

he can check that the sequence i1, . . . , im is indeed a solution: from Z.σ||C1 and
Z.ω||C1 he checks whether the defender generated the same indices in both σ and
ω, and from Z.σ||C2 and Z.ω||C2 he checks whether ui1ui2 . . . uim = vi1vi2 . . . vim .
The purpose of the rules for the process constant W is explained later.

Lemma 4. If (X ||C, ∆) ≈ (X ′||C, ∆) then the (A, B)-instance has a solution.

Proof. Assume that the (A, B)-instance has no solution, i.e., for every sequence
of indices i1, . . . , im ∈ {1, . . . , n} where m ≥ 1 it is the case that ui1ui2 . . . uim 6=
vi1vi2 . . . vim . We show that the attacker has a winning strategy from the pair
X ||C and X ′||C. In the first round the attacker plays X ||C x−→ Y ||C. The defender
can only answer by X ′||C x−→ X ′

1||C followed by a finite number of τ actions,
thus reaching a state X ′

1.ω||C or Y ′.ω||C for some ω. In the first case the attacker
switches the processes and uses e.g. the rule X ′

1
τ−→ Y ′.V v1 . Since Y ||C 6 τ−→, the

defender can only stay at the state Y ||C. In the second case the state is already
of the form Y ′.ω||C.

The game now continues from the pair of states Y ||C and Y ′.ω||C for some ω.
The attacker chooses the move Y ′.ω||C y−→ Z.ω||C. The defender has to answer
by Y ||C y−→ Y1||C followed by a finite number of τ actions. This means that he
can reach a state Y1.σ||C, or Z.σ||C, or D.σ||C for some σ. The attacker wants
to force the defender to reach the second possibility. We show later that if the
defender reaches D.σ||C then he loses. Moreover, if the defender reaches Y1.σ||C
then the attacker can use e.g. the rule Y1

τ−→ Z.Uu1 and the defender can only
respond by staying in Z.ω||C, or by the move Z.ω||C τ−→ D.ω||C. As we want the
game to continue from Z.σ||C and Z.ω||C, it is enough to show that the attacker
has a winning strategy from D.σ||C and Z.ω||C, and from Z.σ||C and D.ω||C. We
show how the attacker wins from D.σ||C and Z.ω||C (the situation from Z.σ||C
and D.ω||C is completely symmetric). The attacker plays in the second state:
Z.ω||C c1−→ Z.ω||C1. The defender can only respond by D.σ||C c1−→ D.σ||C1. Now,
Z.ω||C1

z−→ ω||C1 but D.σ||C1 6 z=⇒. Hence the attacker wins.
To sum up, either the attacker wins or the game continues from the pair

Z.σ||C and Z.ω||C for some σ = Uui1 .Uui2 . · · · .Uuim and ω = V vj1 .V vj2 . · · · .V vj
m′

where m, m′ ≥ 1. There are two cases.

– If m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′, then using our assumption
that the (A, B)-instance has no solution and by the fact that m, m′ ≥ 1 we
get that ui1ui2 . . . uim 6= vi1vi2 . . . vim . The attacker plays Z.σ||C c2−→ Z.σ||C2

and the defender has to answer by Z.ω||C c2−→ Z.ω||C2 or Z.ω||C c2=⇒ D.ω||C2.
From the pair Z.σ||C2 and Z.ω||C2 the attacker has a winning strategy be-
cause of Lemma 2 and the attacker’s strategy from the pair Z.σ||C2 and
D.ω||C2 is obvious: Z.σ||C2

z−→ σ||C2 but D.ω||C2 6 z=⇒.
– If it is not the case that m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′,

the attacker plays Z.σ||C c1−→ Z.σ||C1 and the defender must respond by
Z.ω||C c1−→ Z.ω||C1 or Z.ω||C c1=⇒ D.ω||C1. By Lemma 1 the attacker has a
winning strategy from Z.σ||C1 and Z.ω||C1. The argument for the attacker’s
winning strategy from Z.σ||C1 and D.ω||C1 is as in the previous case.

ut

Lemma 5. If the (A, B)-instance has a solution then (X ||C, ∆) ≈ (X ′||C, ∆).

Proof. Let i1, . . . , im ∈ {1, . . . n} where m ≥ 1 be a solution of the (A, B)-
instance. We show that the defender has a winning strategy from the pair X ||C
and X ′||C.

As it was already proved in Lemma 3, in the bisimulation game played from
X and X ′ the defender can force the attacker to reach the pair Z.σ and Z.ω,
or the defender has a winning strategy. In particular, the defender can make
sure that the players reach the pair Z.σ and Z.ω where σ and ω correspond
to the solution of the (A, B)-instance, i.e., σ = Uui1 .Uui2 . · · · .Uuim and ω =
V vi1 .V vi2 . · · · .V vim .

The situation in this lemma, however, requires that the players start playing
from X ||C and X ′||C. We have to extend the defender’s strategy by defining his
responses to the attacks from the process constant C, or more generally from
any context γ reachable from C (see the last part of the definition of ∆). To any
attacker’s move X ||γ −→ X ||γ′ or X ′||γ −→ X ′||γ′ the defender answers simply
by imitating the same move in the other process. The bisimulation game then
continues from the pair X ||γ′ and X ′||γ′. Since any infinite game is a winning
one for the defender, the attacker must eventually use some rules for X or X ′.
In this case the defender uses the strategy from Lemma 3. The attacker is forced
to play X ||γ x−→ Y ||γ and the defender answers by X ′||γ x=⇒ Y ′.ω||γ where
ω = V vi1 .V vi2 . · · · .V vim . From the states Y ||γ and Y ′.ω||γ, again the defender
imitates any attacks from the context γ. Thus the attacker must eventually
play Y ′.ω||γ y−→ Z.ω||γ and the defender answers by Y ||γ y

=⇒ Z.σ||γ where
σ = Uui1 .Uui2 . · · · .Uuim .

By inspecting the rules for C we can see that the context γ always contains
either the process constant (i) C, (ii) C1, or (iii) C2. Hence γ can be written as
(i) C||γ′, (ii) C1||γ′, or (iii) C2||γ′ for some context γ′. In case (ii) the bisimulation
game continues from the pair Z.σ||C1||γ′ and Z.ω||C1||γ′, and the defender has
a winning strategy because of Lemma 1 and Proposition 1. In case (iii) the
bisimulation game continues from the pair Z.σ||C2||γ′ and Z.ω||C2||γ′, and the
defender has a winning strategy because of Lemma 2 and Proposition 1. It
remains to demonstrate that the defender has a winning strategy also in case
(i). Hence assume that the game continues from Z.σ||C||γ′ and Z.ω||C||γ′. By
Proposition 1 it is enough to show that Z.σ||C ≈ Z.ω||C. We will analyze
the attacker’s moves from Z.σ||C. The arguments for the moves from Z.ω||C are
completely symmetric. The attacker has the following moves available.

(i) Z.σ||C c1−→ Z.σ||C1

(ii) Z.σ||C c2−→ Z.σ||C2

(iii) Z.σ||C z−→ Z.σ||C||W
(iv) Z.σ||C τ−→ D.σ||C
(v) Z.σ||C z−→ σ||C

In case (i) the defender answers by Z.ω||C c1−→ Z.ω||C1 and wins because of
Lemma 1. In case (ii) the defender answers by Z.ω||C c2−→ Z.ω||C2 and wins
because of Lemma 2. In case (iii) the defender answers by Z.ω||C z−→ Z.ω||C||W .
By Proposition 1 this case is already covered by the discussion of the defender’s

strategy from Z.σ||C and Z.ω||C. In case (iv) the defender answers by Z.ω||C τ−→
D.ω||C and he wins since D.σ||C ≈ C ≈ D.ω||C. Case (v) is the only case where
we need the rules for the process constant W . The defender answers by the
following sequence:

Z.ω||C τ−→ D.ω||C z−→ D.ω||C||W τ=⇒ D.ω||C||σ.

This can be written in one step as Z.ω||C z=⇒ D.ω||C||σ. Now the game continues
from the pair σ||C and D.ω||C||σ, however, σ||C ≈ D.ω||C||σ. This implies that
the defender has a winning strategy also in this case. ut
Theorem 1. Weak bisimilarity of PA with deadlocks is undecidable.

Proof. Immediately from Lemmas 4 and 5. ut
In the rest of this section we show that the presence of the deadlock D in

∆ is not an essential requirement. We build upon the technique of deadlock
elimination described (for the case of BPA) in [12].

Lemma 6. There is a (polynomial time) reduction from weak bisimilarity of PA
with deadlocks to weak bisimilarity of PA without deadlocks.

Proof. Let ∆ be a PA system. By D(∆) we denote the set of all process constants
which have no rewrite rule in ∆, i.e., D(∆) = {X ∈ Const(∆) | X 6−→}. Let us
consider a PA system ∆′ such that Const(∆′) def= Const(∆) r D(∆) ∪ {D} and
Act(∆′) def= Act(∆)∪{d} where D is a new process constant and d is a new action.
Let ∆′ def= {X a−→ E | (X a−→ E) ∈ ∆} ∪ {D d−→ D} such that ε

def= ε, X
def= X

if X 6∈ D(∆), X
def= D if X ∈ D(∆), E.F

def= E.F , and E||F def= E||F , where X is
a process constant and E, F are process expressions. Obviously D(∆′) = ∅ and
it is easy to verify that (E, ∆) ≈ (F, ∆) if and only if (E||D, ∆′) ≈ (F ||D, ∆′)
for any process expressions E and F . ut
Corollary 1. Weak bisimilarity of PA (without deadlocks) is undecidable.

4 Conclusion

We proved that weak bisimilarity of PA-processes is undecidable. In our proof we
used the notion of deadlocks to make the reduction more understandable, and we
also showed that the result can be easily generalized to PA without deadlocks.
We took advantage of several new techniques recently developed, in particular
the existential quantification technique and the masking technique.

The undecidability result of weak bisimilarity for PA contrasts to the situa-
tion of strong bisimilaririty for normed PA, which is known to be decidable in
2-NEXPTIME [3]. The problems of strong bisimilarity for unnormed PA and of
weak bisimilarity for normed PA still remain open. Another question to be con-
sidered is, whether the problem of weak bisimilarity for PA is highly undecidable.
In particular, we do not know whether it lies inside the arithmetical hierarchy,
or whether it is beyond the hierarchy, as it is in the case of PDA (Remark 4
in [14]) and PN [4].

Acknowledgements. I would like to thank my advisor Mogens Nielsen for his kind
supervision, Petr Jančar for his suggestions, and the referees for their comments.

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite struc-
tures. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra, chapter 9, pages 545–623. Elsevier Science, 2001.

[3] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed
process algebra. In Proc. of Automata, Languages and Programming, 26th Inter-
national Colloquium (ICALP’99), volume 1644 of LNCS, pages 412–421. Springer-
Verlag, 1999.

[4] P. Jančar. High undecidability of weak bisimilarity for Petri nets. In Proc. of
Colloquium on Trees in Algebra and Programming (CAAP’95), volume 915 of
LNCS, pages 349–363. Springer-Verlag, 1995.

[5] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science, 148(2):281–301, 1995.

[6] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In
Proc. of 23rd International Colloquium on Automata, Languages, and Program-
ming (ICALP’96), volume 1099 of LNCS, pages 478–489. Springer-Verlag, 1996.

[7] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Proc. of 6th
International Conference on Concurrency Theory (CONCUR’95), volume 962 of
LNCS, pages 348–362. Springer-Verlag, 1995.

[8] R. Mayr. On the complexity of bisimulation problems for basic parallel processes.
In Proc. of 27st International Colloquium on Automata, Languages and Program-
ming (ICALP’00), volume 1853 of LNCS, pages 329–341. Springer-Verlag, 2000.

[9] R. Mayr. Process rewrite systems. Information and Comp., 156(1):264–286, 2000.
[10] E.L. Post. A variant of a recursively unsolvable problem. Bulletion of the Amer-

ican Mathematical Society, 52:264–268, 1946.
[11] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs

of finite out-degree. In Proc. of the 39th Annual Symposium on Foundations of
Computer Science(FOCS’98), pages 120–129. IEEE Computer Society, 1998.

[12] J. Srba. Basic process algebra with deadlocking states. Theoretical Computer
Science, 266(1–2):605–630, 2001.

[13] J. Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-
hard. In Proc. of 19th International Symposium on Theoretical Aspects of Com-
puter Science (STACS’02), volume 2285 of LNCS, pages 535–546. Springer-Verlag,
2002.

[14] J. Srba. Undecidability of weak bisimilarity for pushdown processes. In Proc.
of 13th International Conference on Concurrency Theory (CONCUR’02), volume
2421 of LNCS, pages 579–593. Springer-Verlag, 2002.

[15] C. Stirling. Local model checking games. In Proc. of 6th International Confer-
ence on Concurrency Theory (CONCUR’95), volume 962 of LNCS, pages 1–11.
Springer-Verlag, 1995.

[16] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer science
(extended abstract). In Proc. of 4th International Joint Conference CAAP/FASE,
Theory and Practice of Software Development (TAPSOFT’93), volume 668 of
LNCS, pages 559–568. Springer-Verlag, 1993.

