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Abstract. Equivalence and model checking problems can be encoded into computing fixed points
on dependency graphs. Dependency graphs represent causal dependencies among the nodes of
the graph by means of hyper-edges. We suggest to extend the model of dependency graphs with

∗An extended version of [1].
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so-called negation edges in order to increase their applicability. The graphs (as well as the verifi-
cation problems) suffer from the state space explosion problem. To combat this issue, we design
an on-the-fly algorithm for efficiently computing fixed points on extended dependency graphs.
Our algorithm supplements previous approaches with the possibility to back-propagate, in certain
scenarios, the domain value 0, in addition to the standard back-propagation of the value 1. Finally,
we design a distributed version of the algorithm, implement it in our open-source tool TAPAAL,
and demonstrate the efficiency of our general approach on the benchmark of Petri net models and
CTL queries from the annual Model Checking Contest.

1. Introduction

Model checking [2], a widely used verification technique for exhaustive state space search, may be
both time and memory consuming as a result of the state space explosion problem. As a consequence,
interesting real-life models can often be too large to be verified. Numerous approaches have been
proposed to address this problem, including symbolic model checking and various abstraction tech-
niques [3]. An alternative approach is to distribute the computation across multiple cores/machines,
thus expanding the amount of available resources. Tools such as LTSmin [4] and DIVINE [5] have
recently been exploring this possibility, without the need of being committed to a fixed model descrip-
tion language.

It has also been observed that model checking is closely related to the problem of evaluating fixed
points [6, 7, 8, 9], as these are suitable for expressing system properties described in the logics like
Computation Tree Logic (CTL) [10] or the modal µ-calculus [11]. This has been formally captured
by the notion of dependency graphs of Liu and Smolka [6]. A dependency graph, consisting of a
finite set of nodes and hyper-edges with multiple target nodes, is an abstract framework for efficient
minimum fixed-point computation over the node assignments that assign to each node the value 0 or
1. It has a variety of usages, including model checking [7, 8, 9] and equivalence checking [12]. Apart
from formal verification, dependency graphs are also used to solve games based e.g. on timed game
automata [13] or to encode Boolean equation systems [14].

Liu and Smolka proved in [6] that dependency graphs can be used to compute fixed points of
Boolean graphs and to solve the P-complete problem HORNSAT [15] in linear time. They offered
both a global and local algorithm for computing the minimum fixed-point value. The global algorithm
computes the minimum fixed-point value for all nodes in the graph, though, we are often only inter-
ested in the values for some specific nodes. The advantage of the local algorithm is that it only needs
to compute the values for a subset of the nodes in order to conclude about the assignment value for a
given node of the graph. In practise, the local algorithm is superior to the global one [7] and to further
boost its performance, we recently suggested a distributed implementation of the local algorithm with
preliminary experimental results [12] conducted for weak bisimulation and simulation checking of
CCS processes.

Our contributions. Neither the original paper by Liu and Smolka [6] nor the recent distributed im-
plementation [12] handle the problem of negation in dependency graphs as this can break the mono-
tonicity in the iterative evaluation of the fixed points. In our work, we extend dependency graphs with
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so-called negation edges, define a sufficient condition for the existence of unique fixed points and de-
sign an efficient algorithm for their computation, hence allowing us to encode richer properties rather
than just plain equivalence checking or negation-free model checking. As we aim for a competitive
implementation and applicability in various verification tools, it is necessary to offer the user not only
the binary answer (whether a property holds or not or whether two systems are equivalent or not) but
also the evidence for why this is the case. This can be conveniently done by the use of two-player
games between Attacker and Defender. In our approach, it is possible for the user to play the role of
Defender while the Attacker (played by the tool) can convince the user why a property does not hold.
We formally define games played on the extended dependency graphs and prove a correspondence
between the winner of the game and the fixed-point value of a node in a dependency graph.

In order to maximize the computation performance, we introduce a novel concept of certain zero
value that can be back-propagated along hyper-edges and negation edges in order to ensure early
termination of the fixed-point algorithm. This technique can often result in considerable improvements
in the verification time and has not been, to the best of our knowledge, exploited in earlier work. To
further enhance the performance, we present a distributed algorithm for a fixed-point computation and
prove its correctness. Last but not least, we implement the distributed algorithm in an extensible open
source framework and we demonstrate the applicability of the framework on CTL model checking of
Petri nets. In order to do so, we integrate the framework into the tool TAPAAL [16, 17] and run a
series of experiments on the Petri net models and queries from the Model Checking Contest (MCC)
2016 [18]. A single-core prototype of the tool implementing the negation edges and certain zero back-
propagation also participated in the 2017 competition and was awarded a silver medal in the category
of CTL verification with 23940 points for CTL cardinality queries, while the tool LoLA [19] took
the gold medal with 28652 points in this subcategory (which includes colored net models that our
tool does not support yet). As documented by the experiments in this paper, our 4-core distributed
algorithm outperforms the optimized sequential algorithm and hence it will challenge LoLA’s first
place in the next year competition (also given that LoLA employs stubborn set reduction technique
that is not yet supported by our current implementation).

Related Work. Related algorithms for explicit distributed CTL model checking include the assump-
tion based method [20] and a map-reduce based method [21]. Opposed to our algorithm, which com-
putes a local result, these algorithms often focus on computing the global result. The local and global
algorithms by Liu and Smolka [6] were also extended to weighted Kripke structures for weighted CTL
model checking via symbolic dependency graphs [7], however, without any parallel or distributed im-
plementation.

LTSmin [4] is a language independent model checker which provides a large amount of parallel
and symbolic algorithms. To the best of our knowledge, LTSmin uses a symbolic algorithm based on
binary decision diagrams for CTL model checking and even our sequential algorithm outperformed
LTSmin at MCC’16 [18] and MCC’17 [22] (in e.g. 2017 CTL cardinality category LTSmin scored
8389 points compared to 23940 points achieved by our tool). Marcie [23] is another Petri net model
checking tool that performs symbolic analysis using interval decision diagrams whereas our approach
is based on explicit analysis using extended dependency graphs. Marcie was a previous winner of the
CTL category at MCC’15 [24], however, in 2016 it finished on a third place and in 2017 on the fourth
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place with almost the same number of points as ITS-tools [25] that were third in 2017.
Other related work includes [26, 27, 28] designing parallel and/or distributed algorithms for model-

checking of the alternation-free modal µ-calculus. As in our approach, they often employ the on-the-
fly technique but our framework is more general as it relies on dependency graphs to which the various
verification problems can be reduced. The notion of support sets as an evidence for the validity of CTL
formulae has been introduced in [29] and it is close to a (relevant part of) assignment on a dependency
graph, however, the game characterization of support sets was not further developed, as stated in [29].
In our work, we provide a natural game-theoretic characterization of an assignment on general de-
pendency graphs and such a characterization can be used to provide an evidence about the fixed-point
value of a node in a dependency graph.

Finally, there are several mature tools like FDR3 [30], CADP [31], SPIN [32] and mCRL2 [33],
some of them implementing distributed and on-the-fly algorithms. The specification language of these
is however often fixed and extensions of such a language requires nontrivial implementation effort.
Our approach relies on reducing a variety of verification problems into extended dependency graphs
and then on employing our optimized and efficient distributed implementation, as e.g. demonstrated
on CTL model checking of Petri nets presented in this paper or on bisimulation checking of CCS
processes [12].

2. Extended Dependency Graphs and Games

We shall now define the notion of extended dependency graphs, adding a new feature of negation
edges to the original definition by Liu and Smolka [6].

Definition 2.1. An Extended Dependency Graph (EDG) is a tuple G = (V,E,N) where V is a finite
set of configurations, E ⊆ V × P(V ) is a finite set of hyper-edges, and N ⊆ V × V is a finite set of
negation edges.

For a hyper-edge e = (v, T ) ∈ E we call v the source configuration and T ⊆ V is the set of target
configurations. We write v → u if there is a (v, T ) ∈ E such that u ∈ T and v 99K u if (v, u) ∈ N .
Furthermore, we write v  u if v → u or v 99K u. The successor function succ : V → (E ∪ N)
returns the set of outgoing edges from v, i.e. succ(v) = {(v, T ) ∈ E} ∪ {(v, u) ∈ N}. An example
of an EDG is given in Figure 1(a) with the configurations named a to f , hyper-edges denoted by solid
arrows with multiple targets, and dashed negation edges. Note that the configuration f in the example
has one hyper-edge with the empty set of target configurations, denoted by ∅.

In what follows, we consider only EDGs without cycles containing negation edges.

Definition 2.2. An EDG G = (V,E,N) is negation safe if there are no v, v′ ∈ V s.t. v 99K v′ and
v′  ∗ v.

After the restriction to negation safe EDG, we can now define the negation distance function
dist : V → N0 that returns the maximum number of negation edges throughout all paths starting in
a configuration v and is inductively defined as dist(v) = max({dist(v′′) + 1 | v′, v′′ ∈ V and v →∗
v′ 99K v′′}) where by convention max(∅) = 0. Note that dist(v) is always finite because every
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(a) An EDG with dist(G) = 2 and V0 = {b, c, f}, V1 = {d, e} ∪ V0, V2 = {a} ∪ V1

b c f

A0 0 0 0
F0(A0) 0 0 1
F0(F0(A0)) 0 0 1

(b) AC0
min Computation

b c d e f

A0 0 0 0 0 0
F1(A0) 0 0 1 0 1
F1(F1(A0)) 0 0 1 1 1
F1(F1(F1(A0))) 0 0 1 1 1

(c) AC1
min Computation

a b c d e f

A0 0 0 0 0 0 0
F2(A0) 0 0 0 1 1 1
F2(F2(A0)) 0 0 0 1 1 1

(d) AC2
min Computation

Figure 1: An EDG and iterative calculation of its minimum fixed-point assignment

path can visit each negation edge at most once. We then define dist(G) of an EDG G as dist(G) =
maxv∈V (dist(v)) and for an edge e ∈ E ∪N where v is its source configuration, we write dist(e) =
dist(v).

A component Ci of G, where i ∈ N0, is a subgraph induced on G by the set of configurations
Vi = {v ∈ V | dist(v) ≤ i}. We write Vi, Ei and Ni to denote the set of configurations, hyperedges
and negation edges of each respective component. Note that by definition, C0 does not contain any
negation edges. Also observe that G = Cdist(G) and that for all k, ` ∈ N0, if k < ` then Ck is a
subgraph of C`. The EDG G in our example from Figure 1(a) contains three nonempty components
and has dist(G) = 2.

An assignment A of an EDG G = (V,E,N) is a function A : V → {0, 1} that assigns the value 0
(interpreted as false) or the value 1 (interpreted as true) to each configuration of G. A zero assignment
A0 is such thatA0(v) = 0 for all v ∈ V . We also assume a component wise orderingv of assignments
such thatA1 v A2 wheneverA1(v) ≤ A2(v) for all v ∈ V . The set of all assignments ofG is denoted
by AG and clearly (AG,v) is a complete lattice.

We are now ready to define the minimum fixed-points assignment of an EDG G (assuming that a
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conjunction over the empty set is true, while a disjunction over the empty set is false).

Definition 2.3. The minimum fixed-point assignment of an EDG G, denoted by AGmin = A
Cdist(G)

min is
defined inductively on the components C0, C1, . . . , Cdist(G) of G. For all i, s.t. 0 ≤ i ≤ dist(G), we
define ACi

min to be the minimum fixed-point assignment of the function Fi : ACi → ACi where

Fi(A)(v) = A(v) ∨
[ ∨
(v,T )∈Ei

∧
u∈T

A(u)

]
∨
[ ∨
(v,u)∈Ni

¬ACi−1

min (u)

]
. (1)

Note that when computing the minimum fixed-point assignment AC0
min for the base component C0,

we know that N0 = ∅ and hence the third disjunct in the function F0 always evaluates to false. In
the inductive steps, the assignment ACi−1

min is then well defined for the use in the function Fi. It is
also easy to observe that each function Fi is monotonic (by a simple induction on i) and hence by
Knaster-Tarski, the unique minimum fixed-point always exists for each i.

In Figure 1 we show the iterative computation of AC0
min, AC1

min and AC2
min, starting from the zero

assignment A0. We iteratively upgrade the assignment of a configuration v from the value 0 to 1
whenever there is a hyper-edge (v, T ) such that all target configurations u ∈ T already have the value
1 or whenever there is a negation edge v 99K u such that the minimum fixed-point assignment of
u (computed earlier) is 0. Once the application of the function Fi stabilizes, we have reached the
minimum fixed-point assignment for the component Ci.

Remark 2.4. The algorithm for computing ACi
min described above, also called the global algorithm,

relies on the fact that the complete minimum fixed-point assignment of smaller components Cj where
j < i must be available before we can proceed with the computation on the component Ci. As we
show later on, it is not always necessary to know the whole ACi−1

min in order to compute ACi
min(v) for

a specific configuration v and such a computation can be done in an on-the-fly manner, using the
so-called local algorithm.

2.1. Game Characterization

In order to offer a more intuitive understanding of the minimum fixed-point computation on an ex-
tended dependency graphG, and to provide a convincing argumentation why the minimum fixed-point
value in a given configuration v is 0 or 1 (for the use in our tool), we define a two player game between
the players Defender and Attacker. The positions of the game are of the form (v, r) where v ∈ V is
a configuration and r ∈ {0, 1} is a claim about the minimum fixed-point value in v, postulating that
AGmin(v) = r. The game is played in rounds and Defender defends the current claim while Attacker
does the opposite.

Rules of the Game: In each round starting from the current position (v, r), the players determine
the new position for the next round as follows:
• If r = 1 then Defender chooses an edge e ∈ succ(v). If no such edge exists then Defender

loses, otherwise



Dalsgaard et al. / Extended Dependency Graphs and Efficient Distributed Fixed-Point Computation 7

– if e = (v, u) ∈ N then (u, 0) becomes the new current position, and
– if e = (v, T ) ∈ E then Attacker chooses the next position (u, 1) where u ∈ T , unless
T = ∅ which means that Attacker loses.

• If r = 0 then Attacker chooses an edge e ∈ succ(v). If no such edge exists then Attacker loses,
otherwise

– if e = (v, u) ∈ N then (u, 1) becomes the new current position, and
– if e = (v, T ) ∈ E then Defender chooses the next position (u, 0) where u ∈ T , unless
T = ∅ which means that Defender loses.

A play is a sequence of positions formed according the rules of the game. Any finite play is lost either
by Defender or Attacker as defined above. If a play is infinite, we observe that the claim r can be
switched only finitely many times (since the graph is negation safe). Therefore there is only one claim
r that is repeated infinitely often in such a play. If r = 1 is the infinitely repeated claim then Defender
loses, otherwise (r = 0) Attacker loses.

The game starting from the position (v, r) is winning for Defender if she has a universal winning
strategy from (v, r). Similarly, the position is winning for Attacker if he has a universal winning
strategy from (v, r). Clearly, the game is determined such that only one of the players has a universal
winning strategy and from the symmetry of the game rules, we can also notice that Defender is the
winner from (v, r) if and only if Attacker is the winner from (v, 1− r).

Theorem 2.5. Let G be a negation safe EDG, v ∈ V be a configuration and r ∈ {0, 1} be a claim.
Then AGmin(v) = r if and only if Defender is the winner of the game starting from the position (v, r).

Proof:
(⇒) Let us first define that a configuration v is of level i if v belongs to the component Ci but not to
any component Cj where 0 ≤ j < i. By induction on the level of a configuration v, we show that
(i) if AGmin(v) = 0 then Defender has a winning strategy from (v, 0), and (ii) if AGmin(v) = 1 then
Defender has a winning strategy from (v, 1).

Let us consider the base case where v is of level 0.
• For the case (i), let us assume that AGmin(v) = 0 and consider any play starting from (v, 0).

Either Attacker has no outgoing edge v and Defender wins, or for every outgoing hyper-edge
(v, T ) (notice that there are no negation edges for configurations at level 0) there must be at
least one u ∈ T such thatAGmin(u) = 0, otherwiseAGmin would not be a fixed-point assignment.
Defender will choose such u and the play continues from (u, 0). Eventually, either a loop is
formed, and the infinite game is winning for Defender as the claim 0 appears infinitely often, or
there is no outgoing edge for the attacker to choose, in which case Defender also wins.
• For the case (ii), let us assume that AGmin(v) = 1. There must have been a reason why the value

of v has been raised from 0 to 1 and the reason is that either v has an outgoing hyper-edge with
the empty target set, or there is an outgoing hyper-edge from v such that every node from the
target set has the value 1 in the minimum fixed-point assignment. As before, no negation edges
can be reached from the component C0. This means that for the distance function d inductively
defined as

– d(v) = 0 if there is a hyper-edge (v, ∅) ∈ E, otherwise
– d(v) = 1 + min(v,T )∈E maxu∈T d(u),
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we have that d(v) is finite for every v whereAGmin(v) = 1. Defender’s strategy from the position
(v, 1) is then to pick from the outgoing hyper-edges (at least one must exist) one that reduces
the distance. The distance to the configuration that has a hyper-edge with the empty target set
then decreases by at least one (irrelevant of Attacker’s choice) and eventually Defender picks
such a hyper-edge and Attacker loses the play. Hence Defender has a winning strategy in this
case as well.

Let us now consider the inductive case where we have a configuration v of level i > 0. Both in the
case (i) and (ii) we can now also encounter negation edges.

• For the case (i), Defender still selects configurations from the target set that have the minimum
fixed-point value 0, identically with the base case. The only change can be that Attacker can
from a configuration v such that Amin(v) = 0 select also a negation edge (v, u) ∈ N where
Amin(u) = 1. As the level of u is lower than the level of v, we can use the induction hypothesis
to conclude that Defender has a winning strategy from (u, 1).

• For the case (ii), we change the definition of the distance function d such that in the base case
d(v) is zero also if there is a negation-edge (v, u) ∈ N such that Amin(u) = 0. If the game
position becomes such a configuration v, with a negation edge (v, u), then Defender will se-
lect that edge and the play continues from (u, 0) that is by induction hypothesis winning for
Defender.

Hence the direction from left to right is established.

(⇐) We prove the other direction by contraposition. Assume that AGmin(v) 6= r and we want to
argue that Defender does not have a universal winning strategy from (v, r) (which by determinacy of
the game means that Attacker has a universal winning strategy from (v, r)). However, the fact that
AGmin(v) 6= r implies that AGmin(v) = 1 − r and Defender has a winning strategy from (v, 1 − r) as
proved above. By the symmetry of the game, this means that Attacker has a winning strategy from
(v, r). ut

Let us now argue that Defender wins from the position (a, 0) in the EDGG from Figure 1(a). First,
Attacker picks either (i) the hyper-edge (a, {b, d}) or (ii) the negation edge (a, e). In case (i), Defender
answers by selecting the configuration b and the game continues from (b, 0). Now Attacker can only
pick the hyper-edge (b, {c}) and Defender is forced to select the configuration c, ending in the position
(c, 0) and from here the only continuation of the game brings us again to the position (b, 0). As the
play now repeats forever with the claim 0 appearing infinitely often, Defender wins this play. In case
(ii) where Attacker selects the negation edge, we continue from the position (e, 1). Defender is forced
to select the only available hyper-edge (e, {d, f}), on which Attacker can answer by selecting the new
position (d, 1) or (f, 1). The first choice is not good for Attacker, as Defender will answer by taking
the negation edge (d, c) and ending in the position (c, 0) from which we already know that Defender
wins. The position (f, 1) is not good for Attacker either as Defender can now select the hyper-edge
(f, ∅) and Attacker loses as he gets stuck. Hence Defender has a universal winning strategy from
(a, 0) and by Theorem 2.5 we get that AGmin(a) = 0.
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p0

p1
t0

t1

Figure 2: A Petri net illustrating tokens, places and transitions

2.2. Encoding of CTL Model Checking of Petri Nets into EDG

We shall now give an example of how CTL model checking of Petri nets can be encoded into com-
puting fixed-points on EDGs. Let us first recall the Petri net model. Let N0 denote the set of natural
numbers including zero and N∞ the set of natural numbers including infinity.

A Petri net is a 4-tuple N = (P, T, F, I) where P is a finite set of places, T is a finite set of
transitions such that P ∩ T = ∅ and P ∪ T 6= ∅, F : (P × T ∪ T × P ) → N0 is the flow function
and I : P × T → N∞ is the inhibitor function. A marking on N is a function M : P → N0 assigning
a number of tokens to each place. The set of all markings on N is denoted M(N). A transition t is
enabled in a markingM ifM(p) ≥ F ((p, t)) andM(p) < I(p, t) for all p ∈ P . If t is enabled inM , it
can fire and produce a markingM ′, writtenM t−→M ′, such thatM ′(p) = M(p)−F ((p, t))+F ((t, p))

for all p ∈ P . We write M →M ′ if there is t ∈ T such that M t−→M ′.
A path in N , starting in a marking M , is a finite or infinite sequence of markings and transition

firings, written as

M ≡M0 →M1 →M2 → . . .

A path is maximal if it is either infinite or ends in a marking Mi such that Mi 6→; also called a
deadlock. The set of all maximal paths for a Petri netN from the markingM is denoted by Πmax(M).

An example of a Petri net is illustrated in Figure 2. The circles represent places, the rectangles
are transitions and arcs that have weight at least one are represented by arrows (in our example, all
arcs have weight one, so we omit this annotation on the arrows). A marking can then be represented
as a vector (n0, n1) where n0 denotes the number of tokens in p0 and n1 the number of tokens in p1,
respectively. A possible path from the initial marking is (1, 0) is e.g. (1, 0)→ (1, 0)→ (1, 0)→ . . . .
This repeated sequence of markings and firings of the transition t0 forms an infinite maximal path.
Another (finite) maximal path is e.g. (1, 0)→ (1, 0)→ (1, 0)→ (0, 1).

In CTL, properties are expressed using a combination of logical and temporal operators over a
set of basic propositions. In our case the propositions express properties of a concrete marking M
and include the proposition is_fireable(Y ) for a set of transitions Y that is true iff at least one of the
transitions from Y is enabled in the marking M , and arithmetical expressions and predicates over the
basic construct token_count(X) where X is a subset of places such that token_count(X) returns the
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total number of tokens in the places from the set X in the marking M . The CTL logic is motivated by
the requirements of the MCC’16 and MCC’17 competition [18, 22] and the syntax of CTL formula ϕ
is

ϕ ::= true | false | is_fireable(Y ) | ψ1 ./ ψ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EG ϕ | AG ϕ | EF ϕ | AF ϕ | EX ϕ | AX ϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2

ψ ::= ψ1 ⊕ ψ2 | c | token_count(X)

where ./ ∈ {<,≤,=,≥, >}, X ⊆ P , Y ⊆ T , c ∈ N0 and ⊕ ∈ {+,−, ·}. The semantics of a CTL
formula ϕ over a given marking M of the Petri net N is defined in Table 1, using the function evalM
that is given in Table 2. The remaining operators are defined as abbreviations in Table 3.

M |= true

M |= ¬ϕ iff M 6|= ϕ

M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= EX ϕ iff there exists M ′ ∈M(N) where M →M ′ and M ′ |= ϕ

M |= Eϕ1Uϕ2 iff there exists (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M) s.t.
there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i holds Mj |= ϕ1

M |= Aϕ1Uϕ2 iff for all (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M)
there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i holds Mj |= ϕ1

M |= is_fireable(Y ) iff there exists t ∈ Y and M ′ s.t. M t−→M ′

M |= ψ1 ./ ψ2 iff evalM (ψ1) ./ evalM (ψ2)

Table 1: CTL Semantics

evalM (c) = c

evalM (token_count(X)) =
∑

p∈XM(p)

evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2)

Table 2: The semantics of evalM

We now reduce the problem of CTL model checking over Petri nets to calculating the minimum
fixed-point assignment of an EDG. We construct an EDG with the configurations of the form 〈M,ϕ〉
where M is a marking and ϕ a CTL formula. If ϕ is an atomic proposition then there is a hyper-edge
from 〈M,ϕ〉 with the empty target set iff M |= ϕ, otherwise there is no hyper-edge connected to
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ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

AX ϕ ≡ ¬EX ¬ϕ
EF ϕ ≡ E true Uϕ

AF ϕ ≡ A true Uϕ

EG ϕ ≡ ¬AF ¬ϕ
AG ϕ ≡ ¬EF ¬ϕ
false ≡ ¬true

Table 3: Standard abbreviations

〈M, true〉

∅
(a) True

iff evalM (ψ1) ./ evalM (ψ2)〈M,ψ1 ./ ψ2〉

∅
(b) Token count

iff M t−→M ′ for some M ′ and some t ∈ Y〈M, is_fireable(Y)〉

∅
(c) Is fireable

Figure 3: Atomic rules

the configuration. This construction is shown in Figure 3. In Figure 4 we present the rules for the
minimal set of operators from Table 1. Finally in Figure 5 we also show a direct encoding for some of
the derived CTL operators. These are included in order to limit the amount of configurations required
to calculate the minimum fixed-point assignment of the extended dependency graph and hence to
improve the efficiency of the algorithm. Observe that the reduction produces a negation safe EDG. An
example of such a reduction is shown in Figure 6.

We can now state the correctness result for the reduction.

Theorem 2.6. (Encoding Correctness)
Let N = (P, T, I, F ) be a Petri net, M a marking on N and ϕ a CTL-formula. Let G be the extended
dependency constructed according to the rules in Figures 3, 4 and 5 with the root 〈M,ϕ〉. Then
M |= ϕ iff AGmin(〈M,ϕ〉) = 1.

Proof:
The proof is by a mathematical induction on the level of a configuration 〈M,ϕ〉 in the extended
dependency graph (recall that a configuration is of level i if it belongs to the component Ci of the
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〈M,ϕ1 ∧ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a) Conjunction

〈M,¬ϕ〉

〈M,ϕ〉

(b) Negation

〈M,EXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(c) Existential next

〈M,Eϕ1Uϕ2〉

〈M1, Eϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Eϕ1Uϕ2〉. . .

(d) Existential until

〈M,Aϕ1Uϕ2〉

〈M1, Aϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Aϕ1Uϕ2〉. . .

(e) Universal until

Figure 4: Minimum set of operators where we let {M1, ...,Mn} = {M ′ |M →M ′}

graph but not to any component Cj where j < i). After this induction, we employ a nested structural
induction on the formula ϕ.
• Let ϕ = true, ϕ = ψ1 ./ ψ2 or ϕ = is_fireable(Y). Then it is straightforward to see that
Amin(〈M,ϕ〉) = 1 if and only if there is a hyper-edge with the empty target set, which is the
case (according to the rules in Figure 3) if and only if M |= ϕ.
• Let ϕ = ϕ1 ∧ ϕ2. Then M |= ϕ1 ∧ ϕ2 if and only if M |= ϕ1 and M |= ϕ2 which is by the

structural induction hypothesis the case if and only if Amin(〈M,ϕ1〉) = Amin(〈M,ϕ2〉) = 1.
By Figure 4(a) there is an edge (〈M,ϕ1 ∧ ϕ2〉, {〈M,ϕ1〉, 〈M,ϕ2〉}) and this is the only hyper-
edge connected to the configuration 〈M,ϕ1 ∧ ϕ2〉. This implies that Amin(〈M,ϕ1 ∧ ϕ2〉) = 1
if and only if M |= ϕ1 ∧ ϕ2.

• Let ϕ = ϕ1 ∨ ϕ2. This case is analogous to the case of conjunction.
• Let ϕ = EXϕ1. Notice that M |= EXϕ1 if and only if there is M ′ such that M → M ′ and
M ′ |= ϕ1. By the induction hypothesis Amin(〈M ′, ϕ1〉) = 1 if and only if M ′ |= ϕ1. By
Figure 4(c) there is an edge (〈M,EXϕ1〉, {〈M ′, ϕ1〉}) for all successors M ′ of M and in order
to propagate the value 1 to the root, at least one of the child configurations must have the value
1. Hence Amin(〈M,EXϕ1〉) = 1 if and only if M |= EXϕ1.
• Let ϕ = AXϕ1. This case is analogous to the case of EX .
• Let ϕ = EFϕ1. First we prove the direction from left to right. By definition we have M |=
EFϕ1 iff there is a computation M = M0 → M1 → M2 → ...Mj such that Mj |= ϕ1. By
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〈M,ϕ1 ∨ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a) Disjunction

〈M,AXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(b) Universal next

〈M,EFϕ〉

〈M1,EFϕ〉〈M,ϕ〉 〈Mn,EFϕ〉. . .

(c) Existential finally

〈M,AFϕ〉

〈M1,AFϕ〉〈M,ϕ〉 〈Mn,AFϕ〉. . .

(d) Universal finally

Figure 5: Derived operator set where we let {M1, ...,Mn} = {M ′ |M →M ′}

mathematical induction on j we show that Amin(〈M,EFϕ1〉) = 1. If j = 0 then M |= ϕ1,
which by the structural induction hypothesis means that Amin(〈M,ϕ1〉) = 1 and this value by
the left-most hyper-edge in Figure 5(c) propagates to the configuration 〈M,EFϕ1〉. Let j > 0.
Then by the mathematical induction hypothesis, we have that Amin(〈M1, EFϕ1〉) = 1 and due
to the corresponding hyper-edge in Figure 5(c) the value 1 propagates also to 〈M,EFϕ1〉).
Next we argue for the direction from right to left. Let us assume that Amin(〈M,EFϕ1〉) = 1.
Then at least one of the children of 〈M,EFϕ1〉 in Figure 5(c) must have the value 1, otherwise
Amin is not the minimum fixed-point assignment. If Amin(〈M,ϕ1〉) = 1 then by the struc-
tural induction hypothesis M |= ϕ1 and hence also M |= EFϕ1. If this is not the case then
there is a marking M ′ such that M → M ′ and Amin(〈M ′, EFϕ1〉) = 1. We select such a
marking M ′ that minimizes the number of steps needed to reach a configuration of the form
〈M ′′, ϕ1〉 such that Amin(〈M ′′, ϕ1〉) = 1. This configuration must exist due to the assumption
that Amin(〈M,EFϕ1〉) = 1. The argument then follows by the mathematical induction on the
number of steps needed to reach such a configuration.
• Let ϕ = AFϕ1, ϕ = Eϕ1Uϕ2, or ϕ = Aϕ1Uϕ2. These cases are analogous to the EF case

by following the same proof strategies.
• Let ϕ = ¬ϕ1. In the construction of the dependency graph, the only outgoing edge from
〈M,¬ϕ1〉 is the negation edge to the configuration 〈M,ϕ1〉 where we by the mathematical
induction hypothesis on the level of the configuration 〈M,ϕ1〉 know that Amin(〈M,ϕ1〉) = 1
if and only if M |= ϕ1. By the definition of Amin this implies that Amin(〈M,¬ϕ1〉) = 1 if and
only if M |= ¬ϕ1 as required.

ut

Remark 2.7. The reader probably noticed that if the Petri net is unbounded (has infinitely many
reachable markings), we are actually producing an infinite EDG. Indeed, CTL model checking for un-
bounded Petri nets is undecidable [34], so we cannot hope for a general algorithmic solution. However,
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p

p3 p1

p2

(a) Petri net

ϕ = E(¬AF¬(p1 ≤ 2)) U (p2 = 2)

(b) CTL query

〈M,ϕ〉 1

c0

〈(1, 0, 0, 2), p2 = 2〉
0

c1
〈(1, 0, 0, 2),¬AF¬(p1 ≤ 2)〉

1

c2
〈(1, 1, 1, 1), ϕ〉

1

c3

〈(1, 0, 0, 2), AF¬(p1 ≤ 2)〉
0

c4
〈(1, 1, 1, 1), p2 = 2〉

0

c5
〈(1, 1, 1, 1),¬AF¬(p1 ≤ 2)〉

1

c6
〈(1, 2, 2, 0), ϕ〉

1

c7

〈(1, 0, 0, 2),¬(p1 ≤ 2)〉
0

c8
〈(1, 1, 1, 1), AF¬(p1 ≤ 2)〉

0

c9
〈(1, 2, 2, 0), p2 = 2〉

1

c10

〈(1, 0, 0, 2), p1 ≤ 2〉
1

c11
〈(1, 1, 1, 1),¬(p1 ≤ 2)〉

0

c12
〈(1, 2, 2, 0), AF¬(p1 ≤ 2)〉

0

c13

〈(1, 1, 1, 1), p1 ≤ 2〉
1

c14
〈(1, 2, 2, 0),¬(p1 ≤ 2)〉

0

c15

〈(1, 2, 2, 0), p1 ≤ 2〉
1

c16

∅

∅

∅

∅

(c) Extended Dependency Graph, M = (1, 0, 0, 2) and ϕ = E(¬AF¬(p1 ≤ 2))U(p2 = 2)

Figure 6: The EDG in (c) is constructed from the Petri net in (a) and the CTL query in (b). Each
configuration is superscripted with its minimum fixed-point assignment, and subscripted with its iden-
tifier, e.g. the initial configuration is identified by c0. For readability, we abbreviate expressions like
token_count({p1}) ≤ 2 with p1 ≤ 2.
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1

0

(a)

1

0

⊥
(b)

10

?

⊥
(c)
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d
. . .

. . . . . .
. . . . . . . . .

(d)

Figure 7: Comparison of Different Algorithms for Fixed-Point Computation

due to the employment of our local algorithm with certain zero propagation, we are sometimes able
to obtain a conclusive answer by exploring only a finite part of the (on-the-fly) constructed extended
dependency graph.

3. Algorithms for Fixed-Point Computation on EDG

We shall now discuss the differences of our new distributed algorithm for fixed-point computation of
EDG compared to the previous approaches, followed by the description of our algorithm.

Figure 7 shows the partial ordering of the assignment values used by the algorithms. The orderings
in the figure show how the configuration values are upgraded during the execution of the algorithms.
The global algorithm, described in Section 2, only uses the assignment values 0 and 1 as shown in
Figure 7(a). Initially, the whole graph is constructed and all configurations are assigned the value
0. Then it iterates, starting from the component C0, over all hyper-edges and upgrades the source
configuration values to 1 whenever all target configurations are already assigned the value 1. This
repeats until no further upgrades are possible and then it uses the negation edges to propagate the
values to the higher components until the minimum fixed-point assignment of a given configuration is
set to 1 (in which case an early termination is possible) or until the whole process terminates and we
can claim that the minimum fixed-point assignment of the given configuration is 0.

The key insight for the local algorithm, as suggested by Liu and Smolka [6] for dependency graphs
without negation edges, is that if we are only interested in AGmin(v) for a given configuration v, we
do not have to necessarily enumerate the whole graph and compute the value for all configurations
in G in order to establish that AGmin(v) = 1. The local algorithm introduces the value ⊥ for not yet
explored configurations as shown in Figure 7(b) and performs a forward search in the dependency
graph with backward propagation of the value 1. This significantly improves the performance of the
global algorithm in case the configuration v gets the value 1. In the case whereAGmin(v) = 0, the local
algorithm must search the whole graph before terminating and announcing the final answer.

Our improvement to the local algorithm is twofold: the handling of negation edges in an on-the-
fly manner and the introduction of a new value ?, taking over the previous role of 0, as shown in
Figure 7(c). Here ⊥ means that a configuration has not been discovered yet, ? that the final minimum
fixed-point assignment has not been determined yet, and 0 and 1 mean the final values in the minimum
fixed-point assignment. Hence as soon as the given configuration gets the value 0 or 1, we can early
terminate and announce the answer. The previous approaches did not allow early termination for the
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value 0, but as Figure 7(d) shows, it can save lots of work. Since d has no outgoing hyper-edges, it
can get assigned the value 0 (called certain zero) and because the single target configuration of the
hyper-edge (b, {d}) is 0, the value 0 can back-propagate to b (we do this by removing hyper-edges
that contain at least one target configuration with the value 0 and once a configuration has no outgoing
hyper-edges, it will get assigned the certain zero value 0). Now the hyper-edge (a, {b, c}) can also
be removed and as a no longer has any hyper-edges, we can conclude that AGmin(a) = 0 without
having to explore the potentially large subgraph rooted at c as it would be necessary in the previous
algorithms. We moreover have to deal with negation edges where we allow early back-propagation
of the certain 0 and certain 1 values, essentially performing an on-the-fly search for the existence of
Defender’s winning strategy. In what follows, we shall present the formal details of our algorithm,
including its distributed implementation.

3.1. Distributed Algorithm for Minimum Fixed-Point Computation

We assume n workers running Algorithm 1 in parallel. Each worker has a unique identifier i ∈
{1, ..., n} and can communicate with any other worker using reliable channels. If not stated otherwise,
i refers to the identifier of the local worker and j refers to an identifier of some remote worker.

Global Data Structures. Initially, each worker has access to the means of generating a given EDG
G = (V,E,N) via the function succ, an initial configuration v0 ∈ V , and a partition function δ :
V → {1, . . . , n} that splits the configurations among the workers. We say that worker i owns a
configuration v if δ(v) = i.

Local Data Structures. Each worker has the following local data structures:
• W i

E ⊆ E is the waiting list of hyper-edges,
• W i

N ⊆ N is the waiting list of negation edges,
• Di : V → P(E ∪N) is the dependency set for each configuration,
• succi : V → P(E ∪N) is the local successor relation such that initially succi(v) = succ(v) if
δ(v) = i and otherwise succi(v) = ∅,
• Ai : V → {⊥, ?, 0, 1} is the assignment function (implemented via hashing), initially returning
⊥ for all configurations,
• Ci : V → P({1, . . . , n}) is the set of interested workers who requested the value of a given

configuration,
• M i

R ⊆ V × {1, . . . , n} is the (unordered) message queue for requests (v, j), where j is the
identifier of the worker requesting the assigned value (i.e. 0 or 1) of a configuration v belonging
to the partition of worker i, and
• M i

A ⊆ V ×{0, 1} is the (unordered) message queue for answers (v, a), where a is the assigned
value of configuration v which has been previously requested by worker i.

For syntactical convenience, we assume that we can add messages to M i
R and M i

A directly from other
workers.
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Algorithm 1 Distributed Certain Zero Algorithm for a Worker i
Require: Worker id i, an EDG G = (V,E,N) and an initial configuration v0 ∈ V .
Ensure: The minimum fixed-point assignment AGmin(v0)

1: function DISTRIBUTEDCERTAINZERO(G, v0)
2: if δ(v0) = i then EXPLORE(v0) . Algorithm 2
3: repeat
4: if W i

E ∪W i
N ∪M i

R ∪M i
A 6= ∅ then

5: task ← PICKTASK(W i
E ,W

i
N ,M

i
R,M

i
A)

6: if task ∈W i
E then PROCESSHYPEREDGE(task) . Algorithm 2

7: else if task ∈W i
N then PROCESSNEGATIONEDGE(task) . Algorithm 2

8: else if task ∈M i
R then PROCESSREQUEST(task) . Algorithm 2

9: else if task ∈M i
A then PROCESSANSWER(task) . Algorithm 2

10: until TERMINATIONDETECTION
11: if Ai(v0) = ? ∨Ai(v0) = 0 then return 0
12: else return 1

Global waiting lists. When we need to reference the global state in the computation of the parallel
algorithm, we can use the following abbreviations.
• The global waiting list of hyper-edges WE =

⋃n
i=1W

i
E .

• The global waiting list of negation edges WN =
⋃n
i=1W

i
N .

• The global request message queue MR =
⋃n
i=1M

i
R.

• The global answer message queue MA =
⋃n
i=1M

i
A.

Pick Task. Algorithm 1 uses at line 5 the function PICKTASK(W i
E ,W

i
N ,M

i
R,M

i
A) that nondeter-

ministically returns:
• a hyper-edge from W i

E , or
• a message from M i

R or M i
A, or

• a negation edge (v, u) from W i
N provided that Ai(u) ∈ {0, 1,⊥}, or

• a negation edge (v, u) from W i
N if all workers are idle and v has a minimal distance in all

waiting lists and message queues (i.e. for all (v′, x) ∈ (WE ∪WN ∪MA ∪MR) it holds that
dist(v) ≤ dist(v′)).

If none of the above is satisfied, the worker waits until either a message is received or a negation edge
becomes safe to pick. Notice that in this case, W i

E will remain empty until a message or negation
edge is processed. Even though PICKTASK depends on the global state of the computation to decide
whether a negation edge is safe to pick, the rest of the conditions can be determined based on the data
that is available locally to each worker. Therefore it is not necessary to synchronise across all workers
every time a task should be picked, it is only required if the worker wants to pick a negation edge
(v, u) where Ai(u) =?.

Idle Worker. We say that a worker i is idle if it is currently waiting at line 5 for the return value of
the function PICKTASK.
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Algorithm 2 Functions for Worker i Called from Algorithm 1
1: function PROCESSHYPEREDGE(e = (v, T )) . e ∈ E
2: W i

E ←W i
E \ {e}

3: if ∀u ∈ T : Ai(u) = 1 then FINALASSIGN(v, 1) . Edge propagates 1
4: else if ∃u ∈ T where Ai(u) = 0 then DELETEEDGE(e)
5: else if X ⊆ T s.t. X 6= ∅ and ∀u ∈ X : Ai(u) = ? ∨Ai(u) = ⊥ then
6: for u ∈ X do
7: Di(u)← Di(u) ∪ {e}
8: if Ai(u) = ⊥ then EXPLORE(u)

1: function PROCESSNEGATIONEDGE(e = (v, u)) . e ∈ N
2: W i

N ←W i
N \ {e}

3: if Ai(u) = ? ∨Ai(u) = 0 then FINALASSIGN(v, 1) . Assign negated value
4: else if Ai(u) = 1 then DELETEEDGE(e)
5: else if Ai(u) =⊥ then
6: Di(u)← Di(u) ∪ {e}; W i

N ←W i
N ∪ {e}; EXPLORE(u)

1: function PROCESSREQUEST(m = (v, j)) . request from worker j
2: if Ai(v) = 1 ∨Ai(v) = 0 then . Value of v is already known
3: M j

A ←M j
A ∪ {(v,Ai(v))} ; M i

R ←M i
R \ {m}

4: else . Value of v is not computed yet
5: Ci(v)← Ci(v) ∪ {j} . Remember that worker j is interested in v
6: M i

R ←M i
R \ {m}

7: if Ai(v) = ⊥ then EXPLORE(v)

1: function PROCESSANSWER(m = (v, a)) . a ∈ {0, 1} and m ∈M i
A

2: M i
A ←M i

A \ {m}
3: FINALASSIGN(v, a) . Assign the received answer to v

1: function EXPLORE(v) . v ∈ V
2: Ai(v)← ?
3: if δ(v) = i then . Does worker i own v?
4: if succi(v) = ∅ then FINALASSIGN(v, 0) . It is safe to propagate 0
5: W i

E ←W i
E ∪ (succi(v) ∩ E); W i

N ←W i
N ∪ (succi(v) ∩N)

6: else
7: M

δ(v)
R ←M

δ(v)
R ∪ {(v, i)} . If not, request the value from the owner of v

1: function DELETEEDGE(e = (v, T ) or e = (v, u)) . e ∈ (E ∪N)
2: succi(v)← succi(v) \ {e}
3: if succi(v) = ∅ then FINALASSIGN(v, 0) . It is safe to propagate 0
4: if e ∈ E then
5: W i

E ←W i
E \ {e}

6: for all u ∈ T do Di(u)← Di(u) \ {e}
7: if e ∈ N then
8: W i

N ←W i
N \ {e}; Di(u)← Di(u) \ {e}

1: function FINALASSIGN(v, a) . a ∈ {0, 1} and v ∈ V
2: if v = v0 then return a and terminate all workers; . Early termination
3: Ai(v)← a
4: for all j ∈ Ci(v) do M j

A ←M j
A ∪ {(v, a)} . Notify all interested workers

5: W i
E ←W i

E ∪ {Di(v) ∩ E}; W i
N ←W i

N ∪ {Di(v) ∩N}
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Termination of the Algorithm. We utilize a standard TERMINATIONDETECTION function com-
puted distributively that returns true if and only if all message queues are empty, all waiting lists
are empty (i.e. WE ∪WN ∪MR ∪MA = ∅) and all workers are idle. Notice that once the initial
configuration v0 is assigned the final value 0 or 1, the algorithm can terminate early.

We shall now focus on the correctness of the algorithm. By a simple code analysis, we can observe
the following lemma.

Lemma 3.1. During the execution of Algorithm 1, the value of Ai(v) for any worker i and any con-
figuration v will never decrease (with respect to the ordering from Figure 7(c)).

Proof:
First let us observe that the algorithm never assigns ⊥ to any configuration, hence the only possible
way to decrease the assignment value is to assign ? to a configuration which is already assigned 1 or 0.
The only place where this can happen is line 2 of the EXPLORE function as the function FINALASSIGN

is always called with only 1 or 0 as an input parameter. However, thanks to the conditions on line 8
of PROCESSHYPEREDGE, line 5 of PROCESSNEGATIONEDGE and line 7 of PROCESSREQUEST, the
EXPLORE function is only called if the previous assignment value is ⊥. Hence we can never decrease
the assignment value of a configuration in any of the local assignments. ut

Based on this lemma we can now argue about the termination of the algorithm.

Lemma 3.2. Algorithm 1 terminates.

Proof:
To show that the algorithm terminates, we have to argue that eventually all waiting lists become empty
and all workers go to idle (unless early termination kicks in before this). By guaranteeing this, the
TERMINATIONDETECTION condition will be satisfied and the algorithm terminates.

First, let us observe that if the waiting lists of a worker are empty, the worker will eventually
become idle. That is because none of the functions called from the repeat-until loop contain any loops
or recursive calls. Also note that in such case, the worker will stay idle until a message is received. In
each iteration, an edge is inserted into a waiting list only if the assignment value of some configuration
increases. By Lemma 3.1, the assignment value can never decrease, and since the assignment value
can only increase finitely many times, eventually no edges will be inserted into the waiting lists. The
same argument applies to request messages as a request can only be sent if an assignment value of a
configuration increases from ⊥ to ?. The only exception to the considerations above are the answer
messages. An answer message can be sent either as a result of an assignment value increase (line 4 of
the FINALASSIGN), which only happens finitely many times. However, it can be also sent as a direct
response to a request message (line 3 of the PROCESSREQUEST). As we have already shown, each
computation can produce only finitely many requests and since each such request can produce at most
one answer, the number of answer messages will also be finite.

Finally, we note that as soon as all the messages and hyper-edges are processed by all workers, at
least one negation edge becomes safe to pick. Hence if no new messages are sent or edges being in-
serted into the waiting lists, eventually a negation edge is picked (at most once). Therefore all waiting
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lists become eventually empty and as a result all workers go idle, satisfying the TERMINATIONDE-
TECTION condition. ut

The main correctness argument is contained in the following loop invariants.

Lemma 3.3. (Loop Invariants)
For any worker i, the repeat-until loop in Algorithm 1 satisfies the following invariants.

1. For all v ∈ V , if Ai(v) = 1 then AGmin(v) = 1.

2. For all v ∈ V , if Ai(v) = 0 then AGmin(v) = 0.

3. For all v ∈ V , if Ai(v) = ? and i = δ(v) then for all e ∈ succi(v) it holds that e ∈ W i
E ∪W i

N

or e ∈ Di(u) for some u ∈ V where Ai(u) = ?.

4. For all v ∈ V , if Ai(v) = ? and i 6= δ(v) then one of the following must hold:

• (v, i) ∈M δ(v)
R ,

• i ∈ Cδ(v)(v) and Aδ(v)(v) = ?, or
• (v, a) ∈M i

A and Aδ(v)(v) = a for some a ∈ {0, 1}.

5. If there is a negation edge e = (v, u) ∈ W i
N s.t. Ai(u) = ? and all workers are idle and v is

minimal in all waiting lists and message queues (i.e. for all (v′, x) ∈ (WE ∪WN ∪MA ∪MR)
it holds that dist(v) ≤ dist(v′)), then AGmin(u) = 0.

Proof:
First we prove Invariants 1 and 2. The only place where the algorithm assigns value 1 or 0 to a config-
uration is in FINALASSIGN. Therefore we need to analyse the conditions under which FINALASSIGN

is called. FINALASSIGN with value 1 or 0 can be called under these circumstances:
• Line 3 of PROCESSHYPEREDGE or line 3 of PROCESSNEGATIONEDGE where the target is

assigned 0. If all targets of a hyper-edge are assigned 1 or the target of a negation edge is
assigned 0, it is by the invariant assumption safe to assign 1 also to the source configuration.
• Line 3 of PROCESSNEGATIONEDGE where the target is assigned ? or 0. The case where the

target is 0 is clear thanks to Invariant 2. If the target is assigned ?, this can only happen if
the edge was picked based on the fourth condition of PICKTASK. Therefore the conditions of
Invariant 5 apply and it is safe to assign 1 to the source configuration.
• Line 3 of PROCESSANSWER. An answer message (a, i) is only sent if Aδ(v)(v) = a and this

value is the minimum fixed-point value by Invariants 1 and 2. Therefore it is also safe to assign
the same value to Ai(v) in worker i.
• Line 4 of EXPLORE or line 3 of DELETEEDGE. If a configuration has no remaining successors

that can propagate the value 1, then it is safe to assign 0 to it.
Hence we proved the validity of Invariants 1 and 2.

We shall now focus on Invariant 3. When the value of the assignment is increased from ⊥ to ?
(line 2 of EXPLORE) for a configuration v owned by worker i, all successor edges are pushed into
the waiting lists, thus preserving the invariant. By exploring the functions PROCESSHYPEREDGE
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and PROCESSNEGATIONEDGE, we observe the following fact. When an edge is picked from the
waiting list, one of the following occurs: the source v is assigned a final value, the edge is deleted,
or the edge is inserted into the dependency set of some target configuration that is assigned ?. If the
target is assigned ⊥, we call the EXPLORE function that is going to increase it to ?. Finally, when
a configuration is assigned 0 or 1, the dependency set is pushed into the waiting lists, therefore the
invariant is still preserved.

Let us now discuss Invariant 4. When the value of the assignment is increased from ⊥ to ? for
a configuration v not owned by worker i, the worker sends a request message to the owner (line 7
of EXPLORE), thus the invariant is preserved. As soon as the owner of the configuration receives a
request, one of two things happen. If the value of the configuration is already 0 or 1 then the owner
sends an answer message to worker i (line 3 of PROCESSREQUEST). Alternatively, if the value of the
configuration is ⊥ or ? then i is inserted into the interested set (line 5 of PROCESSREQUEST) and the
value of the configuration is increased from ⊥ to ? if necessary. Afterwards, when a configuration
is assigned 0 or 1, all workers in the interested set are notified via an answer message (line 4 of
FINALASSIGN). Finally, when the answer message is processed by worker i, the configuration is
assigned 0 or 1, and the invariant trivially holds too.

We finish by proving Invariant 5. When the conditions of the invariant are satisfied, there are no
tasks in any of the waiting and message lists (on any of the workers) that concern the component where
the target of the negation edge is located. Since all workers are currently idle, it is also guaranteed
that no such task is currently being processed (the opposite would mean that the assignment values
in the component can still change as a result of the processing). Therefore it is safe to assume that
AGmin(u) = 0 as the value of u can never increase to 1, and the invariant holds. ut

Now we can state two technical lemmas.

Lemma 3.4. Upon termination of Algorithm 1 at line 11 or line 12, for every negation edge e =
(v, u) ∈ N it holds that either Aδ(v)(v) ∈ {1,⊥} or the negation edge is deleted from succδ(v).

Proof:
First, observe that if a negation edge is processed more than once for worker δ(v), it is either deleted
or the source configuration is assigned 1. Hence the target configuration is guaranteed not to be ⊥.
When a negation edge is processed, one of the following will happen:
• the edge is deleted,
• the source configuration is assigned 1, or
• the value of the target configuration is ⊥. In this case, the edge is re-inserted into the waiting

list and will be processed at least twice.
If a negation edge is processed at least once, the condition is satisfied. Observe that if the edge is
picked for the first time, and the value of the target configuration is ?, then by Invariant 5, the source
configuration can be assigned 1. ut

Lemma 3.5. Upon termination of Algorithm 1 at line 11 or line 12, for every i ∈ {1, ..., n} and for
every v ∈ V it holds that either Ai(v) = ⊥ or Ai(v) = Aδ(v)(v).
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Proof:
Consider a worker i and a configuration v. If δ(v) = i, the condition holds trivially. If δ(v) 6= i
and Ai(v) = ?, then by Lemma 3.3 Condition 4 also Aδ(v)(v) = ? (since no messages are in transit,
because the algorithm has terminated).

If δ(v) 6= i and Ai(v) = a ∈ {0, 1}, it means that worker i at some point received an answer
message (v, a). That is because the only place where FINALASSIGN is called with a configuration that
the worker does not own is in PROCESSANSWER (and a worker never sends messages to itself). Also,
an answer message (v, a) is only sent if the worker who owns v has already assigned it a final value a.
Therefore if a worker receives an answer message (v, a) then it is guaranteed that Aδ(v)(v) = a. ut

We finish this section with the correctness theorem.

Theorem 3.6. Algorithm 1 terminates and upon termination it holds, for all i, 1 ≤ i ≤ n, that
• if Ai(v0) = 1 then AGmin(v0) = 1 and
• if Ai(v0) ∈ {?, 0} then AGmin(v0) = 0.

Proof:
By Lemma 3.2 we know that Algorithm 1 terminates. For a fixed worker i, by Lemma 3.3, it certainly
holds that if Ai(v) = 1 or Ai(v) = 0 then AGmin(v) = Ai(v). To show that if Ai(v) = ? then
AGmin(v) = 0, we first construct a global assignment B such that

B(v) =

{
0 if there is i ∈ {1, . . . , n} such that Ai(v) = ? or Ai(v) = 0

1 otherwise.
(2)

Next we show that B is a fixed-point assignment of G. For a contradiction, let us assume B is not a
fixed-point assignment. This can happen in two cases:
• There is a hyper-edge e = (v, T ) such that B(v) = 0 and B(u) = 1 for all u ∈ T . If Ai(v) = 0

for some i, it is a direct contradiction with Lemma 3.3 Condition 2. Otherwise for some i it
must hold that Ai(v) = ?. By Lemma 3.5, we get that Ai(v) = Aδ(v)(v) = ?. Therefore
according to Lemma 3.3 Condition 3, there exists a configuration u such that Aδ(v)(u) = ? and
e is in the dependency set of u. However, Aδ(v)(u) = ? implies that there exists u ∈ T such that
B(u) = 0.
• There is a negation edge e = (v, u) such that B(v) = 0, and AGmin(u) = 0 and e is not deleted.

If Ai(v) = 0 for some i, it is again a contradiction with Lemma 3.3 Condition 2. Otherwise for
some i it must hold that Ai(v) = ?. Then by Lemma 3.5 we get that Ai(v) = Aδ(v)(v) = ?,
which is a contradiction with Lemma 3.4.

Because B is a fixed-point assignment and AGmin is the minimum fixed-point assignment, we get
AGmin v B. Therefore if Ai(v) = ? then by the definition of B we have that B(v) = 0 and by
AGmin(v) ≤ B(v) this implies that AGmin(v) = 0. ut

As a direct consequence of Theorem 3.6 we get the following corollary.

Corollary 3.7. Algorithm 1 terminates and returns AGmin(v0).
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4. Implementation and Experiments

The single-core local algorithm (local) and its extension with certain zero propagation (czero), together
with the distributed versions of czero with non-shared memory and using MPI running on 4 cores (dist-
4), 16 cores (dist-16) and 32 cores (dist-32) have been implemented in an open-source framework writ-
ten in C++. The implementation is available at http://code.launchpad.net/~tapaal-dist-ctl/
verifypn/paper-dist and contains also all experimental data. The engine is now fully integrated
in the latest release of the tool TAPAAL (http://www.tapaal.net), including a GUI support for
creating CTL queries.

The general tool architecture is shown in Figure 8. It consists of the interface that allows the
user to define the dependency graph by proving the initial configuration and a function generating (on
demand) the sucessor configurations. Then the user can decide to implement their own search strategy
or to use one of the predefined ones, choose the custom lightweight comunicator for message passing
or define its own (including the serializer that encodes configurations), and the user also defines the
partitioning function assigning configurations to workers. On the engine side, one can choose to run
either the sequential local or certain zero algorithm, or the parallel one that by default implements only
the certain zero algorithm. A game engine allows to interact with the annotated dependency graph and
convince the user why a certain configuration has the value 0 or 1. It uses the console mode at the
moment—the integration into the GUI of the tool TAPAAL is currently under development.

The framework in Figure 8 was instantiated for CTL model checking of Petri nets by providing C++
code for the initial configuration of the EDG and the successor generator (that for a given configuration
outputs all outgoing hyper-edges and negation edges). Optionally, one can also customize the search
strategy and communication among workers, or choose from the predefined ones. In our experiments,
we use DFS strategy for both the forward and backward propagation (note that even if each worker
in the distributed version runs DFS strategy, depending on the actual order of the request arrivals, this
may result in pseudo DFS strategies).

To compare the algorithms, we ran experiments on CTL queries interpreted on the Petri nets from
MCC’16 [18] on machines with four AMD Opteron 6376 processors, each processor having 16 cores.
A 15 GB memory limit per core was enforced for all verification runs. We considered all 322 known
Petri net models from the competition, each of them coming with 16 different CTL cardinality queries.
As many of these models are either trivial to solve or none of the algorithms are able to provide any
answer, we first selected an interesting subset of the models where the slowest algorithm used at least
30 seconds on one of the first three queries and at the same time the fastest algorithm solved all three
queries within 30 minutes. This left us with 49 models on which we run all 16 CTL queries (in total
784 executions) with the time limit of 1 hour.

Table 4 shows in the row marked as Answers how many queries were answered by the algorithms
and documents that our certain zero algorithm solved 90 more queries than the one by Liu and Smolka.
Running the distributed algorithm on 4 cores further solved 54 more queries and the utilization of 32
cores allowed us to solve additional 51 queries. This is despite the fact that we are solving a P-hard
problem [15] and such problems are in general believed not to have efficient parallel algorithms.
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Figure 8: Tool framework architecture
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Algorithm Answers Answers (improved)

Liu and Smolka Local, 1 core (local) 475 555
Certain Zero Local, 1 core (czero) 565 652

Distributed Certain Zero Local, 4 cores (dist-4) 619 674
Distributed Certain Zero Local, 16 cores (dist-16) 654 703
Distributed Certain Zero Local, 32 cores (dist-32) 670 706

Table 4: Answered queries within 1 hour (out of 784 executions)

Query Number
Alg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

local 160 447 – 158 234 250 199 1 228 343 229 241 233 1 223 1
czero 157 453 226 154 229 1 1 1 221 100 227 238 232 1 226 1
dist-4 82 224 129 86 158 1 1 1 85 1 116 154 133 1 137 1
dist-16 35 95 1 32 78 1 1 1 24 1 50 59 70 1 45 1
dist-32 21 67 1 20 45 1 1 1 11 1 33 36 46 1 33 1

B

local 465 444 453 16 1 1 401 1 1030 1 877 490 3 458 459 1
czero 452 468 464 16 1 1 1 1 522 1 1 477 3 1 2 1
dist-4 119 118 125 6 1 1 1 1 180 1 1 144 3 1 1 1
dist-16 40 38 40 2 1 1 1 1 290 1 1 45 1 1 1 1
dist-32 23 22 23 1 1 1 1 1 1270 1 1 28 1 1 1 1

C

local 343 1 183 85 1 1 4 180 – 1 25 1 165 1 173 172
czero 175 1 172 70 1 1 3 1 333 1 23 1 178 1 1 1
dist-4 60 1 63 42 3 1 2 1 87 1 12 1 58 1 1 1
dist-16 22 2 21 18 5 2 1 1 33 1 20 1 20 1 1 1
dist-32 20 2 15 18 2 3 1 1 21 1 11 1 13 1 1 1

D

local 263 446 243 236 219 23 204 356 235 164 1 231 279 1 1 13
czero 1 187 6 228 215 21 188 1 220 1 1 229 257 1 1 11
dist-4 1 130 6 130 1 12 103 1 122 1 1 124 189 1 1 7
dist-16 1 61 3 53 1 5 41 1 46 1 1 75 79 1 1 3
dist-32 1 45 2 35 1 3 27 1 38 1 1 41 61 1 1 2

E

local 95 137 140 136 139 135 130 139 139 144 148 1 1 138 132 134
czero 96 143 134 134 137 143 129 134 139 146 141 1 1 137 138 1
dist-4 33 53 58 53 147 52 50 57 59 65 79 – 1 52 61 1
dist-16 15 24 23 21 407 25 28 22 26 27 27 – 1 20 21 11
dist-32 30 14 15 14 1225 15 20 16 17 18 19 – 1 16 16 9

Table 5: Verification time in seconds for selected models A: BridgeAndVehicles-PT-V20P20N10,
B: Peterson-PT-3, C: ParamProductionCell-PT-4, D: BridgeAndVehicles-PT-V20P10N10, and E:
SharedMemory-PT-000010.

In Table 5 we zoom in on a few selected models that demonstrate different aspects of the distri-
bution. We report the running times (rounded up to the nearest higher second) for all 16 queries of
each model. A dash means running out of resources (time or memory). We can observe a significant
positive effect of the certain zero propagation on several queries like A.6, B.7, C.8, D.8 and E.16 and
in general a satisfactory performance of this technique. The clear trend with multi-core algorithms
is that there is usually a considerable speedup when moving from 1 to 4 cores and a generally nice
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scaling when we employ all 32 cores. Here we can often notice reasonable speedups compared to
1 core certain zero algorithm (A.9, B.1, B.2, B.3, B.12, C.9), sometimes even superlinear speedups
like in D.5. On the other hand, occasionally using more cores can actually slowdown the computation
like in B.9, E.5 or even E.12 where the distributed algorithms did not find the answer at all. These
sporadic anomalies can be explained by the pseudo DFS strategy of the distributed algorithm, which
means that the answer is either discovered immediately like in D.5 or the workers explore significantly
more configurations in a portion of the dependency graph where the answer cannot be concluded from.
Nevertheless, these unexpected results are rather rare and the general performance of the distributed
algorithms, summarized in Table 4, is compelling.

Based on our experience in MCC’16 and MCC’17, we decided to reimplement our distributed
engine in order to speed up its performance. This resulted in an improved verification engine (available
at https://code.launchpad.net/~verifypn-stub/verifypn/exp-ctl-sm) with the following
main new features.

• We perform some basic query rewriting optimizations (while preserving logical equivalence) so
that negations are pushed as far as possible down in the parse tree. This reduces the number of
negation edges in the case when some negations can be pushed all the way down to the atomic
propositions.

• We implemented a more efficient memory representation of the queries and added query com-
pilation that compiles atomic expressions into a byte-code format that is then evaluated by a our
new virtual machine for the atomic expressions.

• We use our newly developed data structure PTrie [35] for fast and memory efficient storing of
the state space.

• We switched from using MPI to our custom-made, light-weight implementation (still relying on
message-passing) and optimize the message-passing to avoid unnecessary copying of memory
regions by the kernel.

• We employ a new partitioning algorithm for distributing the work among n workers. Earlier we
simply computed a hash of the whole configuration. In the current implementation we perform
hashing only on 2n + 2 places that are uniformly picked from a given marking. This seems
to improve the locality, so that the same worker is more likely to be assigned several of the
successor configurations in order to reduce the communication overhead.

• We optimize the way of handeling negation edges in the situations where the values can be
propagated locally without the need to synchronize with other workers. We try to delay syn-
chronization among workers via sending messages as much as possible as this is an expensive
operation.

As a result, the engine performance substantially improved already for the single-core cases, as demon-
strated in the column Anwers (improved) in Table 4, where both the local algorithm as well as our
certain zero algorithm solve significantly more queries. In fact, our improved single-core performance
for the certain zero now almost matches the number of answers that were previously achieved with 16
cores. On the other hand, the improved sequential engine became so efficient that it now also solves
some of the instances that the improved distributed versions are not able to solve (due to the differ-
ent search strategy and message-passing communication overhead). In other words, the anomalies
mentioned earlier became more frequent but at the same time there were several models where the
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distribution of work made substantial (even super-linear) improvements. Hence we decided to utilize
the cores in the results reported in Table 4 for the improved implementation in such a way that e.g. for
the 16 cores algorithm, we run in parallel the 1 core algorithm, 2 core algorithm, 4 core algorithm and
8 core algorithm (utilizing only 15 cores in fact) and terminate as soon as the first algorithm provides
the answer. The advantage of using more cores is then clear from the table, even though the absolute
numbers are smaller than previously. This is likely the indication of the fact that the remaining queries
in the database of the selected models are so difficult that one cannot expect to achieve more answers
only by the exploration of the state space.

Finally, we also compare the performance of our verification engine with LoLA, the winner in
the CTL category both at MCC’16 [18] and MCC’17 [22]. We run LoLA on all 784 executions (as
summarized for our engines in Table 4) with the same 1 hour timeout and 15 GB memory limit. LoLA
provided a conclusive answer in 673 cases and given that it is a sequential tool, it won in the com-
parison with our sequential czero implementation that solved 565 queries (resp. 652 in the improved
version). The reason is that about one third of all the 784 queries are actually equivalent to either true
or false and hence they can be answered without any state space exploration by a query rewriting tech-
nique implemented in LoLA [19]. This query simplification technique in LoLA cannot be turned off,
so in order to compete with the tool, we implemented a similar query reduction algorithm on top of
our improved engine. We are now able to answer 721 queries with our certain zero sequential engine,
which is considerably more than 673 answers of LoLA. We have to remark though that LoLA devel-
opers recently added a new stubborn set reduction for CTL model checking. This engine competed
against our sequential engine in MCC’17 [22]. Over all queries in the CTL category (disregarding the
colored net instances that TAPAAL does not support), we solved 17036 queries compared to 17396
queries solved by LoLA. Our MCC’17 competition engine did not yet include the byte-code inter-
pretation of atomic expressions and some other minor improvements. Hence the performance of our
current sequential algorithm is now essentially comparable with LoLA. The main advantage of our ap-
proach is that we also provide a distributed implementation that already with 4 cores outperforms our
single-core implementation, so we hope to challenge LoLA’s first place in the next year competition
(where each tool is allowed to use 4 cores).

5. Conclusion

We extended the formalism of dependency graphs by Liu and Smolka [6] with the notion of negation
edges in order to capture nested minimum fixed-point assignments within the same graph. On the
extended dependency graphs, we designed an efficient local algorithm that allows us to back-propagate
also certain zero values—both along the normal hyper-edges as well as the negation edges and hence
considerably speed up the computation. To further increase the performance and applicability of our
approach, we suggested to distribute the local algorithm, proved the correctness of the pseudo-code
and provided an efficient, open-source implementation. Now the user can take a verification problem,
reduce it to an extended dependency graph and get an efficient distributed verification engine for free.
This is a significant advantage compared to a number of other tools that design a specific distributed
algorithm for a fixed modeling language and a fixed property language.

We demonstrated the general applicability of our tool on an example of CTL model checking of
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Petri nets and evaluated the performance on the benchmark of models from the Model Checking Con-
test 2016. The results confirm significant improvements over the local algorithm by Liu and Smolka
achieved by the certain zero propagation and the distribution of the work among several workers. Al-
ready the performance of our sequential algorithm with certain zero propagation is comparable with
the world leading tool LoLA for CTL model checking of Petri nets. While LoLA implements only a
sequential algorithm, we also provide a generic and efficient distribution of the work among a scalable
number of workers.

It was observed that for certain models, the search with a large number of workers can be occa-
sionally directed into a portion of the graph where no conclusive answer can be drawn, implying that
sometimes just a few workers find the answer faster. With our recent optimized implementation of
the single-core algorithm, this issue becomes even more visible on certain models. We can overcome
this drawback by a pragmatic decision to run in parallel the single-core algorithm together with the
distributed algorithm in order to get the benefits of both, given that we are allowed to use a multicore
architecture.
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