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Abstract

Modal transition systems (MTS) is a formalism which extends the classical
notion of labelled transition systems by introducing transitions of two types:
must transitions that have to be present in any implementation of the MTS and
may transitions that are allowed but not required.

The MTS framework has proved to be useful as a specification formalism of
component-based systems as it supports compositional verification and stepwise
refinement. Nevertheless, there are some limitations of the theory, namely that
the naturally defined notions of modal refinement and modal composition are
incomplete with respect to the semantic view based on the sets of the implemen-
tations of a given MTS specification. Recent work indicates that some of these
limitations might be overcome by considering deterministic systems, which seem
to be more manageable but still interesting for several application areas.

In the present article, we provide a comprehensive account of the MTS frame-
work in the deterministic setting. We study a number of problems previously
considered on MTS and point out to what extend we can expect better results
under the restriction of determinism.
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Brno, Czech Republic
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1. Introduction

The development of correct concurrent systems and processes constitutes
a difficult and surprisingly subtle problem in computer science, having given
rise to a number of proposed specification formalisms and verification methods
over the years. The proposals may roughly be seen to fall within two main
categories: the logical approach, in which a specification is a formula of some
(temporal or modal) logic, and verification is a “model-checking” activity based
on a denotational understanding of the specification; the behavioural approach,
where specifications are objects of the same kind as implementations, in particu-
lar, specifications have operational interpretations. In this approach, verification
is based on a comparison between the operational behaviours of the specification
and implementation.

Ideally, we want a specification formalism that supports stepwise refinement
and component-based development of systems. That is, starting from an initial
specification, a series of small and successive refinements are made until eventu-
ally a specification is reached from which an implementation can be extracted
directly. Each refinement step is relatively small, consisting typically in either
conjoining additional requirements or in the replacement of a single component
of the current specification with a more concrete/implementable one. In the
latter case, the correctness of such a refinement step ought to be immediately
implied by the correctness of the refinement of the replaced component, as this
obviously will greatly simplify the task of verification. That is, we want our
methodology to support compositional verification.

Also, we aim at generality in design and proofs: when designing a system
there are often certain components or behavioural aspects which are outside the
scope (or control) of the design process—in particular third party components,
say. Thus it is necessary that the design and correctness proof of the system
only rely on the (partial) specifications of these “uncontrollable” components.

Modal transition systems (MTS) were introduced some 20 years ago [1, 2]
by Larsen and Thomsen specifically in order to obtain an operational, yet ex-
pressive and manageable specification formalism meeting the above properties.
In particular, MTSs are a variation of the classical model of labelled transition
systems, where transitions come in two flavours: those that any refinement of
the given specification must possess, and those that it may, but is not required
to, have. As such, MTSs allow loose or partial specifications to be expressed,
and enable the introduction of a modal refinement relation extending in a nat-
ural manner the classical notion of bisimulation on labelled transition systems.
By implementations we then understand classical labelled transition systems
(where may and must transitions coincide) that modally refine a given modal
specification.

Viewing classical labelled transition systems as implementations, the four
MTSs in Figure 1 offer a series of vending machine specifications. VM1 is very
loose requiring nothing. VM2 may be viewed as the preferred specification of
the owner requiring implementations to have a coin-transition but it does not
guarantee that there will afterwards be a coffee or a tea-transition. Similarly
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Figure 1: Four specifications of a Vending Machine, VM1-VM4, and six different implementa-
tions VMA-VMF . Admissible transitions are shown using dashed arrows and required transi-
tions are shown using full arrows.

the coffee drinking customer’s specification, VM3, is a refinement of specification
VM1, requiring coffee after coin-insertion. VM4 is a compromise refining both
the owner and customer specifications—in fact it is the conjunction of the two
specifications. Finally, VMB-VME provide four, quite different, implementations
of VM4, varying in the degree of ability to offer tea to the user. Note that VMA

and VMF do not implement VM4, but VMA implements VM1 and VM2, and
VMF implements VM1 and VM3. The notions of a modal refinement and of an
implementation are formally introduced in Definitions 2.1 and 2.6.

Constructs for combining implementations (i.e. labelled transition systems)
may be extended to MTSs in a straightforward manner. E.g. Figure 2 (b,c) give
a composition of a User with the vending machine VM3, where synchronizations
are either left unchanged or made invisible (using τ -actions). Figure 2(a) spec-
ifies the type of User’s who for sure will make a publication after having been
given a cup of coffee. Given a cup of tea, on the other hand, the User needs
additional time to think.

Semantically, we may identify an MTS specification with its set of imple-
mentations (i.e. the set of labelled transition systems refining it). The notions of
modal refinement and modal composition are sound with respect to this seman-
tic view. Thus whenever S is a modal refinement of T , then any implementation
of S is indeed an implementation of T . Similarly, whenever P and Q are im-
plementations of S and T (respectively) and ⊕ is a composition operator, then
P ⊕ Q is an implementation of S ⊕ T . On several occasions, these properties
have proved sufficient in the stepwise and compositional development of con-
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Figure 2: Specification of a User (a), composition with VM3 (b, c), and Determinization (d).

current systems guaranteed to be correct with respect to some given overall
requirements.

However, as has been shown already in [1, 3], both modal refinement and
modal composition are incomplete with respect to the semantic view. In par-
ticular, there are MTSs S and T , where the set of implementations of S is
included in that of T without S being a modal refinement of T . Similarly, there
are MTSs S and T , where the composed MTS S ⊕ T contains strictly more
implementations than what can be obtained by composing implementations of
S and T .

Recent results [4, 5, 6, 7] characterizing the (high) complexity of semantic
refinement (and semantic consistency) for MTSs point to the clear advantages
of using the cheap notion of modal refinement (and modal composition) de-
spite its incompleteness. Moreover, in most practical cases, where component
specifications are deterministic—e.g. in our Vending Machine example and as
advocated in the recent work by Henzinger and Sifakis [8, 9]—modal refinement
and modal composition seem to be complete, though they have not been stud-
ied in depth yet. In [8] the authors discuss two main challenges in embedded
systems design: the challenge to build predictable systems, and that to build
robust systems. They suggest how predictability can be formalized as a form of
determinism, and robustness as a form of continuity. Thus, the purpose of this
article is to make a thorough investigation of the MTS framework in the setting
of determinism.

In particular, we study the completeness of modal refinement and modal
composition for deterministic MTSs as well as some other questions related
to the common implementation problem. As seen from our Vending Machine
example (Figure 2), the result of composing deterministic MTSs may well be
a nondeterministic MTS. To allow the development and analysis to be continued
using only deterministic MTSs, we provide a determinization construction on
MTS, yielding for any given (possibly nondeterministic) MTS its least deter-
ministic over-approximation.

The outline of the paper is as follows. In Section 2 we provide basic defini-
tions of MTS as well as modal and semantic (thorough) refinements. Section 3
relates these notions of refinements with particular emphasis on deterministic
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MTSs. Section 4 shows the low complexity of both refinements in the determin-
istic case. Section 5 provides the complexity results for consistency (common im-
plementation) between deterministic MTSs showing that consistency of a fixed
number of specifications is NL-complete, whereas the complexity of consistency
between an arbitrary number of MTSs remains hard even in the case of deter-
minism (PSPACE-complete). Section 6 reconsiders the consistency problem in
terms of the existence of a common deterministic implementation, showing that
it is EXPTIME-complete. Finally, Section 7 considers the extension of compo-
sition operators to MTSs and shows the general lack of completeness even for
deterministic MTSs; nevertheless, specific conditions guaranteeing completeness
are identified.

2. Definitions

A modal transition system (MTS) over an action alphabet Σ is a triple
(P, 99K,−→), where P is a set of processes and −→ ⊆ 99K ⊆ P ×Σ×P are must
and may transition relations, respectively. The class of all MTSs is denoted by
MTS. We write S a−→ if there exists some S′ such that S a−→ S′, and S 6a−→ if
no such S′ exists; similarly for 99K.

An MTS is deterministic if for each S ∈ P and a ∈ Σ there is at most one
S′ such that S

a
99K S′. The class of all deterministic MTSs is denoted dMTS.

An MTS is an implementation if 99K = −→. The class of all implementa-
tions is denoted iMTS. Note that because in implementations the must and
may relations coincide, we can consider such systems as the standard labelled
transition systems.

We use capital letters for processes and calligraphic letters for sets of pro-
cesses. Moreover, letters S, T, U, . . . are used to denote processes in general,
letters D,E, F, . . . are reserved for deterministic processes, and letters I, J, . . .
are used to denote implementations.

Because in MTS whenever S a−→ S′ then necessarily also S
a

99K S′, we adopt
the convention of not drawing may transitions between processes where must
transitions are present.

Whenever clear from the context, we refer to processes without explicitly
mentioning their underlying MTSs. We also write e.g. S ∈ dMTS, meaning
that the underlying MTS of the process S is in dMTS.

Definition 2.1. Let M1 = (P1, 99K1,−→1),M2 = (P2, 99K2,−→2) be MTSs
over the same action alphabet and S ∈ P1, T ∈ P2 be processes. We say that S
modally refines T , written S ≤m T , if there is a relation R ⊆ P1 ×P2 such that
(S, T ) ∈ R and for every (A,B) ∈ R and every a ∈ Σ:

1. if A
a

99K1 A
′ then there is a transition B

a
99K2 B

′ s.t. (A′, B′) ∈ R, and
2. if B a−→2 B

′ then there is a transition A
a−→1 A

′ s.t. (A′, B′) ∈ R.

We often omit the indices in the transition relations and use symbols 99K
and −→ whenever it is clear from the context what transition system we have
in mind.
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Figure 3: S ≤t T , but S 6≤m T

Remark 2.2. Note that on implementations modal refinement coincides with the
classical notion of strong bisimilarity, and on modal transition systems without
any must transitions it corresponds to the well studied simulation preorder.

We will now extend the standard game-theoretic characterization of bisimi-
larity [10, 11] to the game characterization of modal refinement.

A modal refinement game (or simply a modal game) on a pair of processes
(S, T ) is a two-player game between Attacker and Defender. The game is played
in rounds. In each round the players change the current pair of processes (A,B)
(initially A = S and B = T ) according to the following rule:

1. Attacker chooses an action a ∈ Σ and one of the processes A or B. If he
chose A then he performs a move A

a
99K A′ for some A′; if he chose B then

he performs a move B a−→ B′ for some B′.
2. Defender responds by choosing a transition under a in the other process.

If Attacker chose the move from A, Defender has to answer by a move
B

a
99K B′ for some B′; if Attacker chose the move from B, Defender has

to answer by a move A a−→ A′ for some A′.
3. The new current pair of processes becomes (A′, B′) and the game continues

with a next round.

The game is similar to standard bisimulation game with the exception that
Attacker is only allowed to attack on the left-hand side using may transitions
(and Defender answers by may transitions on the other side), while on the
right-hand side Attacker attacks using must transitions (and Defender answers
by must transitions in the left-hand side process).

Any play (of the modal game) thus corresponds to a sequence of pairs of
processes formed according to the above rule. A play (and the corresponding
sequence) is finite iff one of the players gets stuck (cannot make a move). The
player who got stuck lost the play and the other player is the winner. If the
play is infinite then Defender is the winner.

The following proposition is by a standard argument in analogy with strong
bisimulation games (see also [10, 11]).

Proposition 2.3. It holds that S ≤m T iff Defender has a winning strategy
in the modal game starting with the pair (S, T ); and S 6≤m T iff Attacker has
a winning strategy.

Example 2.4. Consider processes S and T in Figure 3. We prove that S does
not modally refine T . Indeed, Attacker has the following winning strategy in the
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modal game starting from (S, T ). Attacker plays the may transition under the
action a on the left-hand side process S and Defender can answer by entering
either the upper or lower branch in the process T . In the first case Attacker
wins by playing the must transition under a on the right-hand side, for which
Defender has no answer on the left-hand side (no must transition under a is
available) and loses. In the second case Attacker wins by playing the second
may transition under a in the left-hand side process and Defender loses as well.

We shall now observe that the modal refinement problem, i.e. the question
whether a given process modally refines another given process, is tractable for
finite MTSs.

Theorem 2.5. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in P by the standard greatest fixed-
point computation, similarly as in the case of strong bisimulation (for efficient
algorithms implementing this strategy see e.g. [12, 13]). P-hardness of modal
refinement follows from the P-hardness of bisimulation ([14], see also [15]).

We proceed with the definition of thorough refinement, a relation that holds
for two modal specification S and T iff any implementation of S is also an
implementation of T . This relation is of our major interest since it captures the
semantic point of view.

Definition 2.6. For a process S let us denote by JSK = {I ∈ iMTS | I ≤m S}
the set of all implementations of S. We say that S thoroughly refines T , written
S ≤t T , if JSK ⊆ JT K.

The following two observations are trivial.

Lemma 2.7. Relations ≤m and ≤t are transitive.

Lemma 2.8. Let I, J ∈ iMTS. Then I ≤m J if and only if I ≤t J ; and both
≤m and ≤t coincide with strong bisimilarity.

3. Modal and Thorough Refinements

In this section we investigate several properties of modal and thorough re-
finements, with a particular focus on deterministic processes. First, we observe
that thorough refinement is implied by the modal refinement, irrelevant whether
the processes are deterministic or not.

Lemma 3.1. Let S, T be processes. If S ≤m T then S ≤t T .

Proof. For I ∈ JSK we have I ≤m S ≤m T , hence I ≤m T by Lemma 2.7 and
thus I ∈ JT K.

Remark 3.2. The opposite direction in Lemma 3.1 does not hold as we demon-
strate in Figure 3. In Example 2.4 we already argued that S 6≤m T . However, S
has only implementations that can perform at most two consecutive a-actions.
As any such implementation is clearly also an implementation of T , we conclude
that S ≤t T .
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Figure 4: Relationship between refinements on determin. (D) and nondetermin. (N) systems

The fact that thorough refinement does not imply modal refinement might
be considered as a limitation of the theory developed in the previous studies on
modal transition systems. Nevertheless, in the context of deterministic systems,
we show that thorough and modal refinement coincide, provided that the right-
hand side process is deterministic.

Lemma 3.3. Let S,D be processes and D ∈ dMTS. If S ≤t D then S ≤m D.

Proof. Assume that S ≤t D and that D is deterministic. We define a relation
R that satisfies the conditions of Definition 2.1. The relation R is taken as the
smallest relation such that (S,D) ∈ R and whenever (T,E) ∈ R, T

a
99K T ′

and E
a

99K E′ for some a then also (T ′, E′) ∈ R. The relation R is clearly well
defined. Before we prove that R satisfies the refinement conditions, we make the
claim that (T,E) ∈ R implies T ≤t E. Clearly, this holds for (S,D). Suppose
now that T ≤t E, T

a
99K T ′, E

a
99K E′ and I ′ is an arbitrary implementation

of T ′. Then there exists some implementation I ∈ JT K such that I a−→ I ′. But
as T ≤t E, I is also an implementation of E. Therefore, as E is deterministic,
I ′ is an implementation of E′, thus T ′ ≤t E′. We can now check that R is
a modal refinement relation. Let (T,E) ∈ R.

(i) Suppose that T
a

99K T ′. Then, there exists an implementation I ∈ JT K
that has an a−→ transition. As T ≤t E, I is also an implementation of E
and therefore E

a
99K E′ for some E′. By the definition of R, (T ′, E′) ∈ R.

(ii) Suppose that E a−→ E′. Then, all implementations of E are forced to have
an a−→ transition. As T ≤t E, this implies that all implementations of T
have an a−→ transition. Therefore, T a−→ T ′ for some T ′ and (T ′, E′) ∈ R
by the definition of R.

The claim of Lemma 3.3 does not hold for the inverse case where the refining
process is deterministic and the refined process is arbitrary. The counterexam-
ple to this claim was already shown in Figure 3. Figure 4 summarizes the known
relationships between thorough and modal refinement for all possible cases of
(non)determinism of the two systems. The conclusion is that whenever the
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Figure 5: A process and its deterministic hull D(S1) = {S1}

right-hand side process is deterministic, modal and thorough refinement rela-
tions coincide. If the right-hand side process can be nondeterministic, modal
refinement is a strictly stronger relation than thorough refinement.

The modal refinement can be checked in polynomial time, as we know from
Theorem 2.5, but the thorough refinement is PSPACE-hard in general [5] (it is
moreover shown in [5] that this problem is in EXPTIME). Therefore, there is
a clear motivation to approximate processes by deterministic ones, in order to be
able to use faster modal refinement procedures instead (at least for the instances
where the deterministic approximation of a process is not exponentially larger).

For any two (in general nondeterministic) processes S and T , we have that
S ≤m T implies S ≤t T . The converse is not true in general, but we will
define a monotone deterministic over-approximation operator D, so that S ≤t T
implies D(S) ≤m D(T ) (as stated formally later on in Lemma 3.6). Moreover,
we show that there exists a smallest (w.r.t. refinement) deterministic system
refined by the original system. We call it the deterministic hull.

Definition 3.4 (Construction of the deterministic hull). Let S be an arbitrary
process with (P, 99K,−→) being its underlying MTS. The deterministic hull of S,
denoted by D(S), is constructed by a modal extension of the standard subset
construction. For ∅ 6= T ⊆ P and an action a let Ta = {T ′ ∈ P | ∃T ∈ T :
T

a
99K T ′} be the set of all may-successors under the action a. We define an

MTS M = (P(P ) \ {∅}, 99KD,−→D) where transitions are given as follows:

(i) if Ta 6= ∅, we set T a
99KD Ta, and

(ii) if moreover for all T ∈ T there exists some T ′ ∈ Ta such that T a−→ T ′,
then we set also T a−→D Ta.

There are no other transitions. Then, the process D(S) is defined as the single-
ton set containing S, i.e. D(S) = {S}.

An example of this construction is given in Figure 5.

Theorem 3.5 (Soundness and minimality of D(S) construction). Let S be
an arbitrary process. Then D(S) is a deterministic process such that S ≤t D(S)
and for every D ∈ dMTS, if S ≤t D then D(S) ≤t D.
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Proof. The fact that D(S) is deterministic for any S is clear from the construc-
tion. The first claim we need to prove is that S ≤t D(S). We will do so by
showing that S ≤m D(S) (note that by Lemma 3.1 this implies that S ≤t D(S)).
We define the refinement relation R such that (S, T ) ∈ R iff S ∈ T and we need
to prove that it satisfies the conditions of Definition 2.1.

Clearly (S,D(S)) ∈ R. Now let (S, T ) ∈ R. On the one hand, suppose that
S

a
99K S′. Then clearly from the previous construction T a

99KD Ta and S′ ∈ Ta,
thus (S′, Ta) ∈ R. On the other hand, suppose that T a−→D T ′. It follows from
the construction that T ′ = Ta, S a−→ S′ for some S′ and that S′ ∈ Ta, thus
(S′, Ta) ∈ R. Hence S ≤m D(S).

Now, we need to prove the minimality of the deterministic hull, i.e. that
for each deterministic D such that S ≤t D we also get D(S) ≤t D. As for
deterministic processes on the right-hand side modal and thorough refinements
coincide (Lemma 3.1 and Lemma 3.3), it is enough to prove the minimality
w.r.t. ≤m.

Let D be a deterministic process such that S ≤m D. This means that
there is a relation R satisfying the conditions of Definition 2.1. We show that
D(S) ≤m D by constructing a new relation Q that also satisfies these conditions.
The definition of Q is as follows:

(T , E) ∈ Q if and only if ∅ 6= T ⊆ {T | (T,E) ∈ R} .

It remains to be proved that Q satisfies the refinement relation conditions. Since
(S,D) ∈ R, we have (D(S), D) = ({S}, D) ∈ Q. Now, let (T , E) ∈ Q.

On the one hand, suppose that T a
99KD T ′. Then for each T ′ ∈ T ′, there is

at least one T ∈ T such that T
a

99K T ′ (as T ′ = Ta). Because (T,E) ∈ R, there
is E′ such that E

a
99K E′ with (T ′, E′) ∈ R. Moreover, as E is deterministic,

this E′ is unique and the same for all T ′ ∈ T ′, thus (T ′, E′) ∈ Q.
On the other hand, suppose that E a−→ E′. Then, for all T such that

(T,E) ∈ R, there has to be some T ′ such that T a−→ T ′ with (T ′, E′) ∈ R.
Moreover, as E is deterministic, it holds that for all T with (T,E) ∈ R, whenever
T

a
99K T ′ then (T ′, E′) ∈ R. This implies that T a−→D Ta, as for each T ∈ T

there is an outgoing a−→ transition, and clearly Ta ⊆ {T ′ | (T ′, E′) ∈ R}, thus
(Ta, E′) ∈ Q. Therefore, D(S) ≤m D.

Lemma 3.6. Let S, T be processes. If S ≤t T then D(S) ≤m D(T ).

Proof. Let S ≤t T . By Theorem 3.5 we know that T ≤t D(T ) and from the
transitivity of ≤t also S ≤t D(T ). By the minimality of D(S) (Theorem 3.5)
we get D(S) ≤t D(T ) and by Lemma 3.3 we conclude with D(S) ≤m D(T ).

Finally, note that the construction of the deterministic hull on MTSs which
contain only may transitions is the same as the determinization of finite au-
tomata. Therefore, the example of an exponential blow-up in the size [16,
page 65] carries over to our setting and thus the deterministic hull D(S) might be
of exponential size w.r.t. to some particular finite nondeterministic process S.
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4. Complexity Results for Refinement Problems

In this section we study the following decision problems of modal and thor-
ough refinement and argue about their complexity. Recall that we use the
notation where D,E stand for deterministic processes and S, T for general pro-
cesses. Moreover, throughout Section 4 to Section 6 which deal with complexity,
all processes are implicitly assumed to be defined over finite MTS.

MRD,D = {〈D,E〉 | D ≤m E} TRD,D = {〈D,E〉 | D ≤t E}
MRD,N = {〈D,S〉 | D ≤m S} TRD,N = {〈D,S〉 | D ≤t S}
MRN,D = {〈S,D〉 | S ≤m D} TRN,D = {〈S,D〉 | S ≤t D}
MRN,N = {〈S, T 〉 | S ≤m T} TRN,N = {〈S, T 〉 | S ≤t T}

By Lemma 3.1 and 3.3 we know that MRD,D = TRD,D and MRN,D = TRN,D.
Our first result in this section says that modal refinement is decidable in

nondeterministic logarithmic space, provided that the right-hand side process
is deterministic.

Theorem 4.1. The problem MRN,D is in NL.

In order to prove the above theorem, let S be an arbitrary process and let
D be a deterministic one. We will show that the problem of deciding S ≤m D
is in NL by reduction to the graph reachability problem, known to be NL-
complete [17]. Note that we are actually reducing the problem whether S 6≤m D
to the graph reachability problem. However, this poses no problem, as the NL
complexity class is closed under complement.

The graph will be constructed in the following way. The nodes of the graph
will be all pairs (T,E) where T is a process of the MTS for S and E is a process
of the MTS for D. There are three kinds of nodes.

(i) Nodes (T,E) such that T
a

99K and E 6a99K for some action a. Such nodes
have no outgoing edges and are called marked.

(ii) Nodes (T,E) such that E a−→ and T 6a−→ for some action a. As in the
previous case, such nodes have no outgoing edges and are called marked.

(iii) Nodes (T,E) which do not satisfy conditions (i) or (ii). Such nodes are
called unmarked and there is an edge from (T,E) to (T ′, E′) whenever
T

a
99K T ′ and E

a
99K E′ for some action a.

An example illustrating the reduction is given in Figure 6. We now prove the
correctness of the reduction.

Lemma 4.2. We have S 6≤m D if and only if a marked node is reachable from
the node (S,D).

Proof. For the if case, suppose that there is a marked node reachable from
(S,D), i.e. there exists a path (S,D) = (T0, E0), (T1, E1), . . . , (Tn, En) where
(Tn, En) is marked. We can easily show that Attacker has a winning strategy

11
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Figure 6: An example of two MTSs and the corresponding graph (marked nodes are in a box)

in the modal game played from (S,D). Attacker will simply play in the left-
hand side process S following the sequence S = T0, T1, . . . , Tn under the may
transitions. Because the right-hand side process is deterministic, Defender can
only answer by going through the processes D = E0, E1, . . . , En. From the pair
(Tn, En) Attacker now easily wins. If the pair was marked due to condition (i),
then Attacker chooses an action a and an arbitrary transition Tn

a
99K to which

Defender is unable to respond to. Likewise, if the pair was marked due to
condition (ii) above, then Attacker chooses an action a on the right-hand side
and the unique transition En

a−→. Again, Defender has no response and loses.
For the only if case, suppose that no marked nodes are reachable from (S,D).

We show a relation R that satisfies the conditions of Definition 2.1. The relation
R is defined as

R = {(T,E) | (T,E) is reachable from (S,D) in the graph}.

Clearly, (S,D) ∈ R. Now suppose that (T,E) ∈ R. If T
a

99K T ′ then also, as
(T,E) is unmarked, E

a
99K E′ and moreover, (T ′, E′) ∈ R due to the definition

of the graph. For the other condition, suppose that E a−→ E′. Then, again
because (T,E) is unmarked, also T a−→ T ′ for some T ′ and (T ′, E′) ∈ R from
the definition of the graph. Thus, S ≤m D.

We have thus shown that the MRN,D problem is in NL. The next theorem
establishes NL-hardness even for the MRD,D problem.

Theorem 4.3. The problem MRD,D is NL-hard.

Proof. The proof is done by reduction from the graph reachability problem to
MRD,D. In fact, there is a folklore result that strong bisimilarity on finite and
deterministic processes is NL-hard, which immediately implies our theorem.
Nevertheless, for the self-containment of the presentation, we sketch a simple
construction demonstrating this fact.

Assume a given graph G with a source and a target node. The main idea is
that we make two identical copies of the graph G and treat them like implemen-
tations I1 and I2. These implementations must be deterministic, but this can

12
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Figure 7: (a) A negative instance of mCVP. (b) Processes D and Po such that D 6≤m Po.

be easily accomplished by taking a fixed ordering of successors of each node in
the original graph and by labelling the transitions in the implementations with
natural numbers accordingly. The two deterministic implementations I1 and I2
now differ only in one detail. In I1 we introduce a loop on the target node under
some fresh action. Clearly, the target node is reachable in G iff I1 6≤m I2. Thus
MRD,D is NL-hard.

Corollary 4.4. Problems MRD,D, TRD,D, MRN,D, TRN,D are NL-complete.

Proof. By Lemma 3.1, Lemma 3.3, Theorem 4.1 and Theorem 4.3.

We now continue with studying the complexity of modal refinement for the
situation when the right-hand side process may be nondeterministic. First, we
prove P-hardness of the problem MRD,N. Note that this fact does not directly
follow from P-hardness of strong bisimilarity because the reductions provided
in [14, 15] use nondeterministic systems on both sides.

Theorem 4.5. The problem MRD,N is P-hard.

The proof is done by reduction from a P-complete problem mCVP (monotone
circuit value problem) [17]. A monotone Boolean circuit is a finite directed
acyclic graph in which the nodes are either of indegree zero (input nodes) or
of indegree two and there is exactly one node of outdegree zero (output node).
Each non-input node is labelled either with ∧ or ∨. An input of the circuit
is an assignment of values 0 or 1 to the input nodes. Given an input, the
circuit computes the output value as follows: the value of an input node is
given by the input assignment, the value of a node labelled with ∧ or ∨ is the
conjunction or disjunction of values of its predecessors, respectively. The output
value of the circuit is the value of the output node. The mCVP problem is,
given a monotone Boolean circuit and its input, to decide whether the output
value is 1. An example of a monotone Boolean circuit with an input assignment
and computed values at each node is given in Figure 7(a).

Given a monotone Boolean circuit and its input, we construct two processes
D and Po. The process D has only two transitions D 1−→ D and D

1
99K D. The

13



process Po is constructed as follows. For each input node u we add a process

Pu with the loops Pu
b−→ Pu and Pu

b
99K Pu where b is the value assigned to the

node u. For each node v labelled with ∧ we add a process Pv with transitions
Pv

1−→ Pv′ , Pv
1

99K Pv′ , Pv
1−→ Pv′′ and Pv

1
99K Pv′′ where v′ and v′′ are the

predecessors of v in the Boolean circuit. Similarly, for each node w labelled
with ∨ we add a process Pw with transitions Pw

1
99K Pw′ and Pw

1
99K Pw′′ where

w′ and w′′ are the predecessors of w. We assume that Po denotes the process
representing the output node of the circuit.

The reduction for the mCVP of Figure 7(a) is illustrated in Figure 7(b). We
now show the correctness of the reduction.

Lemma 4.6. The output value of the circuit is 1 if and only if D ≤m Po.

Proof. For the if case, suppose that the output value of the circuit is 0. We show
that Attacker has a winning strategy in the modal game starting from (D,Po).
From each current pair (D,Pv) Attacker decides what to play according to the
type of node v. If v is labelled with ∧, then at least one predecessor of v has
value 0, say w, and Attacker chooses Pv

1−→ Pw, to which the Defender responds
by playing D

1−→ D. If v is labelled with ∨, then all predecessors of v have
value 0. Attacker then chooses D

1
99K D, to which the Defender responds with

any of the two possibilities. Clearly, this way the play only proceeds through
pairs of processes (D,Pv) where v has the value 0 and finally it arrives into the
pair (D,Pi) where i is an input node with assigned value 0. Attacker then plays
Pi

0−→ Pi to which Defender has no response and Attacker wins.
For the only if case, suppose that the output value of the circuit is 1. We

define a modal refinement relation R by

R = {(D,Pv) | v is a node with value 1}.

Clearly, (D,Po) ∈ R as the output of the circuit is 1. Now suppose that

(D,Pv) ∈ R. The only may transition of D is D
1

99K D. If v is an input

node then it is an input with assigned value of 1 and then Pv
1

99K Pv and
(D,Pv) ∈ R. If v is a non-input node then it has to have at least one prede-
cessor with value 1 (otherwise it could not have the value of 1 itself), say u.

Then Pv
1

99K Pu and (D,Pu) ∈ R. For the other part, suppose that Pv
1−→ Pw.

But D 1−→ D and the must transition of Pv implies that v is labelled with ∧,
therefore all its predecessors must have the value of 1 and (D,Pw) ∈ R. Thus
D ≤m Po.

After we have shown P-hardness of the MRD,N problem, we can conclude
with the following corollary of Theorem 4.5 and Theorem 2.5.

Corollary 4.7. The problems MRD,N and MRN,N are P-complete.
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Note that the complexity of the TRN,N problem was recently settled to
EXPTIME-completeness [4], improving thus the previously known PSPACE-
hardness result [5]. Regarding the TRD,N problem we know only its containment
in EXPTIME and co-NP-hardness [7].

5. Complexity Results for Common Implementation Problem

The common implementation problem (CI for short) is the problem of de-
ciding, given two or more processes of modal transition systems, whether there
is a single process that implements all these processes at the same time. For
the general case, where processes can be nondeterministic, it is known that the
CI problem is EXPTIME-complete [6] and if the number of the processes is
fixed, the problem is P-complete. The containment in P is proved in [18] and
P-hardness follows from [14, 15], as bisimilarity is a special case of CI for two
processes where both processes are implementations. We will now look at a spe-
cialized variant of this problem, where the given processes are assumed to be
deterministic. This restricted problem is called CID (or CIkD if the number of
processes is fixed to be k) and its formal definition is as follows.

CIkD = {〈D1, . . . , Dk〉 | ∃I : I ∈ JD1K ∩ · · · ∩ JDkK and D1, . . . , Dk ∈ dMTS}

CID =
∞⋃
k=2

CIkD

When given an instance of the CID problem, we will use two parameters to
describe its size: k the number of the processes and n = |D1|+ |D2|+ · · ·+ |Dk|
the size of the whole input.

Our first complexity result is that the existence of a common implementation
for processes D1,. . . ,Dk can be decided in nondeterministic O(k log n) space.
Proving this claim will give us the following theorem.

Theorem 5.1. The problem CID is in PSPACE. The problem CIkD (for any
fixed k) is in NL.

We show this by reducing the problem of nonexistence of common imple-
mentation to the graph reachability problem, which is known to be decidable
in nondeterministic O(logN) space, where N is the size of the graph [17]. The
graph we are going to construct is of size nk and moreover, the construction
can be done on the fly, so that no additional space is needed, thus yielding the
result.

The graph we are going to construct will have labels on its edges. This is
a technical detail that does not influence the complexity of the graph reachability
problem, but will prove useful later, when we discuss the correctness. The basic
idea of the construction is that the graph represents an implementation that
in each step includes only those transitions that are required by at least one
of the processes. The marked nodes then represent situations where all these
requirements are impossible to satisfy.
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The construction is done in the following way. Each node of the graph is
a k-tuple (E1, . . . , Ek), where Ei is a process of the MTS underlying Di for
all i. The initial node is (D1, . . . , Dk). Nodes (E1, . . . , Ek) where there exists
an action a such that Ei

a−→ E′i for some i, but some Ej has no outgoing
a

99K
transition, are considered marked. The edges in the graph are defined as follows.

(E1, . . . , Ek) a−→ (F1, . . . , Fk) ⇐⇒ ∀i : Ei
a

99K Fi and ∃j : Ej
a−→ Fj

The construction is illustrated in Figures 8 and 9, where Figure 9 contains only
the nodes reachable from (D1, D2, D3).

We shall now prove the following lemma that asserts correctness of this
reduction.

Lemma 5.2. Processes D1,. . . ,Dk have a common implementation if and only
if there are no marked nodes reachable from the node (D1, . . . , Dk).

Proof. For the if case, suppose that there are no marked nodes reachable from
(D1, . . . , Dk). We show a common implementation of all Di. As it has labels
on its edges, the graph itself may be seen as a MTS where −→ = 99K. Then,
the node (D1, . . . , Dk) may be seen as a process. We show that this process is
a common implementation of all Di, 1 ≤ i ≤ k.

Let us so fix any number i from 1 to k. We define

Ri =
{(

(E1, . . . , Ek), Ei
)
| (E1, . . . , Ek) is a node in the graph

}
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and show that Ri is a relation of modal refinement. Clearly ((D1, . . . , Dk), Di) ∈
Ri. Suppose that ((E1, . . . , Ek), Ei) ∈ Ri. If it is the case that (E1, . . . , Ek)

a
99K

(F1, . . . , Fk) then clearly Ei
a

99K Fi by the definition. Conversely, if Ei
a−→ Fi

then, as (E1, . . . , Ek) is not marked, all Ej have an
a

99K transition to some Fj
and therefore (E1, . . . , Ek) a−→ (F1, . . . , Fk).

For the only if case, we use two observations. The first observation is that
whenever (E1, . . . , Ek) a−→ (F1, . . . , Fk) then any common implementation I

of E1,. . . ,Ek has to have an a−→ transition to a common implementation J of
F1,. . . ,Fk. This is easily seen from the modal game characterization. As at least
one Ei

a−→ Fi, by playing this transition Attacker enforces I a−→ J . By playing
I

a
99K J on the other side, Attacker then enforces J to be a common implemen-

tation of F1,. . . ,Fk as all these processes are deterministic and Defender has
no other choice playing on their side. The second observation is that whenever
(G1, . . . , Gk) is a marked node, then there can be no common implementation of
G1,. . . ,Gk which is clear from the definition of the graph. By considering these
observations together, we can conclude that if a marked node is reachable from
(D1, . . . , Dk) then there can be no common implementation of D1,. . . ,Dk.

We have thus established an upper bound on the complexity of CID. As
the space complexity is polynomial in k and logarithmic in n, we have proved
Theorem 5.1.

We shall now prove that the upper bounds in this theorem are tight, i.e. that
CID is PSPACE-complete and CIkD for any fixed k is NL-complete. The latter
claim follows from the fact that deciding bisimilarity on finite deterministic pro-
cesses is NL-complete (see the proof of Theorem 4.3) and an earlier observation
that bisimilarity is a special case of common implementation for two processes,
which are already implementations. Thus, we get the following result.

Theorem 5.3. The problem CIkD for any fixed k is NL-hard.

The remaining hardness result regarding the CID problem is asserted by the
following theorem.

Theorem 5.4. The problem CID is PSPACE-hard.

The proof is done by reduction from the acceptance problem for determin-
istic linear bounded automata (LBA). A deterministic LBA is a tuple M =
(Q,Σ,Γ,B,C, q0, qacc, qrej , δ) where Q is a finite set of states, Σ is a finite input
alphabet, Γ ⊇ Σ is a finite tape alphabet, B,C ∈ Γ\Σ are the left and right end
markers, q0, qacc, qrej ∈ Q are the initial, accept and reject states, respectively,
and δ : Q \ {qacc, qrej} × Γ → Q × Γ × {L,R} is a computation step function,
such that whenever δ(q,X) = (q′, Y, d) and one of X, Y is B then both X and
Y are B and d = R; similarly if one of X, Y is C then both X and Y are C
and d = L. We can w.l.o.g. assume that the input alphabet is binary, that is
Σ = {a, b} and that the tape alphabet only contains symbols from the input
alphabet and the end markers, that is Γ = {a, b,B,C}.
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A configuration ofM is given by the state, the position of the head and the
content of the tape; we write it as a triple from Q×N×Γ∗. A step of computation
is a relation between configurations, denoted by `, that is defined using the δ
function in the usual way. Given a word w ∈ Σ∗, the initial configuration ofM
is (q0, 0,BwC). A configuration is called accepting, if it is of the form (qacc, i, z),
and is called rejecting, if it is of the form (qrej , i, z). A computation of M on
a word w is a maximal sequence of configurations that begins with the initial
configuration (q0, 0,BwC) and such that the computational step relation holds
between any two successive configurations. The machine M accepts a word
w ∈ Σ∗, if the computation of M on w ends in an accepting configuration.

The computation of an LBA is unique and in what follows we assume that
it is always finite (as any deterministic LBA with infinite computations can be
transformed into an equivalent non-looping deterministic LBA). The problem
whether a given deterministic LBAM accepts a given word w ∈ Σ∗ is PSPACE-
complete (see e.g. [17]).

We can now proceed with the description of the reduction. Let M be a de-
terministic LBA and w = w1w2 . . . wn an input word of length n. We con-
struct an (n+ 3)-tuple of deterministic processes (Dctrl, D0, D1, . . . , Dn, Dn+1)
such that they have a common implementation if and only if M accepts w.
Each of the Di processes simulates one tape cell, the Dctrl process simulates
the control unit and the head. The action alphabet of the processes is Act =
{a, b, r,B,C, t0, tn+1, s

0
B, s

n+1
C } ∪ {ti, sia, sib | 1 ≤ i ≤ n}.

For all i from 1 to n, the MTS underlying Di has the set of processes
{P ia, P ib , T ia, T ib} and the transitions are defined as:

P ia
ti

99K T ia P ib
ti

99K T ib T ia
a

99K P ia T ib
b

99K P ib P ia
x

99K P ia

P ia
si

b
99K P ib P ib

si
a

99K P ia T ia
a−→ P ia T ib

b−→ P ib P ib
y

99K P ib

for all x ∈ Act \ {r, ti, sib} and y ∈ Act \ {r, ti, sia}. The process Di is then
defined as Di = P iwi

. The processes D0 and Dn+1 are defined as D0 = P 0
B and

Dn+1 = Pn+1
C with transitions:

P 0
B

x
99K P 0

B T 0
B

B
99K P 0

B Pn+1
C

y
99K Pn+1

C Tn+1
C

C
99K Pn+1

C

P 0
B

t0
99K T 0

B T 0
B

B−→ P 0
B Pn+1

C

tn+1
99K Tn+1

C Tn+1
C

C−→ Pn+1
C

for all x ∈ Act \ {r, t0} and y ∈ Act \ {r, tn+1}. The MTSs underlying Di are
shown in Figure 10.

The MTS underlying Dctrl is defined as follows. The set of processes is
{Uq,i,α | q ∈ Q, 0 ≤ i ≤ n + 1, α ∈ {a, b,B,C, ?, !}}. The transitions are
defined as:

Uq,i,?
ti

99K Uq,i,! Uq,i,!
z

99K Uq,i,z Uq,i,x
si

y

99K Up,j,? Uqrej ,i,?
r

99K Uqrej ,i,?

Uq,i,?
ti−→ Uq,i,! Uq,i,x

si
y−→ Up,j,? Uqrej ,i,?

r−→ Uqrej ,i,?
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Figure 11: An example of transitions for processes Uq,i,x

for all q ∈ Q \ {qacc, qrej}, 0 ≤ i ≤ n + 1, for all z ∈ {a, b,B,C} and for all
x, y ∈ {a, b,B,C} and p ∈ Q such that δ(q, x) = (p, y, d) and j = i − 1 if
d = L and j = i+ 1 if d = R. Other processes (most notably Uqacc,i,?) have no
transitions. The process Dctrl is then defined as Uq0,0,?. This construction is
illustrated by an example in Figure 11. The depicted transitions represent the
steps δ(q, a) = (p, b, L) and δ(q, b) = (qrej , a, R).

What remains to be proved is the correctness of this construction. Before we
do that, we prove a useful lemma about correspondence between configuration
steps and (n+1)-tuples of processes. This correspondence is represented by the
following mapping ϕ (note that z0 = B and zn+1 = C).

ϕ(q, i, z0 . . . zn+1) = (Uq,i,?, P 0
z0 , . . . , P

n+1
zn+1

)

Lemma 5.5. Let (q, i, z) and (q′, i′, z′) be two consecutive configurations and
let I be a common implementation of ϕ(q, i, z). Then any path going out from
I has at least three transitions and moreover, after any three transitions the
implementation I changes into a common implementation of ϕ(q′, i′, z′).

Proof. Clearly, if (q, i, z) and (q′, i′, z′) are two consecutive configurations then
either i′ = i−1 (and i ≥ 1) or i′ = i+1 (and i ≤ n), and z and z′ can only differ
on their ith position. Moreover, this step is according to the function δ such
that δ(q, zi) = (q′, z′i, d) where either d = R (if i′ = i+1) or d = L (if i′ = i−1).
The proof will use the game characterization of the modal refinement.

Let I be a common implementation of (Uq,i,?, P 0
z0 , . . . , P

n+1
zn+1

). Attacker can
force three steps of I by playing the ti transition of Uq,i,?, then the zi transition
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of T izi
and finally the siz′i transition of Uq,i,zi . Moreover, I can have no other

behaviour than that starting with the sequence ti, zi, siz′i and whenever I does
these three steps, it changes into J where J is a common implementation of
(Uq′,i′,?, P 0

z0 , . . . , P
i−1
zi−1

, P iz′i
, P i+1

zi+1
, . . . , Pn+1

zn+1
), which is exactly ϕ(q′, i′, z′). Both

these properties of I can be enforced by Attacker playing on the side of I.

Lemma 5.6. Let M be a deterministic LBA and w = w1w2 . . . wn. Then
M accepts w if and only if (Uq0,0,?, P

0
B, P

1
w1

, . . . , Pnwn
, Pn+1

C ) have a common
implementation.

Proof. We first note that there is no common implementation of the processes
(Uqrej ,p,?, P

0
z0 , . . . , P

n+1
zn+1

) as none of the P izi
processes allows the transition

r
99K

whereas Uqrej ,p,? requires it. On the other hand there is always a common
implementation of (Uqacc,p,?, P

0
z0 , . . . , P

n+1
zn+1

)—it is simply the implementation
with no transitions at all. If M accepts w then the existence of a common
implementation is a straightforward application of Lemma 5.5. For the other
direction, if M rejects w, Lemma 5.5 shows that any common implementation
must be able to reach a state that implements (Uqrej ,i,?, P

0
z0 , . . . , P

n+1
zn+1

), but
there is no such common implementation.

Corollary 5.7. The problem CIkD is NL-complete for any fixed k and CID is
PSPACE-complete.

6. Complexity Results for Deterministic Implementation Problem

In this section we investigate the problem whether a given collection of (non-
deterministic) processes have a common deterministic implementation. This
problem is computationally hard (EXPTIME-complete) not only for an arbi-
trary number of processes but also for a fixed number of them. In fact, we show
that it is EXPTIME-complete even for single process and the question whether
it has a deterministic implementation or not.

Definition 6.1. Let S be a (possibly nondeterministic) process. The set of
deterministic implementations of S, denoted by JSKD, is defined as JSKD =
JSK ∩ dMTS.

The problems that we study in this section are defined as follows.

dCIk = {〈S1, . . . , Sk〉 | ∃I : I ∈ JS1KD ∩ · · · ∩ JSkKD}

dCI =
∞⋃
k=1

dCIk

We shall now argue that dCI is EXPTIME-complete and later on use this fact
to conclude that dCIk is also EXPTIME-complete, even for k = 1.

In order to capture what a common deterministic implementation of a given
set of (nondeterministic) processes has to fulfill, we introduce the following
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notion of a possible successor. Consider a deterministic I implementing all
processes from a set S. Then some must a-successor of I has to implement
all must a-successors of the processes from S, and moreover, when some of the
processes in S do not have any must a-successors then they need to have at least
a may a-successor in order to match the must transition of the implementation.
We formalize this consideration by the following definition of the set of all
possible a-successors of S.

MustSucca(S) = {S′ | ∃S ∈ S : S a−→ S′}

PossibleSucca(S) = {MustSucca(S) ∪ T | ∀S ∈ S. ∃T ∈ T : S
a

99K T}

Definition 6.2. A set of deterministically consistent subsets (DCS) on a set of
processes P of an MTS M = (P, 99K,−→) is a set R ⊆ P(P ) such that for every
action a, whenever S ∈ R and MustSucca(S) 6= ∅ then PossibleSucca(S)∩R 6= ∅.

In other words, if every common implementation of processes in S has to con-
tinue (one of the processes has a must transition) then there has to be a possible
successor in R, which thus again has a deterministic continuation.

Since the union of DCSs is again a DCS, we can consider the greatest DCS.

Definition 6.3. Let M by a MTS. By RM we denote the greatest set of deter-
ministically consistent subsets of P .

Lemma 6.4. Let M be an MTS, then RM contains precisely those sets of its
processes that have a common deterministic implementation. Moreover, RM is
computable in EXPTIME.

Proof. Soundness. Let S ∈ RM . We construct a deterministic common imple-
mentation of all processes in S. Let Md = (RM ,−→,−→) be an MTS where
the transitions are given as follows:

for every action a and T ∈ RM , if MustSucca(T ) 6= ∅ then we set
T a−→ T ′ for some arbitrary (but fixed) T ′ ∈ PossibleSucca(T ).

This is a deterministic refinement of M with the refining relation {(T , T ) |
T ∈ RM , T ∈ T }, since a transition in the implementation is always allowed
by all processes in T , in particular by T , and the implementation includes all
must-successors of T , too. Hence S, as a process of Md, is the desired common
deterministic implementation of all processes from S.

Completeness. Let S be a set of processes having a common deterministic
implementation I. Assume that each process J reachable from I is labelled
by the set of all processes of M that J implements. We show that the set
R, consisting of all labels of processes reachable from I, is a DCS on M . For
technical convenience, we identify the names of the processes reachable from I
with their labels.

Since every T ∈ R has a deterministic implementation, then for each action
a, if MustSucca(T ) 6= ∅ then there is precisely one a-transition T a−→ T ′ for
some T ′. Because T is a common implementation of all processes from T , we
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Figure 12: Input instance M of CI and the constructed instance MB of dCI where B = 2.

have MustSucca(T ) ⊆ T ′ and for every T ∈ T there is T
a

99K T ′ with T ′ ∈ T ′.
We can so conclude that T ′ ∈ R.

Complexity. We can compute RM in exponential time by the standard co-
inductive algorithm: we begin with including all sets of processes and then we
keep repeatedly removing any inconsistent sets, until we reach a fixed point,
giving us exactly RM . The exponential running time follows from the fact that
|P(P )| = 2|P |.

We now turn our attention to the hardness of the deterministic common
implementation problem and provide a reduction for the EXPTIME-complete
problem CI (see [6]) to dCI. We have to modify the given instance of common
implementation problem such that the instance has a (nondeterministic) com-
mon implementation if and only if the newly constructed instance of dCI has
a deterministic common implementation. We proceed in two steps. First, we
modify the given processes (instance of CI) so that their new must transition
relation does not include more than one transition under the same action while
preserving the (non)existence of a common implementation. Second, we prove
that CI and dCI coincide on MTSs with such must transition relation.

We start with the description of the modification of the input processes
for the CI problem. Let M = (P, 99K,−→) be their underlying MTS over an
alphabet Σ and let B be the size of the −→ relation. We assign different numbers
from 1 to B to the must transitions and denote this assignment function by
f . We now construct an MTS MB = (P, 99KB ,−→B) over the alphabet Σ =
Σ×{1, . . . , B}. The new must transitions are now distinguished by their indices,
and all may transitions are now allowed under all possible indices. Formally,

• for every S a−→ T we set S
(a,f(S

a−→T ))−−−−−−−−→B T , and

• for every S
a

99K T we set S
(a,i)
99KB T for all 1 ≤ i ≤ B.

Note that after the transformation if S1
(a,i)−→ T1 and S2

(a,i)−→ T2 then S1 = S2

and T1 = T2. An example of the reduction is given in Figure 12.

Lemma 6.5. Processes S1, . . . , Sk ∈ P have a common implementation as pro-
cesses of M iff they have a common implementation as processes of MB.
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Proof. For the only if part, let I be a common implementation of S1, . . . , Sk as
processes of M . We change the labeling of the transitions so that it becomes
an implementation IB of S1, . . . , Sk ∈ P as processes of MB . If there is an a-
transition in I, we put there (a, i)-transitions for all indices i ∈ {1, . . . , B}. Now
IB is a common implementation of S1, . . . , Sk in MB since all must transitions
are implemented, and the may transitions in the implementation IB originated
from I, thus being implementations of the original may transitions, which are
now allowed as a pair with all possible indices in the second component.

For the if part, as M is equivalent to MB where indices are forgotten, the
common implementation of processes of MB is turned into a common imple-
mentation of processes of M simply by forgetting the indices too.

In the following, we show that if there are no must transitions under the same
action, then we can modify any common (nondeterministic) implementation into
a deterministic one.

Lemma 6.6. Let M = (P, 99K,−→) be an MTS such that for every processes
S1, S2, T1, T2 ∈ P and any action a, if S1

a−→ T1 and S2
a−→ T2 then S1 = S2

and T1 = T2. Then, for every S1, . . . , Sk ∈ P , if JS1K ∩ . . . ∩ JSkK 6= ∅ then
JS1KD ∩ . . . ∩ JSkKD 6= ∅.

Proof. Let I be a common implementation with R being a refinement relation
containing (I, Si) for 1 ≤ i ≤ k. We show that we can prune I so that we
get a deterministic common implementation. For every process J from the
underlying system of I and an action a, if there are (unique) T, T ′ ∈ P with
T

a−→ T ′ and (J, T ) ∈ R, then there is at least one J a−→ J ′ with (J ′, T ′) ∈ R,
we keep this a-transition in J and omit the others; otherwise, we omit all a-
transitions from J .

We show that R is still a refinement relation (containing (I, Si) for 1 ≤ i ≤
k). Since the new may transition relation in I is smaller, we only need to show
that all must transitions are still realized. Let (J, T ) ∈ R and T

a−→ T ′. Such
T an T ′ are unique, hence the respective transition J

a−→ J ′ with (J ′, T ′) has
been preserved.

Corollary 6.7. The problem dCI is EXPTIME-complete.

Proof. The containment follows from Lemma 6.4, and the hardness from Lemma
6.5 and 6.6 and the fact that MB has must transition relation with every tran-
sition having a unique label.

We are now ready to prove the equivalence of dCI and dCI1 and conclude
with the following theorem.

Theorem 6.8. The problem dCI1 is EXPTIME-complete.

Proof. We show that dCI reduces to dCI1. Consider S1, . . . , Sk. We construct
a new process S such that

S
a−→ S1, S

a−→ S2, . . . , S
a−→ Sk
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for some action a. Clearly, S1, . . . , Sk have a common deterministic implemen-
tation iff S has a deterministic implementation.

7. Composition Operators

We shall now discuss composition operators on labelled transition systems
and extend them in order to apply them on modal transition systems. We recall
that implementations are labelled transition systems where two identical copies
of the transition relation are considered and we shall not distinguish explicitly
between the two copies of the transition relation. Therefore, as this operator
extension should treat implementations in a similar way as labelled transition
systems, the operators should transform may and must relations in the same
way. Moreover, when applied on a general MTS, the operators have to preserve
the inclusion of must relation in the may relation in order to obtain a correct
MTS as a result. This is guaranteed by monotonicity of operators.

After defining the extension of operators, we discuss the relation between
this extension on MTSs and the direct application on the respective sets of
implementations.

Definition 7.1. An n-ary operator on iMTS is a class mapping iMTSn →
iMTS. An n-ary operator ⊕ on iMTS is liftable if

1. the resulting process set does not depend on the input transition relation
(it is usually e.g. the Cartesian product or the sum), and

2. it is covariant monotonous, i.e. for all implementations Ii = (Pi,−→i) and
Ji = (Pi, ↪→i) such that 1 ≤ i ≤ n and where we let ⊕iIi = (P,−→) and
⊕iJi = (P, ↪→), whenever −→i⊆↪→i for all i, 1 ≤ i ≤ n, then also −→⊆↪→.

An n-ary operator on MTS is a class mapping MTSn →MTS.
A syntactic lift of an n-ary liftable operator ⊕ on iMTS is an n-ary operator

⊕M on MTS defined as follows. Let (Pi, 99Ki,−→i) be MTS for i ∈ {1, . . . , n}
and let ⊕1≤i≤n(Pi, 99Ki) = (P, 99K) and ⊕1≤i≤n(Pi,−→i) = (P,−→). We define
⊕M1≤i≤n(Pi, 99Ki,−→i) = (P, 99K,−→). (The resulting system is an MTS due to
the covariant monotonicity.)

An n-ary operator on sets of implementations is a class mapping that maps
n-tuples of classes of implementations to a class of implementations.

A semantic lift of an n-ary operator ⊕ on iMTS is an n-ary operator ⊕I
on sets of implementations defined by ⊕Ii Ii = {⊕iIi | Ii ∈ Ii}.

We often omit the letters M and I when it is clear which lift is meant.
We give an example of a parallel operator and its lift in Figure 13. This is
an important example, as it is quite simple while capturing the basic aspects of
the concept of a parallel composition of processes.

Note that if we added rules such as

if A c−→ A′ and B 6 c−→ then A ‖ B c−→ A′ ‖ B
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I
a−→ I ′ J

a−→ J ′

I ‖ J a−→ I ′ ‖ J ′
∀a ∈ Σ

S
a−→ S′ T

a−→ T ′

S ‖ T a−→ S′ ‖ T ′
∀a ∈ Σ

S
a

99K S′ T
a

99K T ′

S ‖ T a
99K S′ ‖ T ′

∀a ∈ Σ

Figure 13: (a) Simple parallel operator (b) Its lift to MTS

I
a−→ I ′

I + J
a−→ I ′

∀a ∈ Σ

J
a−→ J ′

I + J
a−→ J ′

∀a ∈ Σ

S
a−→ S′

S + T
a−→ S′

T
a−→ T ′

S + T
a−→ T ′

S
a

99K S′

S + T
a

99K S′
∀a ∈ Σ

T
a

99K T ′

S + T
a

99K T ′
∀a ∈ Σ

Figure 14: (a) Nondeterministic sum (b) Its lift to MTS

then the operator would cease to be monotonous and hence liftable. It would
indeed transform MTSs into incorrect systems.

We want the liftable operators to maintain the so-called independent imple-
mentability, i.e. whenever Ii ∈ JSiK then also ⊕iIi ∈ J⊕iSiK. To ensure this, we
only require the operators to behave compositionally. The most natural way to
guarantee this is to define the operators syntactically by a set of rules.

Definition 7.2. Let Σ be a set of actions such that • 6∈ Σ and n ∈ N. An n-ary
context system over Σ is a tuple C = (C, c0, ρ) where C is a nonempty set of
contexts, c0 ∈ C is an initial context and ρ ⊆ C × Σ × (Σ ∪ {•})n × C is a set
of rules.

Given an n-ary context system C, we can define a composition of n iMTSs,
denoted as |C (Pi,−→i)i∈{1,...,n} in the following way:

|C (Pi,−→i)i∈{1,...,n} = (C ×
n∏
i=1

Pi,−→)

where (c, p1, . . . , pn) a−→ (c′, p′1, . . . p
′
n) whenever (c, a, (a1, . . . , an), c′) ∈ ρ and

for all i, pi
ai−→ p′i where we assume the convention that p •−→ p′ if and only if p

and p′ are identical. The composition of n processes I1, . . . , In is then defined
to be the process |C (Ii)i∈{1,...,n} = (c0, I1, . . . , In). The operator |C is called the
general composition operator with context system C.

Example 7.3. Clearly, the ‖ operator defined in Figure 13 can be seen as a general
composition operator. Indeed, if we take C = ({c}, c, {(c, a, (a, a), c) | a ∈ Σ})
then ‖ is identical with |C .
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To show an example of a general composition operator requiring more con-
texts, let us take the usual definition of a nondeterministic sum of processes,
depicted in Figure 14. This operator can be defined as a general composi-
tion operator with context (C, c0, ρ) where C = {+, 1, 2}, c0 = + and ρ =
{(+, a, (a, •), 1), (+, a, (•, a), 2), (1, a, (a, •), 1), (2, a, (•, a), 2) | a ∈ Σ}.
Remark 7.4. The general composition operators are clearly liftable.

These operators guarantee independent implementability. To simplify the
technical arguments, the following lemma proves that for pairs and on one side
only. However, the general proof is a straightforward extension.

Lemma 7.5. The modal refinement relation is a precongruence for any general
composition operator, that is if S1 ≤m S2 then S1 |C T ≤m S2 |C T for any
process T and any context system C.

Proof. Let C = (C, c0, ρ) be a context system, |C the general composition op-
erator with context C, T an arbitrary process and S1, S2 processes such that
S1 ≤m S2. We will show a relation R that satisfies Definition 2.1 such that
(S1 |C T, S2 |C T ) ∈ R.

We define R = {((c, U1, V ), (c, U2, V )) | c ∈ C,U1 ≤m U ′2, V arbitrary pro-
cess in MTS underlying T} and we show that the conditions of refinement
relation are satisfied.

(i) Clearly (S1 |C T, S2 |C T ) = ((c0, S1, T ), (c0, S2, T )) ∈ R.

(ii) Suppose that (c, U1, V )
a

99K (c′, U ′1, V
′). Then (c, a, (α, β), c′) ∈ ρ, U1

α
99K

U ′1 and V
β

99K V ′. As U1 ≤m U2 this means that U2
α

99K U ′2 and U ′1 ≤m U ′2.
Then also (c, U2, V )

a
99K (c′, U ′2, V

′) and ((c′, U ′1, V
′), (c′, U ′2, V

′)) ∈ R.
(iii) Suppose that (c, U2, V ) a−→ (c′, U ′2, V

′). Then (c, a, (α, β), c′) ∈ ρ, U2
α−→

U ′2 and V
β−→ V ′. As U1 ≤m U2 this means that U1

α−→ U ′1 and U ′1 ≤m U ′2.
Then also (c, U1, V ) a−→ (c′, U ′1, V

′) and ((c′, U ′1, V
′), (c′, U ′2, V

′)) ∈ R.

Corollary 7.6. For all processes S1 and S2 we have JS1K |C JS2K ⊆ JS1 |C S2K.

Proof. Let I1 ≤m S1 and I2 ≤m S2. Then I1 |C I2 ≤m I1 |C S2 ≤m S1 |C S2.

Remark 7.7. A related general approach of defining composition operators has
been studied in [19]. It can be shown that any operator defined this way can
be written as a general composition operator with (possibly infinite) context,
as clearly we can take the set of all terms with n free variables as the set of
contexts. Thus, the above results hold for any operators defined using [19].

Example 7.8. As it has been mentioned in Example 7.3, ‖ is a general compo-
sition operator, hence

JS1K ‖ JS2K ⊆ JS1 ‖ S2K . (∗)

However, the inclusion may be strict. In Figure 15 we can see an example of two
deterministic processes S1 and S2 such that JS1K ‖ JS2K ( JS1 ‖ S2K. Indeed,
there is no implementation from JS1K ‖ JS2K that would be even bisimilar to I.
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Figure 15: I ∈ JS1 ‖ S2K but I 6∈ JS1K ‖ JS2K

In fact, there is no MTS describing the semantic composition JS1K ‖ JS2K
in this case. Observe that a sum of implementations of a system is again an
implementation of this system. We thus conclude that I (being a sum of two
implementations from JS1K ‖ JS2K) is necessarily an implementation of any
system implementing all elements of JS1K ‖ JS2K.

However, there may exist better approximations of the semantic composition
than the syntactic composition, particularly those describing consistencies of
branches up to a finite number of steps. In Figure 16, we show processes S1, S2, T
such that JS1K ‖ JS2K ⊆ JT K ( JS1 ‖ S2K.
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Figure 16: JS1K ‖ JS2K ⊆ JT K and I ∈ JS1 ‖ S2K \ JT K

As there can be a strict inclusion between the semantic and syntactic compo-
sition in (∗) even in the case when specifications are deterministic, we investigate
the case when only deterministic implementations are considered. We recall the
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notation of Definition 6.1: we write I ∈ JSKD to denote that I is a deterministic
implementation of (generally nondeterministic) S.

Lemma 7.9. Let M = (P, 99K,−→) be an MTS such that for every process S ∈
P and every action a it holds that S

a
99K T and S a−→ U implies JT KD ⊆ JUKD.

Then for every S1, S2 ∈ P we get

JS1KD ‖ JS2KD = JS1 ‖ S2KD .

Proof. We prove by coinduction that for all I ∈ JS1 ‖ S2KD exist I1 ∈ JS1KD
and I2 ∈ JS2KD such that I = I1 ‖ I2 (in this proof ‘=’ is understood as
an isomorphism on implementations). To construct I1 and I2 we perform the
following for each action a.

• If I a−→ J , then S1 ‖ S2
a

99K T1 ‖ T2 with J ∈ JT1 ‖ T2KD. By the
coinductive hypothesis, there are J1 ∈ JT1KD, J2 ∈ JT2KD such that J =
J1 ‖ J2. We set I1

a−→ J1 and I2
a−→ J2.

• If I 6a−→, then also S1 ‖ S2 6
a−→ which means that at least one of S1 6

a−→,
S2 6

a−→ has to hold. If both hold, we set I1 6
a−→ and I2 6

a−→, if only S1 6
a−→

holds, we set I1 6a−→ and I2
a−→ J where J is an arbitrary deterministic

implementation of some T2 such that S2
a−→ T2, and similarly in the

symmetric case.

Now clearly I = I1 ‖ I2, but it remains to prove that I1 ∈ JS1KD and I2 ∈ JS2KD.
We prove the first proposition, the other is symmetric.

(i) If I1
a−→ J1 then clearly from the construction, there is some S1

a
99K T1

such that J1 ∈ JT1KD.
(ii) If S1

a−→ U then clearly I1
a−→ J1. We need to show that J1 ∈ JUKD.

But we know that J1 ∈ JT1KD for some T1 such that S1
a

99K T1. Using the
premise of the lemma, we know that JT1KD ⊆ JUKD, thus J ∈ JUKD.

The lemma requires each process to fulfill that all deterministic implementa-
tions of its successors are also implementations of its every must successor. This
conditions is, however, not a syntactic one and cannot be effectively checked.
We are thus interested in possibly weaker, but syntactic condition. Since it is
useless to have weaker mays than musts, we choose to require every process
either not to have a must transition (several mays are possible) or to be deter-
ministic (only one transition is possible and it can be must). This condition
is clearly stronger than the premise of Lemma 7.9, the following theorem is
therefore a corollary of the lemma.

Theorem 7.10. Let M = (P, 99K,−→) be an MTS such that for every process
S ∈ P and every action a holds: either S 6a−→, or S

a
99K T and S

a
99K U imply

T = U . Then for every S1, S2 ∈ P we get

JS1KD ‖ JS2KD = JS1 ‖ S2KD .
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If the criterion formulated in the above discussion does not hold, the equality
is not guaranteed to hold either. Indeed, let S1

a
99K T and S1

a−→ U with

JT KD 6⊆ JUKD witnessed by J ∈ JT KD \ JUKD. If we take e.g. S2
b

99K S2 for all b,
then I

a−→ J is the counterexample, see Figure 17.
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Figure 17: I ∈ JS1 ‖ S2KD but I 6∈ JS1KD ‖ JS2KD, because S1 has only one implementation
(up to bisimulation), and that is I1.

8. Conclusion

We have studied several problems related to modal transition systems with
a particular focus on the situation when the involved processes are deterministic.
Apart from some fundamental results regarding the relationship between thor-
ough and modal refinement, construction of the deterministic hull and a detailed
discussion of composition operators liftable to the setting of modal transitions
systems, we contributed with the characterization of the computational com-
plexity of several decision problems usually studied in the context of modal
transition systems. In the following table we give an overview of the results
related to deciding modal and thorough refinements for different combination
of processes on the left- and right-hand side (here D stands for deterministic
processes and N for nondeterministic processes). Complexity bounds proved in
the present article are in bold.

MR TR

D,D ∈ NL ∈ NL
NL-hard NL-hard

N,D ∈ NL ∈ NL
NL-hard NL-hard

D,N ∈ P [12, 13] ∈ EXPTIME [5]
P-hard co-NP-hard [7]

N,N ∈ P [12, 13] ∈ EXPTIME [5]
P-hard [14] EXPTIME-hard [4]

We have also investigated the complexity of common implementation prob-
lems. Compared to the previously studied problem CI for arbitrary processes,
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we showed that the complexity improves when the given processes are deter-
ministic (CID problem). Finally, the problems dCI and dCIk, asking whether
an arbitrary resp. a fixed number of nondeterministic processes have a com-
mon deterministic implementation, were proved to be EXPTIME-complete. In
fact, this problem remains EXPTIME-complete even for a single nondetermin-
istic process (asking whether it has at least one deterministic implementation
or not). The following table provides the summary and, as before, our results
(matching lower and upper bounds) are in bold.

fixed number arbitrary number
CI P-complete [14, 18] EXPTIME-complete [6]
CID NL-complete PSPACE-complete
dCI EXPTIME-complete EXPTIME-complete

The results indicate that the complexity of several problems connected to
the thorough refinement relation (which is more desirable in the refinement
process than the modal refinement relation) become more tractable if the given
specifications are deterministic (a standard assumption in much of the recent
work, see e.g. [8, 9]). On the other hand, the complexity in most instances does
not improve if we consider deterministic implementations of nondeterministic
specifications as we already mentioned that, for example, the question whether
a given nondeterministic specification has at least one deterministic implemen-
tation is already EXPTIME-hard.
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