EXPTIME-Completeness of Thorough Refinement on
Modal Transition Systems

Nikola Benes®!, Jan Kietinsky®?* Kim G. Larsen®3, Jif{ Srba®

% Faculty of Informatics, Masaryk University
Botanickd 68a, 60200 Brno, Czech Republic
bDepartment of Computer Science, Aalborg University,
Selma Lagerlifs Vej 300, 9220 Aalborg Ost, Denmark

Abstract

Modal transition systems (MTS), a specification formalism introduced more
than 20 years ago, has recently received a considerable attention in several dif-
ferent areas. Many of the fundamental questions related to MTSs have already
been answered. However, the problem of the exact computational complexity
of thorough refinement checking between two finite MTSs remained unsolved.

We settle down this question by showing EXPTIME-completeness of thor-
ough refinement checking on finite MTSs. The upper-bound result relies on
a novel algorithm running in single exponential time providing a direct goal-
oriented way to decide thorough refinement. If the right-hand side MTS is
moreover deterministic, or has a fixed size, the running time of the algorithm
becomes polynomial. The lower-bound proof is achieved by reduction from the
acceptance problem of alternating linear bounded automata and the problem
remains EXPTIME-hard even if the left-hand side MTS is fixed and determin-
istic.

Keywords: modal transition systems, refinement, computational complexity

1. Introduction

Modal transition systems (MTS) is a specification formalism which extends
the standard labelled transition systems with two types of transitions, the may

*Corresponding author, phone no.: 449 89 289 17236 , fax no.: +49 89 289 17207
Email addresses: xbenes30fi.muni.cz (Nikola Benes), jan.kretinsky@fi.muni.cz

(Jan Kretinsky), kgl@cs.aau.dk (Kim G. Larsen), srba@cs.aau.dk (Jif{ Srba)

INijkola Benes has been partially supported by the Grant Agency of the Czech Republic,
grant No. GAP202/11/0312.

2Jan Kfetinsky a holder of Brno PhD Talent Financial Aid has been partially supported
by the research centre Institute for Theoretical Computer Science (ITI), project No. 1M0545
and by the Czech Science Foundation, grant No. P202/10/1469. Present address: Institut fur
Informatik, Technische Universitat Miinchen, Boltzmannstr. 3, 85748 Garching, Germany.

3Kim G. Larsen has been partially supported by the VKR Center of Excellence MT-LAB.

Preprint submitted to Elsevier August 17, 2012

transitions that are allowed to be present in an implementation of a given
modal transition system and must transitions that must be necessarily present
in any implementation. Modal transition systems hence allow to specify both
safety and liveness properties. The MTS framework was suggested more than
20 years ago by Larsen and Thomsen [LT88] and has recently brought a con-
siderable attention due to several applications to e.g. component-based soft-
ware development [Rac07, BPR09], interface theories [UC04, RBBT09], modal
abstractions and program analysis [SG10, GHJ01, HJS01, NNNO08] and other
areas [FS08, WGCO09], just to mention a few of them. A renewed interest in
tool support for modal transition systems is recently also emerging [DFCUOS,
DFFU07, BMSHI10]. A recent overview article on the theoretical foundations of
MTSs and early tool development is available in [AHL'08a].

Modal transition systems were designed to support component-based system
development via a stepwise refinement process where abstract specifications
are gradually refined into more concrete ones until an implementation of the
system (where the may and must transitions coincide) is obtained. One of
the fundamental questions is the decidability of a thorough refinement relation
between two specifications S and T'. We say that S thoroughly refines T iff every
implementation of .S is also an implementation of T'. While for a number of other
problems, like the common implementation problem, a matching complexity
lower and upper bounds were given [AHL*08b, LNW07, AHL'10], the question
of the exact complexity of thorough refinement checking between two finite
MTSs remained unanswered.

In this article, we prove EXPTIME-completeness of thorough refinement
checking between two finite MTSs. The hardness result is achieved by a reduc-
tion from the acceptance problem of alternating linear bounded automata, a
well known EXPTIME-complete problem, and it improves the previously estab-
lished PSPACE-hardness [AHL'08b]. The main reduction idea is based on the
fact that the existence of a computation step between two configurations of a
Turing machine can be locally verified (one needs to consider the relationships
between three tape symbols in the first configuration and the corresponding
three tape symbols in the second one, see e.g. [Sip06, Theorem 7.37]), however,
a nonstandard encoding of computations of Turing machines (which is crucial
for our reduction) and the addition of the alternation required a nontrivial tech-
nical treatment. Moreover, we show that the problem remains EXPTIME-hard
even if the left-hand side MTS is deterministic and of a constant size.

Initial proof ideas for the containment of the thorough refinement problem in
EXPTIME were mentioned in [AHL*08b] where the authors suggest a reduction
of the refinement problem to validity checking of vectorized modal p-calculus,
which can be solved in EXPTIME—the authors in [AHLT08b] admit that such
a reduction relies on an unpublished popular wisdom, and they only sketch the
main ideas hinting at the EXPTIME algorithm. In our article, we describe
a novel technique for deciding thorough refinement in EXPTIME. The result
is achieved by a direct goal-oriented algorithm performing a least fixed-point
computation, and can be easily turned into a tableau-based algorithm. As a
corollary, we also get that if the right-hand side MTS is deterministic or of

a constant size, the algorithm for solving the problem runs in deterministic
polynomial time.

2. Basic Definitions

A modal transition system (MTS) over an action alphabet ¥ is a triple
(P,--»,—), where P is a set of processes and — C --» C P x ¥ X P are must
and may transition relations, respectively. Because in MTS whenever S — S’
then necessarily also S -%5 8’ we adopt the convention of drawing only the
must transitions S —— S’ in such cases. An MTS is finite if P and ¥ are finite
sets.

An MTS is an implementation if --» = —. As in implementations the must
and may relations coincide, we can consider such systems as the standard labelled
transition systems. The class of all implementations is denoted by i M7S.

Definition 2.1. Let M1 = (Pl,——-)l,—>1), Mg = (Pg,——<)2,%2) be MTSs
over the same action alphabet ¥ and S € P;, T' € P, be processes. We say that
S modally refines T, written S <,,, T, if there is a relation R C P; x Py such
that (S,7T) € R and for every (4, B) € R and every a € X:

1. if A -%5; A’ then there is a transition B --+5 B’ s.t. (A’,B’) € R, and
2. if B -+, B’ then there is a transition A %+, A’ s.t. (A’, B") € R.

We often omit the indices in the transition relations and only use the symbols
--» and — whenever it is clear from the context what transition system we have
in mind. Note that on implementations modal refinement coincides with the
classical notion of strong bisimilarity, and on modal transition systems without
any must transitions it corresponds to the well-studied simulation preorder. It
is also easy to argue that modal refinement is transitive.

Proposition 2.2. The relation <,, of modal refinement is transitive.

We shall now observe that the modal refinement problem, i.e. the question
whether a given process modally refines another given process, is tractable for
finite MT'Ss.

Theorem 2.3. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in polynomial time by the standard
greatest fixed-point computation, similarly as in the case of strong bisimulation
(for efficient algorithms implementing this strategy see e.g. [KS90, PT87]). P-
hardness of modal refinement follows from P-hardness of bisimulation [BGS92]
(see also [SJO5]). O

For convenient argumentation in some of the later proofs we extend the
standard game-theoretic characterization of bisimilarity to the game character-
ization of modal refinement.

a —> @

S a S1 T(y U a Ui
._: B :Ao ° =< a .\/\;;o
a S T2 a

a > 8

Figure 1: S <; T but S £y, T, and S £+ U and S & U

A modal refinement game (or simply a modal game) on a pair of processes
(S,T) is a two-player game between Attacker and Defender. The game is played
in rounds. In each round the players change the current pair of processes (A, B)
(initially A = S and B = T) according to the following rule:

1. Attacker chooses an action a € ¥ and one of the processes A or B. If he
chose A then he performs a move A -=» A’ for some A’; if he chose B then
he performs a move B —— B’ for some B'.

2. Defender responds by choosing a transition under a in the other process.
If Attacker chose the move from A, Defender has to answer by a move
B -%s B’ for some B’ ; if Attacker chose the move from B, Defender has
to answer by a move A — A’ for some A’.

3. The new current pair of processes becomes (A’, B’) and the game continues
with a next round.

The game is similar to standard bisimulation games with the exception that
Attacker is only allowed to attack on the left-hand side under may transitions
(and Defender answers by may transitions on the other side), while on the
right-hand side Attacker attacks under must transitions (and Defender answers
by must transitions in the left-hand side process).

Any play (of the modal game) thus corresponds to a sequence of pairs of
processes formed according to the above rule. A play (and the corresponding
sequence) is finite iff one of the players gets stuck (cannot make a move). The
player who got stuck lost the play and the other player is the winner. If the
play is infinite then Defender is the winner.

The following fact is by a standard argument in analogy with strong bisim-
ulation games: S <, T iff Defender has a winning strategy in the modal game
starting with the pair (S,T); and S &£,,, T iff Attacker has a winning strategy.

Ezxample 2.4. Consider processes S and T in Fig. 1. We prove that S does not
modally refine T'. Indeed, Attacker has the following winning strategy in the
modal game starting from (5,7). Attacker plays S -%5 Sy to which Defender
can answer by entering either 7j or T5. In the first case Attacker wins by
playing T7 - T for which Defender has no answer from S; (no must transition
under a is available) and Defender loses. In the second case Attacker wins by

playing S -%5 § and Defender loses as well because no may-transition under a
is available from T5. Similarly, one can argue that S £,, U.

We proceed with the definition of thorough refinement, a relation that holds
for two modal specification S and T iff any implementation of S is also an
implementation of T.

Definition 2.5. For a process S let us denote by [S] = {I € iMTS | I <,, S}
the set of all implementations of S. We say that S thoroughly refines T', written
S <, T, i [S] € [T].

Clearly, if S <,,, T then also S <; T because the relation <,, is transitive by
Proposition 2.2. The opposite implication, however, does not hold as demon-
strated by the processes S and T in Fig. 1 where one can easily argue that every
implementation of S is also an implementation of 7. On the other hand, S £; U
because a process with just a single a-transition is an implementation of S but
not of U.

3. Thorough Refinement Is EXPTIME-Hard

In this section we prove that the thorough refinement relation <; on finite
modal transition systems is EXPTIME-hard by reduction from the acceptance
problem of alternating linear bounded automata. After recalling this acceptance
problem, we show that it is enough to consider thorough refinement on tree
implementations and we demonstrate how computation trees of linear bounded
automata can be encoded as tree implementations of two modal transitions
systems. The first system will have (the encoding of) any computation tree as
its implementation while the second one will only have computation trees of
incorrect or rejecting computations.

3.1. Alternating Linear Bounded Automata

Definition 3.1. An alternating linear bounded automaton (ALBA) is a tuple
M = (Q,Qv,Q3,%,T, qo, Gace; Grej, =, 1, 5) where @ is a finite set of control
states partitioned into Qv and ()3, universal and existential states, respectively,
> is a finite input alphabet, I' D ¥ is a finite tape alphabet, ¢y € @ is the initial
control state, gqcc € @ is the accepting state, gr.; € @Q is the rejecting state,
F,= € I' are the left-end and the right-end markers that cannot be overwritten
or moved, and § : (@ \ {qace, Grej}) X I' — 2QXI>{L.R} {5 5 computation step
function such that for all ¢,p € Q if d(¢,F) > (p,a,D) then a =+, D = R; if
4(¢,1) @ (p,a, D) then a = 4, D = L; if 6(¢q,a) > (p,t, D) then a = +; and if
4(g,a) > (p,, D) then a = .

Remark 3.2. W.lo.g. we assume that ¥ = {a,b}, I' = {a,b,+, -}, QNT = 0 and
that for each ¢ € Qv and a € T it holds that §(g,a) has exactly two elements
(q1,a1,D1), (g2, a2, Dy) where moreover a; = as and D; = Dy. We fix this
ordering and the successor states ¢; and gy are referred to as the first and the
second successor, respectively. The states qqce, ¢re; have no successors.

A configuration of M is given by its current state, the position of the head
and the content of the tape. For technical reasons, we write it as a word over

the alphabet 2 = QUT U{F,4,3,V, 1,2, %} (where 3,V, 1, 2, % are fresh symbols)
in the following way. If the tape contains a word Fwjaws-, where wy,ws € I'*
and a € T', and the head is scanning the symbol a in a state g, we write the
configuration as Fwjafgaws where aff € {Ix,V1,V2}.

The two symbols af before the control state in every configuration are non-
standard, though important for the encoding of the computations into modal
transition systems to be checked for thorough refinement. Intuitively, if a con-
trol state ¢ is preceded by V1 then it signals that the previous configuration (in
a given computation) contained a universal control state and the first successor
was chosen; similarly V2 reflects that the second successor was chosen. Finally,
if the control state is preceded by 3% then the previous control state was exis-
tential and in this case we do not keep track of which successor it was, hence
the symbol * is used instead. The initial configuration for an input word w is
by definition F3xgow.

Depending on the present control state, every configuration is called either
universal, existential, accepting or rejecting.

A step of computation is a relation — between configurations defined as
follows (where wy,wy € T*, af € {V1,V2,3x}, a,a’,b € T, i € {1,2}, and
wiaws and wibawy both begin with - and end with):

o wiafBqaws — wia'Vipws
if 6(q,a) 3 (p,d’, R), g € Qv and (p,d’, R) is the i’th successor,

o wiafgaws — wia Ixpws
if 6(Q7a’) > (pa Cl/,R) and qc QH)

e wibafBgaws — wiVipba wo
if (¢q,a) > (p,a’, L), ¢ € Qv and (p,a’, L) is the i’th successor, and

e wibafBqgaws — wiIxpba’wey

if 6(q,a) 3 (p,d’, L) and ¢ € Q3.

Note that for an input w of length n all reachable configurations are of length
n + 5. A standard result is that one can efficiently compute the set Comp C
=10 of all compatible 10-tuples such that for each sequence C' = cicp---cp
of configurations ¢y, ca,...,ck, with the length of the first configuration being
£ =|c1] =n+5, we have ¢; — ¢3 — -+ — ¢ if and only if for all 4, 0 < ¢ <
(k—1)¢—5,

(C(i+1),C(i +2),C(i + 3),C(i + 4), C(i + 5),
Cli+1+0),CG+2+0),CG+3+0),C6+4+10),C6+5+1)) e Comp

where C(4) is the ¢’th element in the string C.

A computation tree for M on an input w € ¥* is a tree 7 satisfying the
following: the root of 7 is (labeled by) the initial configuration, and whenever
N is a node of 7 labeled by a configuration ¢ then the following holds:

e if ¢ is accepting or rejecting then N is a leaf;

e if ¢ is existential then N has one child labeled by some d such that ¢ — d;

e if ¢ is universal then N has two children labelled by the first and the
second successor of ¢, respectively.

Without loss of generality, we shall assume from now on that any compu-
tation tree for M on an input w is finite (see e.g. [Sip06, page 198]) and that
every accepting configuration contains at least four other symbols following af-
ter the state g,... We call a computation tree accepting if all its leaves are
labelled with accepting configurations, otherwise it is a rejecting computation
tree. A tree with nodes labelled by configurations that is neither accepting or
rejecting computation tree is called incorrect.

We say that M accepts w iff there is a (finite) accepting computation tree
for M on w. The following fact is well known (see e.g. [Sip06]).

Proposition 3.3. Given an ALBA M and a word w, the problem whether M
accepts w is EXPTIME-complete.

8.2. Encoding of Configurations and Computation Trees

In this subsection we shall discuss the particular encoding techniques nec-
essary for showing the lower bound. For technical convenience we will consider
only tree encodings and so we first introduce the notion of tree-thorough refine-
ment.

Definition 3.4. Let Tree denote the class of all MTSs with their graphs being
trees. We say that a process S tree-thoroughly refines a process 1T', denoted by
S <u T, if [S] N Tree C [T] N Tree.

Lemma 3.5. For any two processes S and T, S <44 T iff S <; T.

Proof. The if case is trivial. For the only if case, we define an unfold U(S) of
a process S over an MTS M = (P, --»,—) with an alphabet ¥ to be a process
S over an MTS U(M) = (P*,--+y, —y) over the same alphabet and where
P* is the set of all finite sequences over the symbols from P. The transition
relations are defined as follows: for all a € ¥, T, R € P and a € P*, whenever
T -%> R then oT —(—1+U aTR, and whenever T —% R then o1 ¢ aTR. Since
the transitions in U(S) depend only on the last symbol, we can easily see that
U(S) <, Sand S <, U(S) for every process S.

Let I be now an implementation of S. Its unfold U([) is also an implemen-
tation of S by U(I) <,, I <,, S and the transitivity of <,,. By our assumption
that S <4 T and the fact that U(I) is a tree, we get that U([) is also an im-
plementation of T. Finally, I <,, U(I) <,, T and the transitivity of <, allow
us to conclude that I is an implementation of 7. O

Let M = (Q7 QVa Qaa E,F, 405 9acc) qrej, |_7 476) be an ALBA and w S
an input word of length n. We shall construct (in polynomial time) modal
transition systems L and R such that M accepts w iff L £;; R. The system L

will encode (almost) all trees beginning with the initial configuration, while the
implementations of R encode only the incorrect or rejecting computation trees.

Configurations, i.e. sequences of letters from =, are not encoded straight-
forwardly as sequences of actions (the reason why this naive encoding does not
work is explained later on in Remark 3.12). Instead we use two auxiliary actions
m a 0. The intended implementations of L and R alternate between the actions
m and o on a linear path, while the symbols in the encoded configuration are
present as side-branches on the path.

Formally, a sequence ajasag---a, € =*

is encoded as

[] L) [] []
fou fos fos fon
o — 0 — 0 — 0 — 0 — 0 — - o — 0 — 0
s (e s g ™ g ™ ag
begin end

and denoted by code(ajas - - ay).

We now describe how to transform computation trees into their correspond-
ing implementations. We simply concatenate the subsequent codes of configura-
tions in the computation tree so that the end node of the previous configuration
is merged with the begin node of the successor configuration. Whenever there
is a (universal) branching in the tree, we do not branch in the corresponding
implementation at its beginning but we wait until we reach the occurrence of
the symbol V. The branching happens exactly before the symbols 1 or 2 that
follow after V. This occurs in the same place on the tape in both of the con-
figurations due to the assumption that the first and the second successor move
simultaneously either to the left or to the right, and write the same symbol
(see Remark 3.2). A formal definition of the encoding of computation trees into
implementations follows.

Definition 3.6 (Encoding computation trees into implementations). Let 7 be
a (finite) computation tree. We define its tree implementation code(7) induc-
tively as follows:

e if 7 is a leaf labelled with a configuration ¢ then code(7) = code(c);

e if the root of 7 is labelled by an existential configuration ¢ with a tree
7' being its child, then code(7T) is rooted in the begin node of code(c),
followed by code(7”) where the end node of code(c) and the begin node
of code(7") are identified;

e if the root of 7 is labelled by a universal configuration ¢ with two children
dy...V1...d} and d;...V2...d? that are roots of the subtrees 7; and 7Tz,
respectively, then code(7) is rooted in the begin node of code(c), followed
by two subtrees code(77) and code(73) where the nodes in code(d; . .. V) of
the initial part of code(77) are identified with the corresponding nodes in
the initial part of code(73) (note that by Remark 3.2 this prefix is common
in both subtrees), and finally the end node of code(c) is identified with
now the common begin node of both subtrees.

oV

ﬁ& cp=-1

oy

”i dy=+

oV

I

oy
D
oV oV
oy oy

Figure 2: Computation Tree Encoding

Fig. 2 illustrates this definition on a part of a computation tree, where the
first configuration c¢j ...c, is universal and has two successor configurations
di...V1...d} and dy...V2...d2%.

3.3. The Reduction—Part 1

We now proceed with the reduction. As mentioned earlier, our aim is to
construct for a given ALBA M and a string w two modal transition systems L
and R such that L £;; R iff M accepts w. Implementations of L will include
all (also incorrect) possible computation trees. We only require that they start
with the encoding of the initial configuration and do not “cheat” in the uni-
versal branching (i.e. after the encoding of every symbol V there must follow a
branching such that at least one of the branches encodes the symbol 1 and at
least another one encodes the symbol 2).

As L should capture implementations corresponding to computations start-
ing in the initial configuration, we set L to be the begin of code(F3xgow-) and
denote its end by M. After the initial configuration has been forced, we allow all

for all @ € 2~ {V}
M__ I M a Xa

— Vg
o _ o —————————> o
~—

g

Figure 3: Fragment of the process L

code of the initial configuration

° . for all a € E\ {V}
L T o T o M _ x \>Ma a
o—> 0 —> ° OW.—)O
/ W\\\g
2 7/ My v
o< o o> o ——=e
/

A A

M/
Figure 4: Full specification of the process L

possible continuations of the computation. This can be simply done by setting

M -5 M,
M, M
M, — X,

for all letters a € 2 ~\ {V} where the state X, has no outgoing transitions as
depicted in Fig. 3.

Finally, we add a fragment of MTS into the constructed process L which will
guarantee the universal branching as mentioned above whenever the symbol
V occurs on a side-branch. The complete modal transition system L is now
depicted in Fig. 4.

We now observe some simple facts regarding tree implementations of the
process L.

Proposition 3.7. FEvery tree implementation I of the process L satisfies that

1. every branch in I is labelled by an alternating sequence of m and o actions,
beginning with the action w, and if the branch is finite then it ends either
with the action o or with an action a € =\ {V}, and

10

2. every state in I with an incoming transition under the action m has at
least one outgoing transition under the action o and at least one outgoing
transition under an action a € =, and

3. whenever from any state in I there are two outgoing transitions under
some a € E and b € E then a = b, and moreover no further actions are
possible after taking any transition under a € 2, and

4. every branch in I longer than 2(n + 5) begins with the encoding of the
ingtial configuration F3xqow— where n = |w|, and

5. every state in I with an incoming transition under o from a state where
the action YV is enabled satisfies that every outgoing transition under m
leads to a state where either the action 1 or 2 is enabled (but not both
at the same time), and moreover it has at least one such transition that
enables the action 1 and at least one that enables the action 2.

Of course, not every tree implementation of the process L represents a correct
computation tree of the given ALBA. Implementations of L can widely (even
uncountably) branch at any point and sequences of configurations they encode
on some (or all) of their branches may not be correct computations of the given
ALBA. Nevertheless, the encoding of any computation tree of the given ALBA
is an implementation of the processes L, as stated by the following lemma.

Lemma 3.8. Let 7T be a computation tree of an ALBA M on an input w. Then
code(7) <,,, L.

Proof. We shall describe Defender’s winning strategy in the modal refinement
game starting from the begin node of code(7) and the process L. The tree
code(7) clearly begins with the encoding of the initial configuration and an
identical part is contained also in the beginning of the process L. Hence the game
surely continues from the begin node of the code of the next configuration(s) in
7 and the process M (otherwise Attacker loses immediately, should he choose
any of the side branches). Now Attacker must attack under the action 7 in
the left-hand side tree (no must transitions are enabled on the right-hand side
from M) and Defender is matching this move from M in two different ways.
Should the Attacker’s next state contain a branch with a label a such that
a € E N\ {V} then Defender plays 7 and enters the process M, on the right-
hand side. In order for Attacker to still have a chance to win, he must play
the action ¢ in either of the processes and the players return to the situation
where the right-hand side process is again in M. On the other hand if Attacker’s
next state after playing m in the left-hand side process contains a branch with
the label V, then Defender enters under 7 the state My. As before, the only
reasonable continuation for Attacker is to play ¢ in one of the processes and the
players reach a pair of states where the left-hand side process branches under
into two different paths (due to Definition 3.6 of code(7)) and the right-hand
side process is in the state M’. Attacker can now choose one of the branches
in either of the processes but Defender can safely match such an attack and
the players after two rounds return to the situation where the right-hand side
is again in the state M. To sum up, Defender has a winning strategy and thus
code(7) <, L. O

11

3.4. The Reduction—Part 2

We now proceed with the construction of the right-hand side process R. Its
implementations should be the codes of all incorrect or rejecting computation
trees. To cover the notion of incorrect computation, we define the so-called bad
path (see page 6 for the definition of the relation Comp).

Definition 3.9. A sequence

C1C2C3C4C5 A1A2 . ..0pn—0n—5 d1d2d3d4d5

n—>5 elements from =
is called a bad path if (ci,co,c3,c4,C5,d1,do,d3,dy, ds) € 20 . Comp.

To cover the incorrect or rejecting computations, we loop in the process R
under all actions, including the auxiliary ones, except for ¢,... For convenience
we denote =/ = Z U {m,0}. For any bad path, the process R can at any time
nondeterministically guess the beginning of its first quintuple, realize it, then
perform n —5 times a sequence of 7 and o, and finally realize the second quintu-
ple. Moreover, we have to allow all possible detours of newly created branches
to end in the state U where all available actions from =’ are always enabled
and hence the continuation of any implementation modally refines U. Formally,
for any (c1, co,c3, 4,5, d1,da,ds3,ds,ds) € 210 . Comp we add (disjointly) the
following fragment into the process R (see also Fig. 5).

R-5w
Vi = W; = Vi forl<j<n+5
v, L X for 1 <j<5
Vi 2 X4 for 1<j<5
V}—f-)U,Wj—gU,Vn%—g—c-)U forl<j<n+5andz €&
U-5U for all z € &/
R-5R for all x € ' N\ {qacc}
We also add ten new states Ni,...,Ng, Nx and the following transitions:
R -Ts Ny —E—/é Ny —E—/é N3 —E—/-> Ny —E—l-> —E—; Ng and N; dacq Nx where any

transition labelled by Z’ is the abbreviation for a number of transitions under
all actions from Z'.

Remark 3.10. We do not draw these newly added states Ni,..., Ng, Nx into
Fig. 5 in order not to obstruct its readability because the reason why these
states are added is purely technical. It is possible that there is an incorrect
computation that ends with the last symbol g,.. but it cannot be detected by any
bad path as defined in Definition 3.9 because that requires (in some situations)
that there should be present at least four other subsequent symbols. By adding
these new states into the process R, we guarantee that such situations where
a branch in a computation tree ends in gu.. without at least four additional
symbols will be easily matched in R by entering the state Nj.

12

E/\{Qacc} C1 Cc2 ds
N
\ T ™ o ™ o ™
>0— — — — — — 0 —> °
R Vivo Win o Vs V; “Vn+5
\ /
~ AN -
~ N \ / s
N =2NE N\ = / -
& NE = -
~ N N\ /E' -
~ N\ // =
AN
~ \\ / -
~ \\ 4 P 7
SQUL
[}
™

Figure 5: A fragment of the system R for a bad path cicacscacs ... d1dadsdads

Lemma 3.11. Let I be a tree implementation of L such that every occurrence
of Qacc tn I is either preceded by a code of a bad path or does not continue with

the encoding of at least four other symbols. Then I <,, R.

Proof. We synthesize a winning strategy for Defender starting from the root of

I and the process R in order to prove I <, R.

Note that as long as the right-hand side process is in the state R then
Attacker can attack only from the left-hand side processes. Defender’s strategy

is as follows:

1.

The

If Attacker attacks under a m transition leading to a subtree from which
at least one branch begins with the encoding of a bad path, Defender
answers by a 7 transition from R leading to a state V; representing the
fragment in the right-hand side process corresponding to this bad path.
After that, Attacker is forced to switch sides and play under the must-
transitions the whole sequence of o and 7 actions until reaching V,,45;
Defender will match this sequence by following the branch corresponding
to this bad path in the left-hand side process and finally win. Should
Attacker during this phase at any time decide to play again from the left-
hand side, Defender will “escape” immediately to the state U from which
Defender has a clear winning strategy.

On any other Attacker’s move, Defender simply loops in R and Attacker
cannot have played the action g,.. yet (the only action disabled in R)
due to the assumption of the lemma. Should Attacker play a 7 transition
enabling ¢4.. such that there is no continuation with at least 9 other
transitions (i.e. 4 additional encoded symbols), Defender will enter the
state N (see Remark 3.10) and win.

above defined strategy is winning for Defender and so I <,, R. O

13

=/
_‘\{Qjcr\} c1 ds
R
\>.—— _— >0 —> 0 —> _— 0 ——> —_— e
2NN ™ N o ™ ™ o ™
g N V1 \Wl\ | Vn45
s N ~ AN v
VAR ST AN ~ ~ I P
- vy N N4 4 - d
;) >0 < 0 ~ = -
~ DN sz
/ 1 U2 \ ~ N | s
(. ol \\\ y v
/ \ N Ve
s v v ™ \AU}
o< — 0 ®o— >0 [)
| \ | | >
11 | | |2 \
A \i \ \ =
[] [] [] []
2 VAN o o /7 N\ 1
/ AN / N\
¥ \['¥ \
o [J []
™

Figure 6: Full specification of the process R

Remark 3.12. Lemma 3.11 demonstrates the point where we need our special
encoding of configurations using the alternation of m and o actions together
with side-branches to represent the symbols in the configurations. If the con-
figurations were encoded directly as sequences of symbols on a linear path, the
construction would not work. Indeed, the must path of alternating o and w
actions in the process R is necessary to ensure that the bad path entered in
the left-hand side implementation I is indeed realizable. This path cannot be
replaced by a linear path of must transitions containing directly the symbols
of the configurations because the sequence of n — 5 symbols in the middle of
the bad sequence would require exponentially large MTS to capture all such
possible sequences explicitly and the reduction would not be polynomial.

Let us now finish the definition of the process R. Note that in ALBA even
rejecting computation trees can still contain several correct computation paths
ending in accepting configurations. We can only assume that during any univer-
sal branching in a rejecting tree, at least one of the two possible successors forms
a rejecting branch. The process R must thus have the possibility to discard the
possibly correct computation branch in universal branching and it suffices to
make sure that the computation will continue with only one of the branches.

So in order to finish the construction of R we add an additional fragment to
R as depicted in Fig. 6 (it is the part below R that starts with branching to Uy
and Us).

The construction of the process R is now finished (recall that the part of
the construction going from R to the right is repeated for any bad path of the

14

machine M). Because the newly added part of the construction does not use
any must transitions, it does not restrict the set of implementations and hence
Lemma 3.11 still holds. The following two lemmas show that the added part of
the construction correctly handles the universal branching.

Lemma 3.13. Let I be a tree implementation of L which is not, even after
removing any of its branches, a code of any accepting computation tree of M
on the input w. Then I <,, R.

Proof. For any tree implementation I <,,, L, which cannot be pruned to a code
of any accepting computation tree, we extend the strategy for Defender from
Lemma 3.11. The first rule remains unchanged.

Otherwise, if Attacker chose a 7 transition leading to a state in the left-
hand side process with the action V enabled, we know (from the definition of
the process L, see Proposition 3.7 part 2 and 5) that a o action must follow and
then there are at least two branches under 7, one of them enabling the action
1 and the other one the action 2; because I is not an encoding of an accept-
ing computation tree (not even after being pruned out) either (i) all subtrees
beginning with the action 1 are either rejecting or incorrect or (ii) all subtrees
beginning with the action 2 are either rejecting or incorrect. In case (i) Defender
responds by entering Uy, in case (ii) by entering Us. After Attacker plays the
above mentioned action o followed by one of the 7 actions, Defender responds
by the o action leaving (i) U; or (ii) Us and then by one of the two 7 actions so
that the Attacker’s move on the left-hand side is correctly matched. In case (i)
if Attacker plays the 7 move with a following branch under 2, or in case (ii) if
Attacker plays the m move with the following branch under 1, Defender will aim
at entering the process U’ and after the following o move wins as any implemen-
tation is a refinement of U’. Hence Attacker is forced to choose, in case (i), some
first branch and, in case (ii), some second branch and after the necessary action
o the game continues from a configuration where the right-hand side process is
again in R.

Finally, if none of the previous cases applies, Defender simply mimics any
Attacker’s move by looping in R. Note that in this case Attacker cannot have
played the action g,.. because we assume that the implementation I, even after
removing any of its branches, does not encode any accepting computation tree.

As the above defined strategy is winning for Defender, we conclude that
1<, R. O

Lemma 3.14. Let T be an accepting computation tree of an ALBA M on the
input w. Then code(T) £, R.

Proof. Note that in 7 every branch ends with a configuration containing the
accepting state gqec. It is so clear that Attacker can easily win by playing
repeatedly the transition 7 followed by the transition o in the tree code(7).
Defender is forced to stay in the state R because any branch in the tree is
correct and hence Defender cannot “escape” by playing the m move to the state
V1 for any bad path (should Defender play like this, Attacker would switch the

15

sides and play the must sequence of 7 and o transitions until Defender is proven
to be cheating and Attacker wins).

The only situation when Defender can play a m move going to the state
Uy or Uy is when Attacker (in the left-hand side process) is inside a code of
a configuration following a universal configuration and after he played 7 the
next label is V. In case that Defender entered Uy, Attacker simply continues on
the left-hand side by taking the first successor configuration, and in case that
Defender entered Us, Attacker chooses the second successor configuration. After
the sequence of one 7 and one o move in the left-hand side process, Defender is
forced to return to the state R (otherwise Attacker wins by playing the action
1 resp. 2 in the left-hand side process). Eventually, after reaching an accepting
leaf configuration in 7", Attacker will play the action gu.. in the left-hand side
process to which Defender has no answer from the process R. As we have
described Attacker’s winning strategy, we conclude that code(7) £, R. O

3.5. Summary

We can now combine the facts about the constructed systems L and R in
the following theorem.

Theorem 3.15. An ALBA M accepts an input w iff L £; R.

Proof. If M accepts the input w then clearly it has an accepting computation
tree 7. By Lemma 3.8 code(7) <,,, L and by Lemma 3.14 code(7) £,, R. This
implies that L £; R.

On the other hand, if M does not accept w then none of the tree implemen-
tations of L represents a code of an accepting computation tree of M on w. By
Lemma 3.13 this means that any tree I such that I <,, L satisfies that I <,, R
and hence L <;; R which is by Lemma 3.5 equivalent to L <; R. O

Corollary 3.16. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard.

3.6. Deterministic and Fixed Process L

We can strengthen the above hardness result by adapting the described re-
duction to the situation where the left-hand side system is deterministic (mean-
ing that for every state and every action there is at most one outgoing may-
transition) and of a fixed size.

Theorem 3.17. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard even if the left-hand side system is deter-
ministic and of a fized size.

Proof. The MTS L of the previous construction is nondeterministic, as the
process M reachable from L has several outgoing 7 transitions. Its size also
depends on the size of the acceptance problem, as it contains the code of the
initial configuration of the ALBA.

16

code of the initial configuration

. . forall a € 2
& §

L/ s o s [ea M/ — E _>Nl a

° ° e [] [] ~— - e— >0

Figure 7: Modified process L’

We now show a different construction with a deterministic fixed-size left-
hand side process. This construction will be a modification of the original one.
To make the explanation easier to follow, we split the modification into two
steps. In the first step, we modify L and R into modal transition systems L’
and R’ such that L’ is deterministic and L' £; R’ if and only if M accepts w.
In the second step, we modify L’ and R’ into L and R” such that L” is both
deterministic and of a fixed size and still L £; R” if and only if M accepts w.

We introduce L’ in Fig. 7. The modification is as follows. The process M
is changed into M’ which has only one outgoing may transition to N’ labelled
with . The process N’ then has outgoing may transitions for each symbol of =
(including V), leading to a process with no transitions. It is easy to see that L <,,
L’ and thus every implementation of the original L is also an implementation
of I’. Therefore, if there exists an implementation of L that is an encoding
of a correct accepting tree, L’ also possesses such implementation. However,
L' has more implementations representing incorrect computation trees than L.
They are of the following types (we only consider tree implementations here):

(a) tree implementations that possess at least one branch with a sequence of

the form J - J' -2 J” without any transitions labelled with symbols

from = outgoing from J’,

(b) tree implementations possessing at least one branch with a sequence of

the form J — J’ %5 J” with at least two transitions outgoing from J’

labelled with different symbols of =, i.e. J —— and J' - where z # y,
z,y €&,

(c) tree implementations in which a process K is reachable such that K <,

. o T 1 o T 2
and neither K — ——— nor —— -, and

(d) tree implementations in which a process K is reachable such that K BN

and either K LA or K o, T2, but not both.

We first discuss the implementations of the forms (b), (c) and (d) and claim
that they are already implementations of R of the original construction.

17

foralla € =

1 1
oo M.

e — >0

Figure 8: Process L”

(b) If the implementation contains a branch with a sequence J —— J' —
J"" such that J’ has two different outgoing = transitions then surely one
of these transitions is a part of a code of a bad path. Therefore, such
implementation is clearly matched by R.

(¢) Similarly, a sequence containing V followed by something else than 1 or 2
is a part of a bad path.

(d) Suppose the implementation has a reachable process K such that K =,

and only one of K 2, or K -2 752, holds. Then clearly K
is an implementation of R as it can be matched by one of the two paths
from R to U’. Therefore also the implementation that has a path to K
has to be an implementation of R.

However, the implementations of the form (a) may not be implementations
of R. We thus modify R into R’ by adding an extra outgoing transition that
matches such implementations. The process R’ is therefore equivalent to R with

the following addition: R’ -Z» §’, §' -Z5 T/, T" =5 T', where S’ and T' are
new processes. Clearly this modification does not allow R’ to possess as an
implementation an encoding of a correct computation tree, and thus L' £; R’
if and only if M accepts w.

We now proceed with the second step. Clearly, there are two places in
the system for L’ (and also L) that are dependent on the size of the original
ALBA M and the word w to be accepted.

First, it is the encoding of the initial configuration (the path from L to M)
and second, it is the number of outgoing transitions from N’ which is dependent
on the number of ALBA’s states.

The interesting part is that of the encoding of the initial configuration. We
change the left-hand side process L’ into L” by eliminating the path represent-
ing the initial configuration. (Thus, L” is equivalent to M’ of the previous
construction.) This new process is depicted in Fig. 8. Clearly, L” has more
implementations than the process L', namely those that have a branch which
starts with something different than the encoding of the initial configuration.
Thus, we need to extend the right-hand side process so that it also admits this
kind of implementations.

The new process R is built as follows. There are paths encoding the incor-
rect initial configurations, one for each position of the configuration, i.e. there

18

is a path representing that an error (incorrect symbol in the initial configura-
tion) happens at the first symbol of the configuration, a path representing an
error at the second symbol, etc. Similarly to the previous construction we also
include may transitions for escaping to universal process, to allow for arbitrary
branching in the implementations. To this we furthermore add all transitions
the process R’ has, including transitions to R’ itself. Note that this implies
that R’ <,, R”. Formally, the process R" is defined as follows (see Figure 9 for
illustration):

R”—7—T+Skl for1<k<n+5

R"-5y X whenever R’ -%» X

Ske —— Tre for1<l{<k<n+5

Ske e, X ig is the fth symbol of the initial configuration
Sie —25 U for all x € &

Sk -=» U”

Skk ff_) Xk forallz € 2 \ {Zk}
TkéLSk(H—l) for1<l<k<n+5
U - ur for all z € =’

We now need to show two things. First, that any implementation of L” that
is not an encoding of a correct accepting computation tree even after pruning is
an implementation of R”, and second, that the encoding of a correct accepting
computation tree is not an implementation of R”.

Regarding the first claim let us fix an implementation I of L” that is not
a correct accepting computation tree. Consider transitions from I placed on
branches that do not start with an encoding of the initial configuration. These
are matched by the newly created transitions from R” to the paths encoding
the branches that begin with an error. Let us further consider all transitions
from I that are placed only on branches beginning with correct encodings of
the initial configuration. The corresponding subtrees are then implementations
of R’. But we know that R’ <,, R”, so the whole I is also an implementation
of R".

The second claim then easily follows from the fact that the encoding of
a correct accepting computation tree is neither an implementation of R’, nor
can be matched by any of the bad paths added to R”, as it clearly has to start
with a correct initial configuration. Thus we have that the given ALBA accepts
the input w if and only if L £, R".

What remains is to cope with the number of states of the original ALBA so
that = is of constant size. That can be dealt with in a straightforward manner
by encoding the states with binary strings of two symbols, say ¢y and g;. This
changes the compatible 10-tuples into compatible (2 - [log,|Q|] + 8)-tuples, but
this change does not affect the construction heavily. O

19

A
E\{F}I
| - -
° -
A S11 ~ o
/ ~
s ~
s ° ° N
// A h
.y : =\(3}
v s 121 . | Soo U y ~
- — — — — >0 —>0 —> 0 — — — — — > 0 | =
N 7 —
/1 N S21 = S B’ —~ ///ﬁk\
/ o\ AN =~ o~ - - s/
N7 - - - -z
I N - s, o
N N ¥ _ - -7 - =
N = ~ - /
! A “o “n ‘o d 4
| \ S31 @ ° ° ° ® 533
) N Ts1 Sz T3 I
E"\{qacc} | ’T F 3 I E\{x}
\ \
! N ° ° °
|
\ \
\ \
\ \
\ \
N - N
e — - >e
/
R Vi

Figure 9: Process R that accepts all branches not starting with the initial configuration

F3x% ... or entering R’

20

4. Thorough Refinement Is in EXPTIME

In this section we provide a direct algorithm for deciding thorough refinement
between MTSs in exponential time. Given two processes A and B over some
finite-state M'TSs, the algorithm will decide if there exists an implementation I
that implements A but not B, i.e. [<,, A and I £,, B.

For a modal transition systems B, we introduce the syntactical notation B to
denote the semantical complement of B, i.e. I <,, Biff I £,, B. Our algorithm
now essentially checks for consistency (existence of a common implementation)
between A and B with the outcome that they are consistent if and only if
A £, B. Note that we never use the system B in any of the constructions, it is
introduced purely for notational reasons so that I <,, B is an abreviation for
1 <, B.

In general, we shall check for consistency of sets of the form {A, By, ..., By}
in the sense of existence of an implementation I such that I <,, A but I £,,
B; for all i € {1,...,k}. Before the full definition is given, let us get some
intuition by considering the case of consistency of a simple pair A, B. During the
arguments, we shall use CCS-like constructs (summation and action-prefixing)
for defining implementations.

Clearly, if for some B’ with B —— B’ and for all A; with A - A; we
can find an implementation I; implementing A; but not B’ (i.e. we demonstrate
consistency between all the pairs A;, B’), we can claim consistency between A
and B: as a common implementation I simply take H + >, a.d;, where H is
some arbitrary implementation of A with all a-derivatives removed. Clearly,
I <,, Abut I £, B. In this case of a must transition in B that is unrealized
in A, we will store this information by setting B’ € unrealized,.

We may also conclude consistency of A and B, if for some A’ with A A ,
we can find an implementation I’ of A’, which is not an implementation of any
B’ where B -%5 B’. Here a common implementation would simply be H + a.I’
where H is an arbitrary implementation of A. However, in this case we will
need to determine the consistency of the set {A’} U{B’ | B -%» B’} which is
in general not a simple pair. In this case of a may transition in A that is not
allowed in B, we will store this information by setting B € disallowed,,.

Thus consistency can be shown by either of the two ways and for any letter
of the alphabet. We formalize this in the following definition.

Definition 4.1. Let M = (P, --+,—) be an MTS over the action alphabet ¥.
The set of consistent sets of the form {A, By, ..., By}, where A, By,..., By, € P,
is the smallest set Con such that {4, By, ..., B} € Con whenever k = 0 or there
are sets of processes unrealized, and disallowed, for every a € X, such that for
every B € {By,..., B} either B € disallowed, for some a € ¥, or B - B’ for
some a € ¥ and B’ € unrealized,, so that for every a € ¥

1. for all A %+ A’ we have {A’} U {B’| B’ € unrealized,} € Con, and
2. for all B € disallowed, there is A 2> A’ with {A'}U{B’ | B -%» B'}U{B' |
B’ € unrealized, } € Con.

21

Lemma 4.2. Given processes A, B1,..., By of some finite MTS, there exists
an implementation I such that I <,, A and I £, B; for alli € {1,... Kk} if
and only if {A, B1,..., By} € Con.

Proof. We prove both directions by induction.

If’ part (soundness of the construction). Because Con is defined as the small-
est set, let by Cong, Cony, Cong, ... denote the nondecreasing sequence of sets
according to in which round the elements (consistent sets) where added to Con.
So Cong contains exactly all the consistent sets of the form {A}, Cony contains
all the consistent sets that were added to Cong in one iteration of the definition,
etc.

We prove by induction on n that whenever {A, By,..., B} € Con, then
there exists an implementation I such that I <,, A and I £,, B; for all i €
{1,...,k}.

The base case n = 0 is trivial. For the induction step assume that {4, By, ...,
Ek} € Con,y1. Then for every a € 3 there exist sets disallowed, and unrealized,
satisfying the conditions of Definition 4.1.

From the first clause, it follows from the induction hypothesis that for ev-
ery A % A’ there exists T4 such that Iy <,, A" and I £,, B’ for all
B’ € unrealized,. Similarly, from the second clause, it follows from the induc-
tion hypothesis that for every B € disallowed, there exists A -2 Ap and an
implementation 14, such that I4, <,, Ap and I4, %, B’ for all B’ with
B -% B’ or B’ € unrealized,. Now we define an implementation I witnessing
the correctness of {A, By, ..., By} € Con:

[EZ(Z ada + Z GJAB)

a€EX A1 A%, A Becdisallowed,

We shall prove that I <,, A and I £, B; for all i € {1,...,k}. Let us
first establish I <,, A. Assume that A —— A’, then I —— I4 will provide the
match. For the other direction assume that I -%» I x, then A X provides the
match. To see that I £,, B;, we distinguish two cases. Either B; € disallowed,
for some a € ¥ and then I -2 Iy 5, cannot be matched by any may-transition

B; -%» B’; or there is B; — B’ € unrealized, for some a € ¥ that can be
matched by neither I —% I, nor I - IABi'

‘Only-if’ part (completeness of the construction). Let us define I <7 S if either
n =0 or (i) whenever I -%» I’ then S -%» §' with I’ <"~ §’ and (ii) whenever
S -2, 8 then I -% I’ with I’ <n=1 8’ Hence the relation <? is a natural
generalization of the classical bisimulation approximations to modal refinement,
and clearly (on finite MTS) we have that I <,, S iff I <} S for all n.

We prove by induction on n that whenever there exists an implementation
I such that I <,, A and I £7, B; for all i € {1,...,k} then {A,By,...,By} €
Con.

The base case n = 0 is trivial as in this case k = 0 and hence {4, By, ...,
By} = {A} € Con. For the induction step assume that I <,, A and I £"+! B;

22

for some I. We define the following sets of processes for every a € X:

disallowed, = {B € {By,..., B} | 31 -2 I'. VB -%> B'. I' " B'}
unrealized, = {B’ | 3B € {By,...,By}. 3B - B'. VI - I'. I' £% B’}

Note that due to the definition of the modal refinement, these sets satisfy the
conditions of Definition 4.1 once we establish its two clauses.

As for the first clause, for every A — A’ there is I — I’ where I’ <,, A’
and by definition of unrealized, also I’ £,, B’ for B’ € unrealized,. Thus by
induction hypothesis {A’} U{B’ | B’ € unrealized,} € Con. As for the second

clause, for every B € disallowed, we have [N (hence I' <, A’ for some
A-% A’) with I’ €7 B’ for all B -%5 B’ by definition of disallowed,. Since also
I' L7 B’ € unrealized,, using the definition of unrealized,, induction hypothesis
guarantees {4’} U{B’ | B -%» B’} U{B’ | B’ € unrealized,} € Con.

It follows that the sets disallowed, and unrealized, provide the evidence re-
quired by the definition to conclude that {A, By, ..., By} € Con. O

Computing the collection of consistent sets {4, By, ..., By} over an MTS
(P, --+,—) may be done as a simple (least) fixed-point computation. The run-
ning time is polynomial in the number of potential sets of the form {4, By, ...,
By} where A, By, ..., By € P, hence it is exponential in the number of states
of the underlying MTS. This gives an exponential time algorithm to check for
thorough refinement.

Theorem 4.3. The problem of checking thorough refinement on finite modal
transition systems belongs to EXPTIME.

Ezxample 4.4. Consider S and T from Fig. 1. We have already mentioned in Sec-
tion 2 that S <; T. To see this, we will attempt (and fail) to demonstrate con-
sistency of {S, T} according to Definition 4.1, which essentially asks for a finite
tableau to be constructed. Now, in order for {S, T} to be concluded consistent,
we have to establish consistency of {57, T, Tg}— as T has no must-transitions
the only choice is unrealized, =) and thus disallowed, = {T'}. Now, to estab-
lish consistency of {S1,T1,T2} both unrealized, = () and unrealized, = {T'} are
possibilities. In the former case disallowed, = {T7,7>} and in the latter case
T, € disallowed,. However, in both cases the requirement will be that {S,T}
must be consistent. Given this cyclic dependency together with the minimal
fixed-point definition of Con it follows that {S,T} is not consistent, and hence
that S <, T O

Ezxample 4.5. Consider S and U from Fig. 1. Here S &; U clearly with I = a.0 as
a witness implementation. Let us demonstrate consistency of {S,U}. Choosing
unrealized, = () and disallowed, = {U}, this will follow from the consistency of
{S1,U;}. To conclude this, note that unrealized, = {U;} and disallowed, = ()
will leave us with the empty collection of sets—as S; has no must-transitions—
all of which are obviously consistent. O

23

Note that in the case of B being deterministic, we only need to consider pairs
of the form {A, B} for determining consistency. This results in a polynomial
time algorithm (see also [BKLS09] for an alternative proof of this fact). Sim-
ilarly, if the process B is of a constant size, our algorithm runs in polynomial
time as well.

Corollary 4.6. The problem of checking thorough refinement on finite modal
transition systems with the right-hand side system deterministic or of fized-size
belongs to P.

To conclude, by Theorem 4.3 and Corollary 3.16 we get our main result.

Theorem 4.7. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-complete.

5. Conclusion

We proved that the problem of checking the thorough refinement relation
between two finite-state modal transition systems is EXPTIME-complete. This
result completes related complexity results achieved in [AHL'10] as the thor-
ough refinement relations on both modal and mixed (where the must transition
relation is not necessarily included in the may transition relation) specifications,
the common implementation problems on modal and mixed specifications, as
well as the consistency problem on mixed specifications are now all EXPTIME-
complete. Our EXPTIME-hardness result is proved by reduction from the ac-
ceptance problem for alternating linear bounded automata because the problems
of consistency and common implementation mentioned above did not seem to
provide suitable starting problems for the reduction.

The fact that the thorough refinement relation is computationally hard
means that the relation of modal refinement is more suitable for practical pur-
poses, even though it describes a less desirable notion of syntactic refinement.
On the other hand, much of the recent work in the area focuses to a large extent
on deterministic specifications (see e.g. [HS06, HS07]) and here the two notions
of refinement coincide. A detailed study of computational complexity of the
problems on deterministic modal transition systems is provided in [BKLS09].

Acknowledgments. We thank the anonymous reviewers for their comments and
suggestions.

References

[AHL'08a] A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wasowski.
20 years of modal and mixed specifications. Bulletin of the EATCS
95, pages 94-129, 2008.

24

[AHL*+08b)

[AHL*10]

[BGS92]

[BKLS09]

[BMSH10]

[BPRO9)]

[DFCU08]

[DFFU07]

[FS08]

[GHJO1]

[HIS01]

[HSO06]

A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wasowski.
Complexity of decision problems for mixed and modal specifica-
tions. In Proc. of FOSSACS’08, volume 4962 of LNCS, pages 112—
126. Springer, 2008.

A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wa-
sowski. Modal and mixed specifications: key decision problems and
their complexities. Mathematical Structures in Computer Science,
20(1):75-103, 2010.

J. L. Balcazar, J. Gabarrd, and M. Santha. Deciding bisimilarity is
P-complete. Formal aspects of computing, 4(6 A):638-648, 1992.

N. Benes, J. Kfetinsky, K.G. Larsen, and J. Srba. On determin-
ism in modal transition systems. Theoretical Computer Science,
410(41):4026-4043, 2009.

S.S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On weak
modal compatibility, refinement, and the mio workbench. In Proc.
of TACAS’10, volume 6015 of LNCS, pages 175-189. Springer,
2010.

N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinement and consis-
tency of timed modal specifications. In Proc. of LATA’09, volume
5457 of LNCS, pages 152-163. Springer, 2009.

N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel. MTSA:
The modal transition system analyser. In Proc. of ASE’08, pages
475-476. IEEE, 2008.

N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA:
Eclipse support for modal transition systems construction, analysis
and elaboration. In Proc. of (ETX’07), pages 6-10. ACM, 2007.

H. Fecher and H. Schmidt. Comparing disjunctive modal transi-
tion systems with an one-selecting variant. J. of Logic and Alg.
Program., 77(1-2):20-39, 2008.

P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based
model checking using modal transition systems. In Proc. CON-
CUR’01, volume 2154 of LNCS, pages 426-440. Springer, 2001.

M. Huth, R. Jagadeesan, and D.A. Schmidt. Modal transition sys-
tems: A foundation for three-valued program analysis. In Proc. of
ESOP’01, volume 2028 of LNCS, pages 155-169. Springer, 2001.

T.A. Henzinger and J. Sifakis. The embedded systems design chal-
lenge. In Proceedings of the 14th International Symposium on For-
mal Methods (FM’06), volume 4085 of LNCS, pages 1-15. Springer-
Verlag, 2006.

25

[HS07]

[KS90]

[LNWO7]

[LT8S]

[NNNOS]

[PT87)

[Rac07]

[RBB*09]

[SG10]

[Sip06]

[SJ05]

[UC04]

[WGC09]

T. A. Henzinger and J. Sifakis. The discipline of embedded systems
design. IEEE Computer, 40(10):32-40, 2007.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Inform. and Comp.,
86(1):43-68, 1990.

K.G. Larsen, U. Nyman, and A. Wasowski. On modal refinement
and consistency. In Proc. of CONCUR’07, volume 4703 of LNCS,
pages 105-119. Springer, 2007.

K.G. Larsen and B. Thomsen. A modal process logic. In Proc. of
LICS’88, pages 203-210. IEEE, 1988.

S. Nanz, F. Nielson, and H.R. Nielson. Modal abstractions of con-
current behaviour. In Proc. of SAS’08, volume 5079 of LNCS, pages
159-173. Springer, 2008.

R. Paige and R. Tarjan. Three partition refinement algorithms.
SIAM J. of Computing, 16(6):973-989, 1987.

J.-B. Raclet. Residual for component specifications. In Proc. of
the 4th International Workshop on Formal Aspects of Component
Software, 2007.

J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and
R. Passerone. Why are modalities good for interface theories? In
Proc. of ACSD’09, pages 119-127. IEEE Computer Society, 2009.

S. Shoham and O. Grumberg. Compositional verification and 3-
valued abstractions join forces. Inf. Comput., 208(2):178-202, 2010.

M. Sipser. Introduction to the Theory of Computation. Course
Technology, 2006.

Z. Sawa and P. Jancar. Behavioural equivalences on finite-state
systems are PTIME-hard. Computing and informatics, 24(5):513—
528, 2005.

S. Uchitel and M. Chechik. Merging partial behavioural models. In
Proc. of FSE’04, pages 43-52. ACM, 2004.

O. Wei, A. Gurfinkel, and M. Chechik. Mixed transition systems
revisited. In Proc. of VMCAI'09, volume 5403 of LNCS, pages
349-365. Springer, 2009.

26

