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Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

Abstract. We study techniques to overcome the state space explosion
problem in CTL model checking of Petri nets. Classical state space prun-
ing approaches like partial order reductions and structural reductions be-
come less efficient with the growing size of the CTL formula. The reason
is that the more places and transitions are used as atomic propositions
in a given formula, the more of the behaviour (interleaving) becomes
relevant for the validity of the formula. We suggest several methods to
reduce the size of CTL formulae, while preserving their validity. By these
methods, we significantly increase the benefits of structural and partial
order reductions, as the combination of our techniques can achive up to
60 percent average reduction in formulae sizes. The algorithms are imple-
mented in the open-source verification tool TAPAAL and we document
the efficiency of our approach on a large benchmark of Petri net models
and queries from the Model Checking Contest 2017.

1 Introduction

Model checking [6] of distributed systems, described in high-level formalisms
like Petri nets, is often a time and resource consuming task—attributed mainly
to the state space explosion problem. Several techniques like partial order and
symmetry reductions [16,20,21,23,24] and structural reductions [14,18,17] were
suggested for reducing the size of the state space of a given Petri net in need
of exploration to verify different logical specifications. These techniques try to
prune the searchable state space and their efficiency is to a high degree influenced
by the type and size of the logical formula in question. The larger the formula is
and the more atomic propositions (querying the number of tokens in places or
the fireability of certain transitions) it has, the less can be pruned away when
exploring the state space and hence the effect of these techniques is reduced. It is
therefore desirable to design techniques that can reduce the size of a given logical
formula, while preserving the model checking answer. For practical applicability,
it is important that such formula reduction techniques are computationally less
demanding than the actual state space search.

In this paper, we focus on the well-known logic CTL [5] and describe three
methods for CTL formula simplification, each preserving the logical equivalence



w.r.t. a the given Petri net model. The first two methods rely on standard log-
ical equivalences of formulae, while the third one uses state equations of Petri
nets and linear programming to recursively traverse the structure of a given
CTL formula. During this process, we identify subformulae that are either triv-
ially satisfied or impossible to satisfy, and we replace them with easier to verify
alternatives. We provide an algorithm for performing such a formula simplifi-
cation, including the traversal though temporal CTL operators, and prove the
correctness of our approach.

The formula simplification methods are implemented and fully integrated
into an open-source model checker TAPAAL [10] and its untimed verification
engine verifypn [14]. We document the performance of our tool on the large
benchmark of Petri net models and CTL queries from the Model Checking Con-
test 2017 (MCC’17) [15]. The data show that for CTL cardinality queries, we
are able to achieve on average 60% of reduction of the query size and about
34% of queries are simplified into trivial queries true or false, hence avoiding
completely the state space exploration. For CTL fireability queries, we achieved
50% reduction of the query size and about 10% of queries are simplified into
true or false. Finally, we compare our simplification algorithm with the one im-
plemented in the tool LoLA [26], the winner of MCC’17 in the several categories
including the CTL category, documenting a noticeable performance margin in
favour of our approach, both in the number of solved queries purely by the CTL
simplification as well as when CTL verification follows the simplification process.
For completeness, we also present the data for pure reachability queries where
the tool Sara [25] (run parallel with LoLA during MCC’17) performs counterex-
ample guided abstraction refinement and contributes to a high number (about
twice as high as our tool) of solved reachability queries without the need to run
LoLA’s state space exploration. Nevertheless, if we also include the actual veri-
fication after the formula simplification, TAPAAL now moves 0.4% ahead of the
combined performance of LoLA and Sara.

Related work. Traditionally, the conditions generated by the state equation tech-
nique [17] express linear constraints on the number of times the events can occur
relative to other events of the system, and form a necessary condition for marking
reachability. State equations were used in [14] as an over-approximation tech-
nique for preprocessing of reachability formulae in earlier editions of the model
checking contest. As the technique can be often inconclusive, extensions of state
equations were studied e.g. in [11] where the authors use traps to increase pre-
cision of the method, or in [8] where the state equation technique is extended
to liveness properties. State equations, as a necessary condition for reachability,
were also used in other application domains like concurrent programming [1,2].
Our work further extends state equations to full CTL logic and improves the
precision of the method by a recursive evaluation of integer linear programs for
all subformulae, while employing state equations for each subformula and its
negation. State equations were also exploited in [22] in order to guide the state
space search based on a minimal solution to the equations. This approach is or-
thogonal with ours as it essentially defines a heuristic search strategy that in the



worst case must explore the whole state space. More recently, the state equation
technique was also applied to the coverability problem for Petri nets [4,12].

Formula rewriting techniques (in order to reduce the size of CTL formulae)
are implemented in the tool LoLA [26]. The tool performs formula simplification
by employing subformula rewriting rules that include a subset of the rules de-
scribed in Section 3. LoLA also employs the model checking tool Sara [25] that
uses state equations in combination with Counter Example Abstraction Refine-
ment (CEGAR) to perform an exact reachability analysis, being able to answer
both reachability and non-reachability questions and hence it is close to being a
complete model checker. Sara shows a very convincing performance on reacha-
bility queries, however, in the CTL category, we are able to simplify to true or
false almost twice as many formulae, compared to the combined performance of
Sara and LoLA.

2 Preliminaries

A labelled transition system (LTS) is a tuple TS = (S, A,→) where S is a set
of states, A is a set of actions (or labels), and → ⊆ S × A × S is a transition

relation. We write s
a−→ s′ whenever (s, a, s′) ∈ → and say that a is enabled in

s. The set of all enabled actions in a state s is denoted en(s). A state s is a
deadlock if en(s) = ∅. We write s −→ s′ whenever there is an action a such that

s
a−→ s′.
A run starting at s0 is any finite or infinite sequence s0

a0−→ s1
a1−→ s2

a2−→ · · ·
where s0, s1, s2, . . . ∈ S, a0, a1, a2 · · · ∈ A and (si, ai, si+1) ∈ → for all respective
i. We use Π(s) to denote the set of all runs starting at the state s. A run is
maximal if it is either infinite or ends in a state that is a deadlock. Let Πmax (s)
denote the set of all maximal runs starting at the state s. A position i in a run
π = s0

a0−→ s1
a1−→ s2

a2−→ · · · refers to the state si in the path and is written
as πi. If π is infinite then any i, 0 ≤ i, is a position in π. Otherwise 0 ≤ i ≤ n
where sn is the last state in π.

We now define the syntax and semantics of a computation tree logic (CTL) [7]
as used in the Model Checking Contest [15]. Let AP be a set of atomic propo-
sitions. We evaluate atomic propositions on a given LTS TS = (S, A,→) by the
function v : S −→ 2AP so that v(s) is the set of atomic propositions satisfied in
the state s ∈ S.

The CTL syntax is given as follows (where α ∈ AP ranges over atomic
propositions):

ϕ ::= true | false | α |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | AXϕ | EXϕ | AFϕ |
EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E (ϕ1Uϕ2) .

We use ΦCTL to denote the set of all CTL formulae. The semantics of a CTL
formula ϕ in a state s ∈ S is given in Table 1. We do not use only the minimal
set of CTL operators because the query simplification tries to push the negation
as far as possible to the atomic predicates. This significantly improves the per-
formance of our on-the-fly CTL model checking algorithm and allows for a more
refined query rewriting.



s |= true

s 6|= false

s |= α iff α ∈ v(s)

s |= deadlock iff en(s) = ∅
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= ¬ϕ iff s 6|= ϕ

s |= AXϕ iff s′ |= ϕ for all s′ ∈ S s.t. s −→ s′

s |= EXϕ iff there is s′ ∈ S s.t s −→ s′ and s′ |= ϕ

s |= AFϕ iff for all π ∈ Πmax (s) there is a position i in π s.t. πi |= ϕ

s |= EFϕ iff there is π ∈ Πmax (s) and a position i in π s.t. πi |= ϕ

s |= AGϕ iff for all π ∈ Πmax (s) and for all positions i in π we have πi |= ϕ

s |= EGϕ iff there is π ∈ Πmax (s) s.t. for all positions i in π we have πi |= ϕ

s |= A(ϕ1Uϕ2) iff for all π ∈ Πmax (s) there is a position i in π s.t.

πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

s |= E(ϕ1Uϕ2) iff there is π ∈ Πmax (s) and there is a position i in π s.t.

πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

Table 1: Semantics of CTL formulae

We can now define weighted Petri nets with inhibitor arcs. Let N0 = N∪{0}
be the set of natural numbers including 0 and let N∞ = N ∪ {∞} be the set of
natural numbers including infinity.

Definition 1 (Petri net). A Petri net is a tuple N = (P, T,W, I) where P and
T are finite disjoint sets of places and transitions, W : (P × T )∪ (T × P )→ N0

is the weight function for regular arcs, and I : (P × T ) → N∞ is the weight
function for inhibitor arcs.

A marking M on N is a function M : P −→ N0 where M(p) denotes the
number of tokens in the place p. The set of all markings of a Petri net N is
written as M(N). Let M0 ∈M(N) be a given initial marking of N .

A Petri net N = (P, T,W, I) defines an LTS TS(N) = (S, A,→) where

S =M(N) is the set of all markings, A = T is the set of labels, and M
t−→ M ′

whenever for all p ∈ P we have M(p) < I((p, t)) and M(p) ≥W ((p, t)) such that

M ′(p) = M(p)−W ((p, t)) +W ((t, p)). We inductively extend the relation
t−→ to

sequences of transitions w ∈ T ∗ such that M
ε−→M and M

wt−→M ′ if M
w−→M ′′

and M ′′
t−→ M ′. We write M −→∗ M ′ if there is w ∈ T ∗ such that M

w−→ M ′.
By reach(M) = {M ′ ∈ M(N) | M −→∗ M ′} we denote the set of all markings
reachable from M .
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Fig. 1: A Petri net modelling two synchronizing processes

Example 1. Figure 1 illustrates an example of a Petri net where places are drawn
as circles, transitions as rectangles, regular arcs as arrows with the weight as
labels (default weight is 1 and arcs with weight 0 are not depicted) and inhibitor
arcs are shown as circle-headed arrows (again the default weight is 1 and arcs
with weight ∞ are not depicted). The dots inside places represent the number
of tokens (marking). The initial marking in the net can be written by i1i32w
denoting one token in i1, one token in i3 and two tokens in the place w. The net
attempts to model two processes that aim to get exclusive access to firing either
the transition f1 or f2 (making sure that they cannot be enabled concurrently).
Once the first process decides to enable transition f1 by moving the token from
i1 to m1, the second process is not allowed to place a token into m2 due to
the inhibitor arc connection m1 to s2. However, as there is no inhibitor arc in
the order direction, it is possible to reach a deadlock in the net by performing
i1i22w

s2−→ i1m2w
s1−→ m1m2.

Finally, we fix the set of atomic propositions α (α ∈ AP) for Petri nets as
used in the MCC Property Language [15]:

α ::= t | e1 ./ e2

e ::= c | p | e1 ⊕ e2

where t ∈ T , c ∈ N0, ./ ∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}. The
evaluation function v for a marking M is given as v(M) = {t ∈ T | t ∈ en(M)}∪
{e1 ./ e2 | evalM (e1) ./ evalM (e2)} where evalM (c) = c, evalM (p) = M(p) and
evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

Formulae that do not use any atomic predicate t for transition firing and
deadlock are called CTL cardinality formulae and formulae that avoid the use of



e1 ./ e2 and deadlock are called CTL firability formulate. Formulae of the form
EFϕ or AGϕ where ϕ does not contain any other temporal operator are called
reachability formulae, and as for CTL can be subdivided into the reachability
cardinality and reachability fireability category.

Example 2. Consider the Petri net in Figure 1 and the reachability fireability
formula EF (f1 ∧ f2) asking whether there is a reachable marking that enables
both f1 and f2. By exploring the (finite) part of the LTS reachable from the
initial marking i1i22w, we can conclude that i1i22w 6|= EF (f1 ∧ f2). However,
the slightly modified query EF AX (f1 ∧ f2) holds in the initial marking as a
deadlocked marking m1m2 can be reached, and due to the definition of the
universal next modality we have m1m2 |= AX (f1 ∧ f2). Another example of a
cardinality formula is E (w ≥ 2 U m2 = 1) asking if there is a computation that
marks the place m2 and before it happens, w must contain at least two tokens.
This formula holds in the initial marking by firing the transition s2.

We shall finish the preliminaries by recalling the basics of linear program-
ming. Let X = {x1, x2, . . . , xn} be a set of variables and let x = (x1, x2, . . . , xn)T

be a column vector of the variables. A linear equation is of the form c · x ./ k
where ./ ∈ {=, <,≤, >,≥}, k ∈ Z is an integer, and c = (c1, c2, . . . , cn) is a row
vector of integer constants. An integer linear program LP is a finite set of linear
equations. An (integer) solution to LP is a mapping u : X −→ N0 from variables
to natural numbers such that for every linear equation (c · x ./ k) ∈ LP , the
column vector u = (u(x1) u(x2) · · ·u(xn))T satisfies the equation c · u ./ k. We
use EXlin to denote the set of all integer linear programs over the variables X .

An integer linear program with a solution is said to be feasible. For our
purpose, we only consider feasibility and we are not interested in the optimality
of the solution. The feasibility problem of integer linear programs is NP-complete
[11,19], however, there exists a number of efficient linear program solvers (we use
lp solve in our implementation [3]).

3 Logical Equivalence of Formulae

Before we give our method for recursive simplification of CTL formulae via
the use of state equations in Section 4, we first introduce two other formula
simplification techniques. The first method utilizes the initial marking and the
second method uses universally valid formulae equivalences. For the rest of this
section, we assume a fixed Petri netN = (P, T,W, I) with the initial markingM0.

For the first simplification, let us define in Table 2 the function Ω : ΦCTL →
{true, false, ?} that checks if a given formula is trivially satisfiable in the initial
marking M0. Note that we generalize the binary conjunctions and disjunctions
to n-ary operations as it corresponds to the implementation in our tool. The
correctness of this simplification is expressed in the following theorem.

Theorem 1 (Initial Rewrite). Let ϕ be a CTL formula such that Ω(ϕ) 6= ?.
Then M0 |= ϕ if and only if Ω(ϕ) = true.



Ω(true) = true

Ω(α) = M0 |= α

Ω(AXϕ) =

{
true if M0 |= deadlock

? otherwise

Ω(false) = false

Ω(deadlock) = M0 |= deadlock

Ω(EXϕ) =

{
false if M0 |= deadlock

? otherwise

Ω(¬ϕ) =


true if Ω(ϕ) = false

false if Ω(ϕ) = true

? otherwise

Ω(ϕ1 ∧ · · · ∧ ϕn) =


true if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = true

false if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = false

? otherwise

Ω(ϕ1 ∨ · · · ∨ ϕn) =


true if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = true

false if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = false

? otherwise

Ω(EGϕ) = Ω(AGϕ) =

{
false if Ω(ϕ) = false

? otherwise

Ω(EFϕ) = Ω(AFϕ) =

{
true if Ω(ϕ) = true

? otherwise

Ω(E(ϕ1Uϕ2)) = Ω(A(ϕ1Uϕ2)) =


true if Ω(ϕ2) = true

false if Ω(ϕ1) = Ω(ϕ2) = false

? otherwise

Table 2: Simplification rules for a given initial marking M0

For the second simplification, we establish a recursively defined rewrite-
function ρ : ΦCTL → ΦCTL given in Table 3 that is based on logical equivalences
for the CTL quantifiers. In the definition of ρ, we assume that the n-ary oper-
ators ∨ and ∧ are associative and commutative. The correctness is captured in
the following theorem.

Theorem 2 (Equivalence Rewriting). Let M ∈M(N) be a marking on N .
Then M |= ϕ if and only if M |= ρ(ϕ).

4 Formula Simplification via State Equations

We will now describe the main ingredients of our formula simplification algo-
rithm. It is based on a recursive decent on the structure of the formula, checking
whether its subformulae and their negations can possibly hold in some reachable



ρ(α) = α

ρ(EGϕ) = ρ(¬AFρ(¬ϕ))

ρ(EXϕ) = EXρ(ϕ)

ρ(ϕ1 ∧ · · · ∧ ϕn) = ρ(ϕ1) ∧ · · · ∧ ρ(ϕn)

ρ(deadlock) = deadlock

ρ(AGϕ) = ρ(¬EFρ(¬ϕ))

ρ(AXϕ) = AXρ(ϕ)

ρ(ϕ1 ∨ · · · ∨ ϕn) = ρ(ϕ1) ∨ · · · ∨ ρ(ϕn)

ρ(¬ϕ) =



ϕ′ if ρ(ϕ) = ¬ϕ′

AXρ(¬ϕ′) if ρ(ϕ) = EXϕ′

EXρ(¬ϕ′) if ρ(ϕ) = AXϕ′

ρ((¬ϕ1) ∧ · · · ∧ (¬ϕn)) if ϕ = ϕ1 ∨ · · · ∨ ϕn

ρ((¬ϕ1) ∨ · · · ∨ (¬ϕn)) if ϕ = ϕ1 ∧ · · · ∧ ϕn

¬ρ(ϕ) otherwise

ρ(EFϕ) =



¬deadlock if ρ(ϕ) = ¬deadlock

EFϕ′ if ρ(ϕ) = EFϕ′

ρ(EFϕ′) if ρ(ϕ) = AFϕ′

ρ(EFϕ2) if ρ(ϕ) = E(ϕ1Uϕ2)

ρ(EFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ(EFϕ1 ∨ · · · ∨ EFϕn) if ρ(ϕ) = ϕ1 ∨ · · · ∨ ϕn

EFρ(ϕ) otherwise

ρ(AFϕ) =



¬deadlock if ρ(ϕ) = ¬deadlock

EFϕ′ if ρ(ϕ) = EFϕ′

AFϕ′ if ρ(ϕ) = AFϕ′

ρ(AFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ((EFϕ2) ∨ (AFϕ1)) if ρ(ϕ) = ϕ1 ∨ EFϕ2

AFρ(ϕ) otherwise

ρ(A(ϕ1Uϕ2)) =



¬deadlock if ρ(ϕ2) = ¬deadlock

ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(AFϕ2) if ρ(ϕ1) = ¬deadlock

EFϕ3 if ρ(ϕ2) = EFϕ3

AFϕ3 if ρ(ϕ2) = AFϕ3

ρ((EFϕ4) ∨A(ϕ1Uϕ3)) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

A(ρ(ϕ1)U ρ(ϕ2) otherwise

ρ(E(ϕ1Uϕ2)) =



¬deadlock if ρ(ϕ2) = ¬deadlock

ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(EFϕ2) if ρ(ϕ1) = ¬deadlock

EFϕ3 if ρ(ϕ2) = EFϕ3

ρ((EFϕ4) ∨ E(ϕ1Uϕ3) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

E(ρ(ϕ1)U ρ(ϕ2) otherwise

Table 3: Equivalence rewriting of CTL formulae



marking (here we use the state equation [11,17] approach) and then propagating
back this information through the Boolean and temporal operators.

t1 p
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Fig. 2: Example Petri net and initial marking for formula simplification

We use state equations to identify universally true or false subformulae, sim-
ilarly as e.g. in [14]. The main novelty is that we extend the approach to deal
with arbitrary arithmetical expressions and repeatedly solve linear programs for
subformulae of the given property so that more significant simplifications can
be achieved (we try to solve the state equations both for the subformula and
its negation). As a result, we can simplify more formulae into the trivially valid
ones (true) or invalid ones (false) or we can significantly reduce the size of the
formulae which can then speed up the state space exploration.

Consider the Petri net in Figure 2 with the initial markingM0, whereM0(p) =
4. The state equation for the reachability formula EF p ≥ 5 (can the place p
be marked with at least five tokens) over the variables xt1 and xt2 (representing
the number of transition firings of t1 and t2 respectively) looks as

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt ≥ 5

which in our example translates to 4 + 0 ·xt1 − 1 ·xt2 ≥ 5. The inequality clearly
does not have a solution in nonnegative integers, hence we can conclude without
exploring the state space that EF p ≥ 5 does not hold in the initial marking.
Moreover, consider now the formula EF (p ≥ 5)∨ (p = 2∧p ≤ 7). By recursively
analyzing the subformulae, we can conclude using the state equations that p ≥ 5
cannot be satisfied in any reachable marking, hence the formula simplifies to
EF (p = 2 ∧ p ≤ 7). Moreover, by continuing the recursive decent and looking
at the subformula p ≤ 7, we can determine by using state equations, that its
negation p > 7 cannot be satisfied in any reachable marking. Hence p ≤ 7
is universally true and the formula further simplifies to an equivalent formula
EF p = 2 for which we have to apply conventional verification techniques.

In what follows, we formally define our formula simplification procedure and
extend it to the full CTL logic so that e.g. the formula EF AX p ≥ 5 simplifies
to the reachability formula EF deadlock for which we can use specialized algo-
rithms for deadlock detection (e.g. using the siphon-trap property [13]) instead
of the more expensive CTL verification algorithms. Even if a CTL formula does
not simplify to a pure reachability property, the reduction in the size of the
CTL formula has still a positive effect on the efficiency of the CTL verification
algorithms as the state space grows with the number of different subformulae.



ϕ rewritten ϕ

t p1 ≥W (p1, t) ∧ · · · ∧ pn ≥W (pn, t) ∧
p1 < I(p1, t) ∧ · · · ∧ pn < I(pn, t)
where P = {p1, p2, . . . , pn}

e1 6= e2 e1 > e2 ∨ e1 < e2
e1 = e2 e1 ≤ e2 ∧ e1 ≥ e2
¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ∧ ¬ϕ2

¬AXϕ EX¬ϕ
¬EXϕ AX¬ϕ
¬AFϕ EG¬ϕ
¬EFϕ AG¬ϕ
¬AGϕ EF¬ϕ
¬EGϕ AF¬ϕ

Table 4: Rewriting rules

4.1 Simplification Procedure

Let N = (P, T,W, I) be a fixed Petri net with the initial marking M0 and
ϕ a given CTL formula. Before we start, we assume that the formula ϕ has
been rewritten into an equivalent one by recursively applying the rewriting rules
in Table 4. Clearly, these rules preserve logical equivalence and they push the
negation down to either the atomic propositions or in front of the existential or
universal until operators. Moreover, the fireability predicate for a transition t is
rewritten to the equivalent cardinality formula.

Let EXlin be the set of all integer linear programs over the set of variables
X = {xt | t ∈ T}. Let LPS ⊆ EXlin be a finite set of integer linear programs. We
say that LPS has a solution, if there exists a linear program LP ∈ LPS that has
a solution.

We will now define a simplification function that, for a given formula ϕ ∈
ΦCTL, produces a simplified formula and two sets of integer linear programs.
The function is of the form

simplify : ΦCTL −→ ΦCTL × 2E
X
lin × 2E

X
lin

and we write simplify(ϕ) = (ϕ′,LPS ,LPS ) when the formula ϕ is simplified to
an equivalent formula ϕ′, and where the following invariant holds:

– if M |= ϕ for some M reachable from M0 then LPS has a solution, and
– if M 6|= ϕ for some M reachable from M0 then LPS has a solution.

In order to define the simplification function, we use the function merge :

2E
X
lin × 2E

X
lin → 2E

X
lin that combines two set of integer linear programs and is

defined as merge (LPS 1,LPS 2)= {LP1 ∪ LP2 | LP1 ∈ LPS 1, LP2 ∈ LPS 2}.
Finally, let BASE denote the integer linear program with the following equations

M0(p) +
∑
t∈T

(W (t, p)−W (p, t)) · xt ≥ 0 for all p ∈ P



Algorithm 1: Simplify e1 ./ e2

1 Function simplify(e1 ./ e2)
2 if e1 is not linear or e2 is not linear then
3 return (e1 ./ e2, {{0 ≤ 1}}, {{0 ≤ 1}})
4 LPS ← {{const(e1) ./ const(e2)}}
5 LPS ← {{const(e1) ./ const(e2)}}
6 if {LP ∪ BASE | LP ∈ LPS} has no solution then
7 return simplify(false)

8 else if {LP ∪ BASE | LP ∈ LPS} has no solution then
9 return simplify(true)

10 else

11 return (e1 ./ e2,LPS ,LPS)

Algorithm 2: Simplify ¬ϕ
1 Function simplify(¬ϕ)

2 (ϕ′,LPS ,LPS)← simplify(ϕ)
3 if ϕ′ = true then return simplify(false)
4 if ϕ′ = false then return simplify(true)

5 return (¬ϕ′,LPS ,LPS)

that ensures that any solution to BASE must leave a nonnegative number of
tokens in every place of N .

First, we postulate simplify(true) = (true, {{0 ≤ 1}}, ∅), simplify(false) =
(false, ∅, {{0 ≤ 1}}), and simplify(deadlock) = (deadlock , {{0 ≤ 1}}, {{0 ≤ 1}})
and these definitions clearly satisfy our invariant.

Algorithm 1 describes how to simplify the atomic predicates, where the func-
tion const takes as input an arithmetic expression e and returns one side of the
linear equation as follows:

const(c) = c

const(p) = M0(p) +
∑
t∈T

(W (t, p)−W (p, t)) · xt

const(e1 + e2) = const(e1) + const(e2)

const(e1 − e2) = const(e1)− const(e2)

const(e1 · e2) = const(e1) · const(e2).

In the algorithm we let ./ denote the dual operation to ./, for example > becomes
≤ and ≥ becomes <. There is a special case that we must handle here. If in either
of the expressions e1 or e2 we have a multiplication that includes more than one
place (i.e. the expression is not linear) then we would return a nonlinear program
that cannot be solved by linear program solvers. To handle this situation, if either
side of the comparison in nonlinear, we return the formula unchanged and two



Algorithm 3: Simplify ϕ1♦ . . .♦ϕn for ♦ ∈ {∧,∨}
1 Function simplify(ϕ1♦ . . .♦ϕn)
2 Let ϕ′ be an empty formula.

3 if ♦ = ∧ then LPS ← {{0 ≤ 1}}; LPS ← ∅
4 if ♦ = ∨ then LPS ← ∅; LPS ← {{0 ≤ 1}}
5 for i := 1 to n do

6 (ϕ′
i,LPS i,LPS i)← simplify(ϕi)

7 if ♦ = ∧ and ϕ′
i = false then return simplify(false)

8 if ♦ = ∧ and ϕ′
i 6= true then

9 ϕ′ ← ϕ′ ∧ ϕ′
i

10 LPS ← merge(LPS ,LPS i)

11 LPS ← LPS ∪ LPS i

12 if ♦ = ∨ and ϕ′
i = true then return simplify(true)

13 if ♦ = ∨ and ϕ′
i 6= false then

14 ϕ′ ← ϕ′ ∨ ϕ′
i

15 LPS ← LPS ∪ LPS i

16 LPS ← merge(LPS ,LPS i)

17 if ϕ′ is empty formula and ♦ = ∧ then return simplify(true)
18 if ϕ′ is empty formula and ♦ = ∨ then return simplify(false)
19 if ♦ = ∧ and {LP ∪ BASE | LP ∈ LPS} has no solution then
20 return simplify(false)

21 if ♦ = ∨ and {LP ∪ BASE | LP ∈ LPS} has no solution then
22 return simplify(true)

23 return (ϕ′,LPS ,LPS)

singleton sets of linear programs {{0 ≤ 1}} that trivially have a solution (any
variable assignment is a solution to the linear program 0 ≤ 1) and hence satisfy
our invariant.

The simplification of negation ¬ϕ is given in Algorithm 2. It first recursively
computes the simplification ϕ′ of ϕ and if the answer is conclusive then the
negated conclusive answer is returned, otherwise we return ¬ϕ′ and swap the
two sets of linear programs.

In Algorithm 3 we show how to simplify conjunctions and disjunctions of
formulae. We give the simplification function for n-ary operators to mimic the
implementation closely. We present both conjunction and disjunction in the same
pseudocode in order to clarify the symmetry in handling the Boolean connec-
tives. The algorithm recursively simplifies the subformulae and one by one adds
the simplified formulae into the resulting proposition ϕ′, unless a conclusive an-
swer (true/false) can be given immediately or the subformula can be omitted.
Note that for conjunction we merge the current LPS and LPS i returned for the
subformula ϕi as if the conjunction is satisfied in some reachable marking then
there must be an LP ∈ LPS and an LPi ∈ LPS i such that LP ∪ LPi has a
solution. Symmetrically, we do the merge also for disjunction and the negated



Algorithm 4: Simplify QXϕ, where Q ∈ {A,E}
1 Function simplify(QXϕ)

2 (ϕ′,LPS ,LPS)← simplify(ϕ)
3 if Q = A and ϕ′ = true then return simplify(true)
4 if Q = A and ϕ′ = false then return simplify(deadlock)
5 if Q = E and ϕ′ = true then return simplify(¬deadlock)
6 if Q = E and ϕ′ = false then return simplify(false)
7 return (QXϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

Algorithm 5: Simplify QPϕ, where QP ∈ {AG ,EG ,AF ,EF}
1 Function simplify(QPϕ)

2 (ϕ′,LPS ,LPS)← simplify(ϕ)
3 if ϕ′ = true then return simplify(true)
4 if ϕ′ = false then return simplify(false)
5 return (QPϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

sets of linear programs. Finally, we check whether the created systems of linear
programs have solutions and in the negative cases we can sometimes draw a
conclusive answer.

Simplification of the next operators is given in Algorithm 4. It is worth notic-
ing that for certain situations, the next operator can be removed and replaced
with the deadlock proposition (and hence possibly change the CTL formula into
a reachability formula). If none of the simplification cases applies, we return
the next operator with the simplified formula together with two sets of linear
programs with trivial solutions in order to satisfy our invariant. Similarly, the
simplification of the unary CTL temporal operators is given in Algorithm 5.

Finally, in Algorithm 6 we present the simplification of binary CTL temporal
operators. Here we first simplify ϕ2 and see if we can draw some straightforward
conclusions. If this is not the case, we also simplify ϕ1 and if it evaluates to true
or false, we can either reduce the binary temporal operator into a unary one or
completely remove the unary operator, respectively.

Example 3. Consider again the net from Example 2. We can simplify the formula
EF AX (f1 ∧ f2) as follows. Let X = {xs1 , xs2 , xf1 , xf2 , xsync} be the variables.
Using the rewriting rules from Table 4 we have that EF AX (f1∧f2) is equivalent
to EF AX (m1 ≥ 1 ∧ w ≥ 1 ∧m2 ≥ 1). The linear equations LPS generated by
Algorithm 1 and 3 are as follows.

xs1 − xf1 ≥ 1

2 + xf1 + xf2 − xs1 − xs2 ≥ 1

xs2 − xf2 ≥ 1

We do not include BASE here, as the equations above are already unfeasible
(have no integer solution). This follows from the observation that the first and



Algorithm 6: Simplify Q(ϕ1Uϕ2), where Q ∈ {A,E}
1 Function simplify(Q(ϕ1Uϕ2))

2 (ϕ′
2,LPS2,LPS2)← simplify(ϕ2)

3 if ϕ′
2 = true then return simplify(true)

4 if ϕ′
2 = false then return simplify(false)

5 (ϕ′
1,LPS1,LPS1)← simplify(ϕ1)

6 if ϕ′
1 = true then return (QFϕ′

2, {{0 ≤ 1}}, {{0 ≤ 1}})
7 if ϕ′

1 = false then return (ϕ′
2,LPS2,LPS2)

8 return (Q(ϕ′
1Uϕ′

2), {{0 ≤ 1}}, {{0 ≤ 1}})

third equation imply that xs1 > xf1 and xs2 > xf2 , respectively, and this con-
tradicts the second equation 2 + xf1 + xf2 > xs1 + xs2 . Therefore, Algorithm 3
simplifies EF AX (f1 ∧ f2) to EF AX false and by Algorithm 4, we simplify it
further to EF deadlock . No further reduction is possible, however, we simplified
a CTL formula into a simple reachability formula for which we can now use
specialized algorithms for deadlock detection.

We conclude this section with a theorem stating the correctness of the sim-
plification, meaning that for simplify(ϕ) = (ϕ′,LPS ,LPS ) we have M0 |= ϕ if
and only if M0 |= ϕ′. In order to do so, we prove a stronger claim that allows us
to formally introduce the invariant on the sets of linear programs returned by
the function simplify .

Theorem 3 (Formula Simplification Correctness). Let N = (P, T,W, I)
be a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL formula.
Let simplify(ϕ) = (ϕ′,LPS ,LPS ). Then for all markings M ∈ M(N) such that

M0
w−→M holds:

1. M |= ϕ iff M |= ϕ′

2. if M |= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to LP
3. if M 6|= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to LP

where ℘(w) is a solution that assigns to each variable xt the number of occur-
rences of the transition t in the transition sequence w.

5 Implementation and Experiments

The formula simplification techniques are implemented in C++ in the verifypn
engine [14] of the tool TAPAAL [10] and distributed in the latest release at www.
tapaal.net. The source code is available at code.launchpad.net/verifypn.

After parsing the PNML model and the formula, TAPAAL applies sequen-
tially the simplification procedures as depicted in Figure 3, where we first at-
tempt to restructure the formulae to a simpler form using ρ followed by the
application of Ω. After this, the main simplify procedure is called. The simplifi-
cation can create a formula where additional applications of ρ and Ω are possible

www.tapaal.net
www.tapaal.net
code.launchpad.net/verifypn
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Fig. 3: TAPAAL tool-chain and control flow

and can further reduce the formula size. After the simplification is completed,
TAPAAL applies structural reductions to the model, removing or merging re-
dundant transitions and places as described in [14]. The engine now proceeds as
follows.

1. If the formulae is of the form EF deadlock then siphon-trap analysis is at-
tempted, followed by normal explicit-state verification in case of an incon-
clusive answer.

2. If the formulae falls within pure reachability category (EFϕ or ¬EFϕ, where
ϕ does not contain further temporal operators), then we call a specialized
reachability engine that uses stubborn set reduction.

3. For the general CTL formula, the verification is performed via a transla-
tion to a dependency graph and performing on-the-fly computation of its
minimum fixed-point assignment as described in [9].

5.1 Implementation Details of the Simplification Procedure

During implementation and subsequent experimentation, we discovered that the
construction of linear programs for large models can be both time and memory-
consuming. In particular, the merge-operation causes a quadratic blowup both in
the size and the number of linear programs. To remedy this, we have implemented



CTL Cardinality

Algorithm Solved % Solved Reachability % Reachability % Reduction

Ω 117 2.3 1834 36.6 27.2
ρ 7 0.1 1437 28.7 24.1
simplify 1437 28.7 2425 48.4 45.7
all 1724 34.4 2993 59.8 60.3

CTL Fireability

Ω 194 3.9 1701 34.0 27.1
ρ 0 0.0 1319 26.3 30.0
simplify 255 5.1 1422 28.4 11.0
all 495 9.9 2022 40.4 49.7

Table 5: Formula simplification for CTL cardinality and fireability

a “lazy” construction of the linear programs—similar to lazy evaluation known
from functional programming languages. Instead of computing the full set of
linear programs up front, we simply remember the basic linear programs and
the tree of operations making up the merged or unioned linear program. Using
this construction, we then extract a single linear program on demand, and thus
avoid the up-front time and memory overhead of computing the merge and union
operations at the call time.

5.2 Experimental Setup

To evaluate the performance of our approach, we conduct two series of experi-
ments on the models and formulae from MCC’17 [15]. First, we investigate the
effect of the three different simplification methods proposed in this paper along
with their combination as depicted in Figure 3. In the second experiment we com-
pare the performance of our simplification algorithms to those used by LoLA,
the winner of MCC’17. We also conduct a full run of the verification engines
after the formula simplification in order to assess the impact of the simplifica-
tion on the state space search. All experiments were run on AMD Opteron 6376
Processors, restricted to 14 GB of memory on 313 P/T nets from the MCC’17
benchmark. Each category contains 16 different queries which yields a total of
5008 executions for a given category.

5.3 Evaluation of Formula Simplification Techniques

We compare the performance of Ω, ρ and simplify functions along with their
combined version referred to as all (applying sequentially ρ, Ω, simplify , ρ and
Ω). The execution of each simplification was limited to 20 minutes per formula
(excluding the model parsing time) and a timeout for finding a solution to a
linear program using lp solve [3] was set to 120 seconds.



CTL Simplification Only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 1724 34 236 5 904 18
Fireability 495 10 173 3 488 10
Total 2219 22 409 4 1392 14

CTL Simplification Followed by Verification

Cardinality 4232 85 3634 73 3810 76
Fireability 3712 74 3663 73 3690 74
Total 7944 79 7297 73 7500 75

Table 6: Tool comparison on CTL formulae

Table 5 reports the numbers (and percentages) of formulae that were solved
(simplified to either true or false), the number of formulae converted from a
complex CTL formula into a pure reachability formula and the average formula
reduction in percentages (where the formula size before and after the reductions
is measured as a number of nodes in its parse tree).

We can observe that the combination of our techniques simplifies about 34%
of cardinality queries and 10% of fireability queries into true or false, while a sig-
nificant number of queries are simplified from CTL formula into pure reachability
problems (60% of cardinality queries and 40% of fireability ones). The average
reduction in the query size is 60% for cardinality and 50% for fireability queries.
The results are encouraging, though the performance on fireability formulae is
considerably worse than for cardinality formulae. The reason is that fireability
predicates are translated into Boolean combinations of cardinality predicates and
the expanded formulae are less suitable for the simplification procedures due to
their increased size. This is also reflected by the time it took to compute the
simplification. For CTL cardinality, half of the simplifications terminate in less
than 0.05 seconds, 75% simplifications terminate in less than 0.98 seconds and
90% of simplifications terminate in less than 9.46 seconds. The corresponding
numbers for CTL fireability are 0.22 seconds, 13.70 seconds and 538.34 seconds.

5.4 Comparison with LoLA

We compare the performance of our tool-chain, presented in Figure 3, with
the tool LoLA [26] and the combination of LoLA and its linear program solver
Sara [25] that uses the CEGAR approach. In CTL simplification experiment, we
allow 20 minutes for formula simplification (excluding the net parsing time) and
count how many solved (simplified to true or false) queries each tool computed1.
For CTL verification, we allow the tools first simplify the query and then proceed

1 We use the current development snapshots of LoLA (based on version 2.0) and Sara
(based on version 1.14), kindly provided by the LoLA and Sara development team.



Reachability Simplification Only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 2256 45 277 6 3734 75
Fireability 1073 21 296 6 2880 58
Total 3329 33 573 6 6614 66

Reachability Simplification Followed by Verification

Cardinality 4638 93 3734 75 4628 92
Fireability 4402 88 2880 58 4372 87
Total 9040 90 6614 66 9000 90

Table 7: Tool comparison on reachability formulae

with the verification according to the best setup the tools provide, again with a
20 minute timeout excluding the parsing time. We run LoLA and Sara in parallel
(in their advantage), each of them having 20 minute timeout per execution. The
results are presented in Table 6. We can observe that in simplification of CTL
cardinality formulae, we are able to provide an answer for 34% of queries while
the combination of LoLA and Sara solves only 18% of them. The performance
on the CTL fireability simplification is comparable. If we follow the simplifica-
tion with an actual verification, TAPAAL solves in total 79% of queries and
LoLA with Sara 75%. As a result, TAPAAL with the new query simplification
algorithms now outperforms the CTL category winner of the last year.

For completeness, in Table 7, we also include the results for the simplifica-
tion and verification of reachability queries, even though our method is mainly
targeted towards CTL formulae. We can notice that thanks to Sara, a fully func-
tional model checker implementing the CEGAR approach, LoLA in combination
with Sara solves twice as many queries by simplification as we do. However, once
followed by the actual verification (and due to our simplification technique that
significantly reduces formula sizes), both tools now show essentially compara-
ble performance with a small margin towards TAPAAL, solving 40 additional
formulae.

6 Conclusion

We presented techniques for reducing the size of a CTL formula interpreted over
the Petri net model. The motivation is to speed up the state space search and to
provide a beneficial interplay with other techniques like partial order and struc-
tural reductions. The experiential results—compared with LoLA, the winner of
MCC’17 competition—document a convincing performance for simplification of
CTL formulae as well as for CTL verification. The techniques were not designed
specifically for the simplification of reachability formulae, hence the number of
solved reachability queries by employing only the simplification is much lower



than that by the specialized tools like Sara (being in fact a complete model
checker). However, when combined with the state space search followed after
the formula simplification, the benefits of our techniques become apparent as
we now solve 40 additional formulae compared to the combined performance of
LoLA and Sara.

The simplification procedure is less efficient for CTL fireability queries than
for CTL cardinality queries. This is the case both for our tool as well as LoLA
and Sara. The reason is that we do not handle fireability predicates directly
and unfold them into Boolean combination of cardinality predicates. This often
results in significant explosion in query sizes. The future work will focus on over-
coming this limitation and possibly handling the fireability predicates directly
in the engine.
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A Proof of Theorem 1

Proof. The proof proceeds by structural induction on ϕ.

ϕ = true: Trivial.
ϕ = false: Trivial.
ϕ = α: Trivial.
ϕ = deadlock : Trivial.
ϕ = ϕ1 ∧ · · · ∧ ϕn: For all i ∈ {1, . . . , n}, we know by the structural induction

hypothesis that if Ω(ϕi) 6= ? then M0 |= ϕi iff Ω(ϕi) = true. Assume that
Ω(ϕ) 6= ? is true. We need to show the following two implications: (1) ifM0 |=
ϕ1∧· · ·∧ϕn then Ω(ϕ1∧· · ·∧ϕn) = true, and (2) if Ω(ϕ1∧· · ·∧ϕn) = true
then M0 |= ϕ1 ∧ · · · ∧ ϕn.
– Implication (1): Assume M0 |= ϕ1 ∧ · · · ∧ ϕn. Then for all i ∈ {1, . . . , n}

we must have that M0 |= ϕi. Assume for the sake of contradiction that
there exists i ∈ {1, . . . , n} s.t. Ω(ϕi) = false. Then by the induction
hypothesis we have M0 6|= ϕi, which is a contradiction. Therefore we
must have Ω(ϕi) 6= false for all i ∈ {1, . . . , n}, and from the definition of
Ω(ϕ) in Table 2 we have Ω(ϕ) 6= false. By assumption we have Ω(ϕ) 6= ?,
leaving only Ω(ϕ1 ∧ · · · ∧ ϕn) = true as the conclusion.

– Implication (2): Assume Ω(ϕ) = true. Then we have Ω(ϕi) = true for
all i ∈ {1, . . . , n}, from the definition of Ω(ϕ) in Table 2. Due to the
induction hypothesis we have M0 |= ϕi for all i and M0 |= ϕ1 ∧ · · · ∧ ϕn
follows from the semantics of ϕ1 ∧ · · · ∧ ϕn.

ϕ = ϕ1 ∨ · · · ∨ ϕn: This case is analogous to the conjunction case.
ϕ = AXϕ′: Assume that Ω(ϕ) 6= ? is true. Since we by assumption have Ω(ϕ) 6=

?, and Ω(ϕ) = false can never occur due to the definition of Ω(ϕ) in Table 2,
we must have M0 |= deadlock and Ω(AXϕ′) = true. If M0 |= deadlock then
M0 |= AXϕ′ trivially follows from the semantics of AXϕ′. We therefore have
M0 |= AXϕ′ iff Ω(AXϕ′) = true follows.

ϕ = EXϕ′: This case is analogous to the AXϕ′ case.
ϕ = EGϕ′: By structural induction we have if Ω(ϕ′) 6= ? then M0 |= ϕ′ iff
Ω(ϕ′) = true. Assume that Ω(ϕ) 6= ? is true. Since we by assumption have
Ω(ϕ) 6= ?, and Ω(ϕ) = true can never occur due to the definition of Ω(ϕ)
in Table 2, we must have Ω(ϕ′) = false and Ω(EGϕ′) = false. Due to the
induction hypothesis we have M0 6|= ϕ′, and M0 6|= EGϕ′ follows from the
semantics of EGϕ′. We therefore have M0 |= EGϕ′ iff Ω(EGϕ′) = true
follows.

ϕ = AGϕ′: This case is analogous to the EGϕ′ case.
ϕ = EFϕ′: By structural induction we have if Ω(ϕ′) 6= ? then M0 |= ϕ′ iff
Ω(ϕ′) = true. Assume that Ω(ϕ) 6= ? is true. Since we by assumption have
Ω(ϕ) 6= ?, and Ω(ϕ) = false can never occur due to the definition of Ω(ϕ)
in Table 2, we must have Ω(ϕ′) = true and Ω(EFϕ′) = true. Due to the
induction hypothesis we have M0 |= ϕ′, and M0 |= EFϕ′ follows from the
semantics of EFϕ′. We therefore have M0 |= EFϕ′ iff Ω(EFϕ′) = true
follows.



ϕ = AFϕ′: This case is analogous to the EFϕ′ case.
ϕ = E (ϕ1Uϕ2): For all i ∈ {1, 2} by structural induction we have if Ω(ϕi) 6=

? then M0 |= ϕi iff Ω(ϕi) = true. Assume that Ω(ϕ) 6= ? is true. We
need to show the following two implications: (1) if M0 |= E (ϕ1Uϕ2) then
Ω(E (ϕ1Uϕ2)) = true, and (2) ifΩ(E (ϕ1Uϕ2)) = true thenM0 |= E (ϕ1Uϕ2).
– Implication (1): Assume M0 |= E (ϕ1Uϕ2). Since we by assumption have
Ω(ϕ) 6= ?, there are two additional cases from the definition of Ω(ϕ) in
Table 2: Ω(ϕ2) = true or Ω(ϕ1) = Ω(ϕ2) = false. Assume for the sake of
contradiction Ω(ϕ1) = Ω(ϕ2) = false is true. Then from the induction
hypothesis we have M0 6|= ϕ1 and M0 6|= ϕ2, implying M0 6|= E (ϕ1Uϕ2)
from the semantics of E (ϕ1Uϕ2). This contradicts our assumption that
M0 |= E (ϕ1Uϕ2), and leaves us only with the first case Ω(ϕ2) = true.
We have Ω(E (ϕ1Uϕ2)) = true trivially follows from the definition of
Ω(ϕ) in Table 2.

– Implication (2): Assume Ω(E (ϕ1Uϕ2)) = true. Then we have Ω(ϕ2) =
true from the definition of Ω(ϕ) in Table 2. Due to the induction hypoth-
esis we have M0 |= ϕ2, and M0 |= E (ϕ1Uϕ2) follows from the semantics
of E (ϕ1Uϕ2).

ϕ = A(ϕ1Uϕ2): This case is analogous to the E (ϕ1Uϕ2) case.
ut

B Proof of Theorem 2

Proof. The proof is by structural induction on ϕ. As a sketch, we will here prove
the correctness of the rules for EFϕ and Eϕ1Uϕ2. The proofs for the other rules
are analogous.

ϕ = EFϕ′: By structural induction we have M |= ϕ′ iff M |= ρ(ϕ′). We need to
show the following two implications: (1) if M |= EFϕ′ then M |= ρ(EFϕ′),
and (2) if M |= ρ(EFϕ′) then M |= EFϕ′.
– Implication (1): Assume M |= EFϕ′. Then there exists M ′ ∈ M(N)

s.t. M −→∗ M ′ and M ′ |= ϕ′. Due to the induction hypothesis we have
M ′ |= ρ(ϕ′). There are now 6 cases given by the definition of ρ(EFϕ′) in
Table 3. The otherwise case is trivial due to the induction hypothesis.
• Case ρ(ϕ′) = ¬deadlock : If M ′ |= ¬deadlock then we must also have
M |= ¬deadlock , as M −→∗ M ′ and en(M) 6= ∅.

• Case ρ(ϕ′) = EFϕ′′: There exists M ′′ ∈ M(N) s.t. M ′ −→∗ M ′′ and
M ′′ |= ϕ′′. Since we have M −→∗ M ′ and M ′ −→∗ M ′′ we must also
have M −→∗ M ′′ is the case, implying that M |= EFϕ′′ is true.

• Case ρ(ϕ′) = AFϕ′′: Clearly there exists M ′′ ∈ M(N) s.t. M ′ −→∗
M ′′ and M ′′ |= ϕ′′ by the semantics of AFϕ′′. Since we have M −→∗
M ′ and M ′ −→∗ M ′′ we must also have M −→∗ M ′′ is the case,
implying that M |= EFϕ′′ is true.

• Case ρ(ϕ′) = E (ϕ1Uϕ2): Clearly there exists M ′′ ∈ M(N) s.t.
M ′ −→∗ M ′′ and M ′′ |= ϕ2 by the semantics of E (ϕ1Uϕ2). Since
we have M −→∗ M ′ and M ′ −→∗ M ′′ we must also have M −→∗ M ′′ is
the case, implying that M |= EFϕ2 is true.



• Case ρ(ϕ′) = A(ϕ1Uϕ2): Clearly there exists M ′′ ∈ M(N) s.t.
M ′ −→∗ M ′′ and M ′′ |= ϕ2 by the semantics of A(ϕ1Uϕ2). Since
we have M −→∗ M ′ and M ′ −→∗ M ′′ we must also have M −→∗ M ′′ is
the case, implying that M |= EFϕ2 is true.
• Case ρ(ϕ′) = ϕ1 ∨ · · · ∨ ϕn: Due to the semantics of ϕ1 ∨ · · · ∨ ϕn

there exists i s.t. 1 ≤ i ≤ n and M ′ |= ϕi. From M ′ |= ϕi we have
M |= EFϕi, and M |= EFϕ1 ∨ · · · ∨ EFϕn follows trivially from
disjunction introduction.

– Implication (2): Assume M |= ρ(EFϕ′). There are 6 cases given by the
definition of ρ(EFϕ′) in Table 3. The otherwise case is trivial due to the
induction hypothesis.

• Case ρ(ϕ′) = ¬deadlock : Trivially we have that M |= ¬deadlock
implies M |= EF¬deadlock by the semantics of ϕ.

• Case ρ(ϕ′) = EFϕ′′: Trivially we have that M |= EFϕ′′ implies
M |= EF EFϕ′′ by the semantics of ϕ.

• Case ρ(ϕ′) = AFϕ′′: By the induction hypothesis if M |= ρ(AFϕ′′)
then we have M |= AFϕ′′. Trivially we have that M |= AFϕ′′ implies
M |= EF AFϕ′′ by the semantics of ϕ.

• Case ρ(ϕ′) = E (ϕ1Uϕ2): By the induction hypothesis ifM |= ρ(E (ϕ1Uϕ2))
then we haveM |= E (ϕ1Uϕ2). Trivially we have thatM |= E (ϕ1Uϕ2)
implies M |= EF E (ϕ1Uϕ2) by the semantics of ϕ.
• Case ρ(ϕ′) = A(ϕ1Uϕ2): By the induction hypothesis ifM |= ρ(A(ϕ1Uϕ2))

then we haveM |= A(ϕ1Uϕ2). Trivially we have thatM |= A(ϕ1Uϕ2)
implies M |= EF A(ϕ1Uϕ2) by the semantics of ϕ.
• Case ρ(ϕ′) = ϕ1 ∨ · · · ∨ ϕn: By the induction hypothesis if M |=
ρ(EFϕ1 ∨ · · · ∨EFϕn) then we have M |= EFϕ1 ∨ · · · ∨EFϕn. Due
to the semantics of EFϕ1 ∨ · · · ∨ EFϕn there exists i s.t. 1 ≤ i ≤ n
and M |= EFϕi. There exists M ′ ∈ M(N) s.t. M −→∗ M ′ and
M ′ |= ϕi. By disjunction introduction we have M ′ |= ϕ1 ∨ · · · ∨ ϕn,
and M |= EF (ϕ1 ∨ · · · ∨ ϕn) follows since M −→∗ M ′.

ϕ = E (ϕ1Uϕ2): By structural induction we have M |= ϕ1 iff M |= ρ(ϕ1) and
M |= ϕ2 iff M |= ρ(ϕ2). We need to show the following two implications: (1)
if M |= E (ϕ1Uϕ2) then M |= ρ(E (ϕ1Uϕ2)), and (2) if M |= ρ(E (ϕ1Uϕ2))
then M |= E (ϕ1Uϕ2).

– Implication (1): AssumeM |= E (ϕ1Uϕ2). Then there exists π ∈ Πmax (M)
and a position i s.t. πi |= ϕ2 and for all j ∈ {0, . . . , i−1} we have πj |= ϕ1.
There are 5 cases given by the definition of ρ(E (ϕ1Uϕ2)) in Table 3. The
otherwise case is trivial due to the induction hypothesis.

• Case ρ(ϕ2) = ¬deadlock : If πi |= ¬deadlock then we must also have
M |= ¬deadlock , as M −→∗ πi and en(πi) 6= ∅.

• Case ρ(ϕ1) = deadlock : Then the only case where M |= E (ϕ1Uϕ2)
can be true is when i = 0, implying M |= ϕ2. By the induction
hypothesis we conclude with M |= ρ(ϕ2).

• Case ρ(ϕ1) = ¬deadlock : Clearly, for any path we have ¬deadlock
always holds in every intermidiary marking due to the definition of



paths, giving us M |= E (trueUϕ2). This is the definition of M |=
EFϕ2 for the minimal set of CTL operators.

• Case ρ(ϕ2) = EFϕ3: There exists M ′ ∈ M(N) s.t. πi −→∗ M ′ and
M ′ |= ϕ3. Since we have M −→∗ πi and πi −→∗ M ′ we must also have
M −→∗ M ′ is the case, implying that M |= EFϕ3 is true.

• Case ρ(ϕ2) = ϕ3 ∨ EFϕ4: Either we have πi |= ϕ3 or there exists
M ′ ∈ M(N) s.t. πi −→∗ M ′ and M ′ |= EFϕ4. In the former case
clearly we have M |= E (ϕ1Uϕ3) since the path π exists, and we can
conlude with M |= (EFϕ4)∨E (ϕ1Uϕ3) by disjunction introduction.
In the latter case since M −→∗ πi and πi −→∗ M ′ we must also have
M −→∗ M ′ is the case, implying that M |= EFϕ4 is true, and we can
conclude withM |= (EFϕ4)∨E (ϕ1Uϕ3) by disjunction introduction.

– Implication (2): Assume M |= ρ(E (ϕ1Uϕ2)). There are 5 cases given by
the definition of ρ(E (ϕ1Uϕ2)) in Table 3. The otherwise case is trivial
due to the induction hypothesis.

• Case ρ(ϕ2) = ¬deadlock : Trivially we have that M |= ¬deadlock
implies M |= E (ϕ1U¬deadlock) by the semantics of ϕ.
• Case ρ(ϕ1) = deadlock : Trivially we have that M |= ϕ2 implies
M |= E (ϕ1Uϕ2) by the semantics of ϕ.
• Case ρ(ϕ1) = ¬deadlock : Trivially we have that M |= EFϕ2 implies
M |= E (¬deadlockUϕ2) by the semantics of ϕ.
• Case ρ(ϕ2) = EFϕ3: Trivially we have that M |= EFϕ3 implies
M |= E (¬deadlockU EFϕ3) by the semantics of ϕ.
• Case ρ(ϕ2) = ϕ3 ∨ EFϕ4: If M |= (EFϕ4) ∨ E (ϕ1Uϕ3) then either

we have M |= EFϕ4 or M |= E (ϕ1Uϕ3). In the former case by
disjunction introduction we have M |= ϕ3 ∨ EFϕ4, and trivially we
have M |= E (ϕ1Uϕ3 ∨ EFϕ4) by the semantics of ϕ. In the later
case there exists π ∈ Πmax (M) and a position i s.t. πi |= ϕ3 and for
all j ∈ {0, . . . , i − 1} we have πj |= ϕ1. By disjunction introduction
we have πi |= M |= ϕ3 ∨ EFϕ4, and clearly since the path π exists
we have M |= E (ϕ1Uϕ3 ∨ EFϕ4).

ut

C Proof of Theorem 3

Proof. We prove the three claims by structural induction on ϕ.
Base Cases:

ϕ = true: Since simplify(true) = (true, {{0 ≤ 1}}, ∅) the formula remains
unchanged and Condition 1 trivially holds. Condition 2 holds because for
{0 ≤ 1} any variable assignment is a solution and Condition 3 is a vacuous
case.

ϕ = false: Since simplify(false) = (false, ∅, {{0 ≤ 1}}) the formula remains
unchanged and Condition 1 trivially holds. Condition 2 is a vacuous case
and Condition 3 holds as any variable assignment is a solution to {0 ≤ 1}.



ϕ = deadlock : Since simplify(deadlock) = (deadlock , {{0 ≤ 1}}, {{0 ≤ 1}}) the
formula remains unchanged and Condition 1 trivially holds. Conditions 2
and 3 hold as any variable assignment is a solution to {0 ≤ 1}.

ϕ = e1 ./ e2: If either const(e1) or const(e2) is not linear, then simplify(e1 ./
e2) = (e1 ./ e2, {{0 ≤ 1}}, {{0 ≤ 1}}) and all three conditions trivially
hold. Otherwise, we have LPS = {{const(e1) ./ const(e2)}} and LPS =

{{const(e1) ./ const(e2)}}. Let M be a marking such that M0
w−→ M . We

will now argue that the three conditions of the theorem hold. There are three
subcases to consider:

– Algorithm 1 returns simplify(false) = (false, ∅, {{0 ≤ 1}}) because {LP∪
BASE | LP ∈ LPS} has no solution. Then M 6|= e1 ./ e2 as other-
wise ℘(w) would be a solution both to BASE as well as {const(e1) ./
const(e2)} due to the construction of the state equations for e1 and e2.
This means that Condition 1 holds, Condition 2 is vacuous, and Condi-
tion 3 holds as ℘(w) is clearly a solution to {0 ≤ 1}.

– Algorithm 1 returns simplify(true) = (true, {{0 ≤ 1}}, ∅) because {LP ∪
BASE | LP ∈ LPS} has no solution. ThenM 6|= e1./e2 as otherwise ℘(w)
would be a solution both to BASE as well as {const(e1)./const(e2)} due
to the construction of the state equations for e1 and e2. This implies that
M |= e1./e2 and hence Condition 1 holds. Condition 2 holds as ℘(w) is
clearly a solution to {0 ≤ 1} and Condition 3 is vacuous.

– Algorithm 1 returns (e1 ./ e2,LPS ,LPS ) and because the formula was
unchanged, Condition 1 trivially holds. Due to the construction of the
linear programs based on state equations, it is clear that if M |= e1 ./ e2
then ℘(w) is a solution to both BASE and LPS , implying Condition 2.
Symmetrically, if M 6|= e1 ./ e2 then M |= e1./e2 and hence ℘(w) is a
solution to both BASE and LPS , meaning that Condition 3 holds too.

Inductive Cases (where M0
w−→M):

ϕ = ¬ϕ1: Let simplify(ϕ1) = (ϕ′1,LPS ,LPS ). By structural induction hypoth-
esis we know that M |= ϕ1 iff M |= ϕ′1 which implies that M |= ¬ϕ1 iff
M |= ¬ϕ′1 and Condition 1 is thus satisfied for all three possible returns.
Conditions 2 and 3 clearly hold if simplify(false) or simplify(true) is re-
turned. In case the return value is (¬ϕ′1,LPS ,LPS ), we use the induction
assumption that Conditions 2 and 3 hold for ϕ1 and by adding the negation
to ϕ1 and swapping the sets of linear programs, the conditions hold also for
¬ϕ1.

ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn: Let simplify(ϕi) = (ϕ′i,LPS i,LPS i) for all i, 1 ≤ i ≤ n.
By structural induction hypothesis, for all i we have M |= ϕi iff M |= ϕ′i.
Hence if for some i it is the case that ϕ′i = false we can terminate and
return simplify(false) since it is clear M 6|= ϕ and all three conditions hold
as required. Similarly, if ϕ′i = true for some i, then this conjunct can be
safely skipped over as it will not change the validity of ϕ′. Moreover, should
this be the case for all i, 1 ≤ i ≤ n, then we can safely return simplify(true)
and all three conditions still hold.



Assume that M |= ϕ, then clearly M |= ϕi for all i and by the induction
hypothesis ℘(w) is a solution to each LPS i, meaning that for each i there is
an LPi ∈ LPS i for which ℘(w) is a solution. By the definition of the merge
operation, we know that there exists an LP such that LP ⊆ LP1 ∪ LP2 ∪
. . .∪LPn, where LP ∈ LPS and ℘(w) is a solution to LP . As a consequence,
LPS has ℘(w) as a solution and Condition 2 is thus satisfied. Conversely,
if LPS has no solution, this implies M 6|= ϕ and in this case we can safely
return simplify(false).
Let us assume that M 6|= ϕ, implying that M 6|= ϕi for at least one i. By
induction hypothesis, there is LP ∈ LPS i such that ℘(w) is a solution to
LP and because we perform unions of all LPS i, clearly LP ∈ LPS and
Condition 3 therefore holds.

ϕ = ϕ1 ∨ϕ2 ∨ . . .∨ϕn: Let simplify(ϕi) = (ϕ′i,LPS i,LPS i) for all i, 1 ≤ i ≤ n.
By structural induction hypothesis, for all i we have M |= ϕi iff M |= ϕ′i.
Hence if for some i it is the case that ϕ′i = true we can terminate and
return simplify(true) since it is clear M |= ϕ and all three conditions hold as
required. Similarly, if ϕ′i = false for some i, then this conjunct can be safely
skipped over as it will not change the validity of ϕ′. Moreover, should this
be the case for all i, 1 ≤ i ≤ n, then we can safely return simplify(false) and
all three conditions still hold.
Assume that M |= ϕ, then clearly M |= ϕi for some i and by the induction
hypothesis ℘(w) is a solution to some LP ∈ LPS i. Then the algorithm either
returns simplify(true) and all three conditions hold, or LP ∈ LPS as we
perform the union operation on LPS and this guarantees that Condition 2
holds once the algorithm returns (ϕ′,LPS ,LPS ).
Let us assume that M 6|= ϕ, implying that M 6|= ϕi for all i. By induction
hypothesis, for all i there is LPi ∈ LPS i such that ℘(w) is a solution to
LP . By the definition of the merge operation, we know that there exists an
LP such that LP ⊆ LP1 ∪ LP2 ∪ . . . ∪ LPn, where LP ∈ LPS and ℘(w)
is a solution to LP . As a consequence, LPS has ℘(w) as a solution and
Condition 3 is thus satisfied. Conversely, if LPS has no solution, this implies
M |= ϕ and in this case we can safely return simplify(true).

ϕ = QXϕ1, where Q ∈ {A,E}: Let simplify(ϕ1) = (ϕ′1,LPS ,LPS ). By struc-
tural induction hypothesis, we have M |= ϕ1 iff M |= ϕ′1. In case that ϕ′1 is
either true or false, the four cases in the algorithm clearly preserve logical
equivalence and all three conditions are satisfied. Otherwise we return QXϕ′1
which is equivalent to QXϕ1 and Condition 1 remaind satisfied. Both sets
of linear programs that are returned have any assignment as a solution, so
Conditions 2 and 3 hold too.

ϕ = QPϕ1 where QP ∈ {AG,EG,AF,EF}: This case is analogous to the next
operators discussed above.

ϕ = Q(ϕ1Uϕ2) where Q ∈ {A,E}: Let simplify(ϕ1) = (ϕ′1,LPS 1,LPS 1) and
simplify(ϕ2) = (ϕ′2,LPS 2,LPS 2). By structural induction hypothesis, we
have M |= ϕ1 iff M |= ϕ′1, and M |= ϕ2 iff M |= ϕ′2. If ϕ′2 = true then
Q(ϕ1Uϕ2) is equivalent to true and we can return simplify(true) while
satisfying all three conditions. Similarly if ϕ′2 = false we can safely re-



turn simplify(false). If ϕ′1 = true then Q(ϕ1Uϕ2) becomes logically equiv-
alent to QFϕ′2 and both sets of linear programs that are returned have
any assignment as a solution, so all three conditions are satisfied. In case
ϕ′1 = false then necessarily ϕ2 must hold immediately and we can return
(ϕ′2,LPS 2,LPS 2) that satisfies all three conditions by the induction hy-
pothesis. Otherwise we return Q(ϕ′1Uϕ′2) that is equivalent to ϕ and the
two returned linear programs admit all assignments as solutions, so all three
conditions hold.

ut
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