
Verification of Liveness Properties on
Closed Timed-Arc Petri Nets?

Mathias Andersen, Heine Gatten Larsen, Jǐŕı Srba, Mathias Grund Sørensen,
and Jakob Haahr Taankvist

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract. Verification of closed timed models by explicit state-space
exploration methods is an alternative to the wide-spread symbolic tech-
niques based on difference bound matrices (DBMs). A few experiments
found in the literature confirm that for the reachability analysis of timed
automata explicit techniques can compete with DBM-based algorithms,
at least for situations where the constants used in the models are rel-
atively small. To the best of our knowledge, the explicit methods have
not yet been employed in the verification of liveness properties in Petri
net models extended with time. We present an algorithm for liveness
analysis of closed Timed-Arc Petri Nets (TAPN) extended with weights,
transport arcs, inhibitor arcs and age invariants and prove its correct-
ness. The algorithm computes optimized maximum constants for each
place in the net that bound the size of the reachable state-space. We
document the efficiency of the algorithm by experiments comparing its
performance with the state-of-the-art model checker UPPAAL.

1 Introduction

TAPAAL [8] is a an efficient, open-source tool for modelling and verification
of Timed-Arc Petri Nets (TAPN) extended with transport/inhibitor arcs and
age invariants. The timing information (age) is attached to tokens and intervals
on input arcs restrict the ages of tokens suitable for transition firing. The ver-
ification techniques implemented in the tool include four different translations
to UPPAAL timed automata [12], supporting both reachability and liveness
properties, and its own verification engine for reachability analysis. The actual
verification in any of those approaches rely on searching the abstracted state-
space represented via zones and using the data structure called Difference Bound
Matrix (DBM) [9].

Unfortunately, for the verification of liveness questions, neither of the meth-
ods return error traces (loops in this case) with concrete time delays and not
all requested features, like weighted arcs, are currently supported. As in the
general case with both open and closed intervals the concrete error traces do
not necessarily form a finite loop, we restrict ourselves to the large and practi-
cally relevant subclass of TAPNs with only closed intervals. It is a folklore result
? This work is partially supported by the research center IDEA4CPS.

that the continuous and discrete-time semantics coincide on the class of closed
systems (see e.g. [7]). In nowadays tools the discretization is not sufficiently ex-
ploited, perhaps due to its simplicity as remarked by Lamport [13]. Nevertheless,
a few existing studies show that discretization of the state-space may be bene-
ficial [7, 15, 13], at least in the situations with sufficiently small constants that
appear in the model.

We suggest an efficient algorithm for verification of liveness properties on
closed TAPNs extended with weighted transport/inhibitor arcs and age invari-
ants. The main contributions include a detailed analysis of the maximum con-
stants individually computed for each place in the net, the complete proof of
soundness and completeness of the proposed algorithm and last but not least
an efficient C++ implementation and its full integration into the model checker
TAPAAL. The efficiency is documented by experiments ranging from standard
academic examples for testing the performance of tools like Fischer’s protocol for
mutual exclusion to larger case-studies from the health-care domain. We compare
the CPU-time performance of our discretized algorithm with the efficient DBM-
based engines, including the state-of-the-art model checker UPPAAL [2]. The
main conclusion is that our algorithm can outperform the DBM-based methods
as long as the constants in the model are not too large. Moreover, the discrete
method scales very well in the size of the problems, allowing us to solve problems
with constants that grow more than linearly while increasing the problem size.
As a bonus, our algorithm always returns loop-like counter examples with con-
crete time delays, a feature that allows the user to easily debug possible design
flaws in the models.

Related Work Lamport [13], Bozga et al. [7], Beyer [5, 4] and Popova-
Zeugmann [15] present different methods for discrete model checking of timed
systems. The first three papers present explicit methods for the model of timed
automata, while the third one studies discretization for Time Petri Nets (TPN),
a Petri net model that is substantially different from ours (timing information is
attached to transitions and not to tokens like in TAPNs). While reachability is
in general undecidable for TAPNs [17], a time-bounded reachability for TAPNs
with discrete semantics was shown decidable in [16]. The technique, however,
does not apply for verification of liveness properties because we search here for
the presence of an infinite execution satisfying certain invariant properties and
such executions are often time-diverging. Our liveness algorithm is instead pa-
rameterized by a number k allowing us to explore markings with at most k tokens
(after the removal of dead tokens that cannot be used for transition firing). In
case of bounded nets it always provides conclusive answers while for unbounded
nets (where the liveness problem is undecidable) the answer is conclusive only
in the cases where a loop (counter example) can be found among markings with
at most k tokens (the number k is a part of the input).

To the best of our knowledge, there are no published experiments for dis-
crete verification of liveness properties on TAPNs, moreover extended with the
additional modelling features that require a nontrivial static analysis in order

P0

0

P1

P2

inv: ≤ 3

1 1
1 3

P3

P4

5

T0

T1

T2

T3

[0,∞)
2x 3x [1, 3]

[0,∞) : 1

[0,∞) :1[0,∞)

Fig. 1. Producer-Consumer Example

to minimize the size of maximum constants relative to the individual places in
the net. We assess the performance of our approach by performing a compar-
ison against the state-of-the-art model checker UPPAAL and the results are
encouraging as documented in Section 5.

2 Timed-Arc Petri Nets

Let us first informally introduce the TAPN model. Figure 1 shows an example
of a producer-consumer system. The circles represent places and rectangles rep-
resent transitions. A marking of the net is given by the distribution of timed
tokens; in our case there is one token of age 0 in P0, three tokens of age 1 and
one of age 3 in P2 and one token of age 5 in P4.

Places and transitions are connected by arcs and input arcs to transitions are
labelled by time intervals. The arc from T1 to P2 has the weight 2, denoted by
2x, meaning that two tokens will be produced by firing the transition. Similarly
the arc from P2 to T2 has the weight 3, meaning that three tokens of age between
1 and 3 must be consumed when firing T2, while at the same time there may not
be any token in place P1 (denoted by the inhibitor arc with the circle head). In
our example the transition T2 can fire, consuming three tokens from the place
P2 (these can be either {1, 1, 1} or {1, 1, 3}) and one token from place P4, while
depositing a new token of age 0 to the place P3. The pair of arcs from P3 to P4
with a diamond head are called transport arcs and they always come in pairs
(in our example with the index :1). They behave like normal arcs but when a
token is consumed in P3 and produced to P4, its age is preserved. Places can
also have age invariants like the one denoted by “inv: ≤ 3” in the place P2. This
restricts the maximum age of tokens present in such places. In our example,
there is already a token of age 3 in P2, meaning that we cannot wait any more
and are without any delay forced to fire some transition.

Let us now give a formal definition of the TAPN model. Let N0 = N ∪ {0}
and N∞0 = N0 ∪ {∞}. A discrete timed transition system (DTTS) is a triple
(S ,Act ,→) where S is the set of states, Act is the set of actions and →⊆ S ×
(Act ∪N0)×S is the transition relation written as s a→ s′ whenever (s, a, s′) ∈→.
If a ∈ Act then we call it a switch transition, if a ∈ N0 we call it a delay
transition. By →∗ we denote the reflexive and transitive closure of the relation
→def=

⋃
a∈Act

a→ ∪
⋃

d∈N0

d→.

We define the set of well-formed time intervals as I def= {[a, b] | a ∈ N0, b ∈
N∞0 , a ≤ b} and a subset of I used in invariants as I inv = {[0, b] | b ∈ N∞0 }. For an
interval [a, b] we define [a, b]L = a and [a, b]R = b in order to denote the lower and
upper bound of the interval, respectively. Let maxBound(I) denote the largest
bound different from infinity in the interval I, formally maxBound([a, b]) = a if
b =∞, and maxBound([a, b]) = b otherwise.

We can now define the closed TAPN model with weighted arcs.

Definition 1 (Closed Timed-Arc Petri Net). A closed TAPN is an 8-tuple
N = (P, T, IA,OA, g ,w ,Type, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA→ I is a time constraint function assigning guards to input arcs,
– w : IA ∪OA→ N is a function assigning weights to input and output arcs,
– Type : IA ∪ OA → Types is a type function assigning a type to all arcs,

where Types = {Normal , Inhib} ∪ {Transportj | i ∈ N} such that
• if Type(a) = Inhib then a ∈ IA,
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly

one (t, p′) ∈ OA such that Type((t, p′)) = Transportj and w((p, t)) =
w((t, p′)),

• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly
one (p, t) ∈ IA such that Type((p, t)) = Transportj and w((p, t)) =
w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) 6= Inhib}. Similarly, the postset of output places of t is
defined as t• = {p ∈ P | (t, p) ∈ OA}.

Let N = (P, T, IA,OA, g ,w ,Type, I) be a TAPN and let B(N0) be the set of
all finite multisets over N0. A marking M on N is a function M : P −→ B(N0)
where for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p). The
set of all markings over N is denoted by M(N).

We use the notation (p, x) to denote a token at a place p with the age x ∈ N0.
We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n tokens of
ages xi located at places pi and we define size(M) =

∑
p∈P |M(p)|. A marked

TAPN (N,M0) is a TAPN N together with an initial marking M0 with all tokens
of age 0.

Definition 2 (Enabledness). Let N = (P, T, IA,OA, g ,w ,Type, I) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M by the
multisets of tokens In = {(p, x1

p), (p, x2
p), . . . , (p, xw((p,t))

p) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs the tokens from In satisfy the age
guards of the arcs, i.e.

∀(p, t) ∈ IA.Type((p, t)) 6= Inhib ⇒ xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒
(
xi

p = xi
p′ ∧ xi

p′ ∈ I (p′)
)

for 1 ≤ i ≤ w((p, t)).

– for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((p, t)).

In Figure 1 the transition T2 is enabled by In =
{(P2, 1), (P2, 1), (P2, 1), (P4, 5)} and Out = {(P3, 0)}. As the tokens in
the place P2 have different ages, T2 is also enabled by an alternative multiset
of tokens In = {(P2, 1), (P2, 1), (P2, 3), (P4, 5)}.

A given TAPN N = (P, T, IA,OA, g ,w ,Type, I) defines a DTTS T (N) def=
(M(N), T,→) where states are the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can be fire and produce the marking M ′ = (M r In)]Out where]
is the multiset sum operator and r is the multiset difference operator; we
write M t→M ′ for this switch transition.

– A time delay d ∈ N is allowed in M if (x + d) ∈ Inv(p) for all p ∈ P and
all x ∈ M(p), i.e. by delaying d time units no token violates any of the age
invariants. By delaying d time units in M we reach the marking M ′ defined
as M ′(p) = {x + d | x ∈ M(p)} for all p ∈ P ; we write M d→ M ′ for this
delay transition.

A computation of the net M0 → M1 → · · · → Mn is denoted by {Mi}ni=0

and we call it a run. If the sequence is infinite, we write {Mi}i≥0.

2.1 Liveness Verification Problem

The liveness question asks about the existence of a maximal run where every
marking satisfies some proposition referring to the distribution of tokens. For
that purpose let the set of propositions Φ be given by the abstract syntax ϕ ::=

P0

0.0

P1

inv: ≤ 5

P2 P3

P4T0

T1

T2

T3

T4

T5
[0,∞]

[0,∞]
[0,∞]:1

:1

[0,∞]:1

:1

[10,∞]:1

:1

[0, 10]:1 :1

[1, 1]

Fig. 2. Example of TAPN

p ./ n | ϕ1 ∧ ϕ2 | ¬ϕ where ./ ∈ {≤, <,=, 6=,≥>}, p ∈ P and n ∈ N0. The
satisfaction relation M |= ϕ is defined in the expected way where M |= p ./ n
iff |M(p)| ./ n.

Given a TAPN (N,M0), a maximal run is either an infinite run {Mi}i≥0

or a finite run {Mi}ni=0 with Mn 9, meaning that Mn does not allow for any
switch or positive-delay transition. A maximal run (finite or infinite) is denoted
by {Mi}.

Definition 3 (The Liveness Problem (EGϕ)). Given a marked TAPN
(N,M0) and a proposition ϕ ∈ Φ, the liveness problem is to decide whether
there is a maximal run {Mi} starting in M0 such that Mi |= ϕ for all i.

We can define the standard dual operator AF by AFϕ def= ¬EG¬ϕ, meaning
that eventually the property ϕ will be satisfied on any execution of the net.

3 State-Space Reduction

The state-space of TAPNs is infinite in two dimensions: the number of tokens
can be unbounded and the ages of tokens range over natural numbers. Indeed,
the model (extended with inhibitor arcs and age invariants) has the full Turing
power (see e.g. [17, 11]). In order to enable automatic verification, we restrict
ourselves to bounded TAPNs where the maximum number of tokens in any
reachable marking is a priori bounded by some constant k. For restricting the
ages of tokens, we do not need to remember the concrete ages of tokens in a place
that are older than the maximum constant relevant for that place. This idea was
suggested in [17, 10] for the basic TAPN model without any additional features.
We shall now refine the technique for the more general class of extended TAPNs
that contain age invariants, transport and inhibitor arcs and we further enhance
it with the reduction of dead tokens in order to optimize its performance.

To motivate the technical definitions that follow, let us consider the net in
Figure 2. Note that in place P3 the relevant ages of tokens are 0 and 1. Any
token of age 2 or more cannot be used for transition firing and can be safely
removed from the net. We shall call P3 the dead-token place with the maximum

Carc((p, t)) =

8>>><>>>:
min([I (p′)]R, [g((p, t))]R) if Type((p, t)) = Transportj ,

Type((t, p′)) = Transportj , and

I (p′) 6= [0,∞]

maxBound(g((p, t))) otherwise

(1)

Cplace(p) =

8>>><>>>:
[I (p)]R if [I (p)]R 6=∞
−1 if I (p) = [0,∞] and

∀(p, t) ∈ IA.(g((p, t)) = [0,∞]

max(p,t)∈IA(Carc((p, t))) otherwise.

(2)

Fig. 3. Definitions of Carc and Cplace

constant 1. Any place that contains an invariant, like P1 in our example, will
fall into the category invariant places and the maximum constant will be the
upper-bound of the respective invariant. Clearly, no tokens can be older that this
constant but at the same time we may not just remove the tokens that cannot
be used for any transition firing as they could restrict delay transitions in the
future. The remaining places are called standard places meaning that instead of
the ages of tokens that exceed the maximum constant for a given place, we only
need to remember how many there are, but not their exact ages. For example
in the place P0 all outgoing arcs have the guard [0,∞], so it may look like that
we only need to remember the number of tokens, not their ages. Indeed, if there
were no transport arcs this would be the case. However, in our example the
pair of transport arcs moving tokens to P1 increase the maximum constant for
the place P0 to 5 as the concrete age is relevant up to this number in order to
avoid breaking of the age invariant in P1. In general, there might be a series of
transport arcs that can influence the maximum constant for a place and we show
how to optimize such constants to be as small as possible while still preserving
the liveness property we want to verify.

We start by the definition of causality function. The causality function finds
the causality set of places that are linked with the place p by a chain of transport
arcs with the right endpoints of the guard intervals equal to ∞.

Let p ∈ P . The set cau(p) is the smallest set of places such that

– p ∈ cau(p), and
– if p′ ∈ cau(p) and (p′, t) ∈ IA, (t, p′′) ∈ OA such that Type(p′, t) =

Transportj , Type(t, p′′) = Transportj with [g((p′, t))]R =∞ and I (p′) =∞
then p′′ ∈ cau(p).

In the net from Figure 2 we get that for example cau(P0) = {P0, P1}, cau(P1) =
{P1} and cau(P2) = {P2, P1}.

Next we define the maximum relevant constants for input arcs by Equa-
tion (1) in Figure 3 as a function Carc : IA→ N0. The first case deals with the
situation when the arc is a transport arc that moves tokens to a place with a

Arc Type Carc

P0→ T0 Transport1 5
P0→ T1 Normal 0
P1→ T2 Transport1 0
P2→ T3 Transport1 10
P2→ T4 Transport1 10

Place Cplace Cmax cat

P0 −1 5 Std
P1 5 5 Inv
P2 10 10 Std
P3 1 1 Dead
P4 −1 −1 Std

Fig. 4. Calculation of Carc, Cplace, Cmax and cat for the TAPN in Figure 2

nontrivial age invariant; here it is enough to consider the minimum of the invari-
ant upper-bound and the largest constant in the guard different from infinity. If
this is not the case, we consider just the maximum bound in the guard.

The constant of a place (without considering any causality) is defined by
Equation (2) in Figure 3 as a function Cplace : P → N0 ∪ {−1}. The constant
is either the upper-bound of a nontrivial age invariant in the place, or −1 if all
arcs from p only have trivial guards; in this case we do not care about the ages
of the tokens in p. Otherwise the constant for p is the largest constant of any
arc starting at p.

We are now ready to divide places into three categories and compute the
maximum relevant constants taking into account the causality set of places. In
liveness verification, the query will also influence the category of places, so we
consider the function Places : Φ→ P(P) that for a given proposition ϕ returns
the set of places that syntactically appear in ϕ. We can now calculate the function
Cmax : P → N0 ∪ {−1} returning the maximum constant for each place (taking
into account also the transport arcs) and the function cat : P→ {Inv ,Dead ,Std}
returning the category for each place p ∈ P as follows.

– If I (p) 6= [0,∞] then Cmax(p) = [I (p)]R and cat(p) = Inv .
– Otherwise Cmax(p) = max{Cplace(p′) | p′ ∈ cau(p)} and if either

(i) there is t ∈ T such that (p, t) ∈ IA and Type((p, t)) = Inhib), or
(ii) there is t ∈ T such that (p, t) ∈ IA and [g((p, t))]R =∞], or

(iii) p ∈ Places(ϕ))
then cat(p) = Std , else cat(p) = Dead .

The conditions (i)–(iii) list all situations where we are not allowed to remove
tokens above the maximum constant as the concrete number of these tokens is
relevant for the behaviour of the net or for the the proposition ϕ. An example of
the calculation of Cmax and cat is given in Figure 4, assuming Places(ϕ) = {P1}.

3.1 Bounded Marking Equivalence

Given the maximum constants and categories of places, we can now define an
equivalence relation on markings that will have a finite number of equivalence
classes and can be used in the liveness checking algorithm.

Let Cmax and cat be computed as above and let M be a marking. We split M
into two markings M> and M≤ as follows: M>(p) = {x ∈M(p) | x > Cmax(p)}

and M≤(p) = {x ∈M(p) | x ≤ Cmax(p)} for all places p ∈ P . Clearly, M =
M>]M≤.

Definition 4 (Bounded Marking Equivalence). Let M and M ′ be markings
on a TAPN N . We say that M and M ′ are equivalent, written M ≡M ′, if

– M≤(p) = M ′≤(p) for all p ∈ P , and
– |M>(p)| = |M ′>(p)| for all p ∈ P where cat(p) = Std.

The equivalence relation implies that in Dead places we do not care about
the tokens with ages greater than Cmax and that in Std places we do not care
about tokens with ages greater than Cmax, as long as there are equally many of
them in both markings. An important correctness argument is the fact that that
the relation ≡ is a timed bisimulation where delays on one side and matched by
exactly the same delays on the other side (see e.g. [14]). The proof is done by a
detailed case analysis and can be found in the full version of the paper.

Theorem 1. The relation ≡ is a timed bisimulation.

In order to calculate a representative marking for each ≡-equivalence class,
we define the function cut and present Lemma 1 that is proved in the full version
of the paper.

Definition 5 (Cut). The function cut :M(N)→M(N) is given by

cut(M)(p) =

M≤(p) if cat(p) ∈ {Inv ,Dead}
M≤(p)]

{
Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸

|M>(p)| times

}
if cat(p)=Std

for all p ∈ P . We call the marking cut(M) canonical.

Lemma 1 (Properties of Canonical Markings).

1. For any marking M we have M ≡ cut(M).
2. Given two markings M1 and M2 if M1 ≡M2 then cut(M1) = cut(M2).
3. Let M be a marking and ϕ ∈ Φ be a proposition then M |= ϕ iff cut(M) |= ϕ.

4 Liveness Algorithm

We can now present Algorithm 1 answering the liveness verification problem.
It is essentially a depth-first search algorithm where the Waiting stack stores
the currently unexplored successors that satisfy the invariant property ϕ. In the
Trace stack we keep track of the run from the initial marking to the currently
explored marking. A counter recording the number of unexplored successors
for each marking on the Trace stack is used for the coordination between the
Trace and Waiting stacks. The main loop contains a boolean variable indicating
whether the current marking is the end of a maximal run (in case no further

1 input: A TAPN (N,M0), proposition ϕ ∈ Φ and k ∈ N s.t. size(cut(M0)) ≤ k.
2 output: True if there is a maximal run {Mi} s.t. Mi |= ϕ and

size(cut(Mi)) ≤ k, false otherwise.
3 begin
4 Passed := ∅; Waiting .InitStack(); Trace.InitStack();M ′

0 := cut(M0);
5 if M ′

0 |= ϕ then
6 Waiting .push(M ′

0);
7 while ¬Waiting .isEmpty() do
8 M := Waiting .pop();
9 if M 6∈ Passed then

10 Passed := Passed ∪ {M};M.successors:=0;
11 Trace.push(M); endOfMaxRun := true;

12 foreach M ′ s.t. M
t→M ′ do

13 AddToPW(M ,M ′); endOfMaxRun := false;

14 if min(p,x)∈M ([I (p)]R − x) > 0 then

15 AddToPW(M ,M ′) where M
1→M ′; endOfMaxRun := false;

16 if endOfMaxRun then
17 return true /* terminate and return the Trace stack */ ;

18 else
19 Trace.top().successors−−
20 while ¬Trace.isEmpty() ∧ Trace.top().successors = 0 do
21 Trace.pop();
22 if Trace.isEmpty() then
23 return false /* terminate the whole algorithm *.;
24 Trace.top().successors−−;

25 return false;

26 AddToPW(M ,M ′): begin
27 M ′′ := cut(M ′);
28 if M ′′ ∈ Trace then
29 return true /* terminate and return the loop on the Trace stack */;
30 if M ′′ /∈ Passed ∧M ′′ |= ϕ ∧ size(M ′′) ≤ k then
31 Waiting .push(M ′′);
32 M.successors++;

Algorithm 1: Liveness algorithm

successors exist). If this is the case, the algorithm terminates as a maximal run
satisfying ϕ has been found. Otherwise new canonical successors (by transition
firing and one-unit delay) are added by calling the function AddToPW , making
sure that only markings that satisfy ϕ are added to the Waiting list. The func-
tion also checks for the presence of a loop on the Trace stack, in which case the
algorithm terminates and returns true. A bound k is also an input to the algo-
rithm, making sure that only canonical markings with no more than k tokens
are explored during the search. If the net is k-bounded, this has no effect on the
actual search. For unbounded nets, our algorithm still terminates and provides
a suitable under-approximation of the net behaviour, giving conclusive answers
if a loop is found and inconclusive answers otherwise.

Processes \ Constants 3 5 7 9 11 13 15

5
0.1
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.3

0.1
0.1
0.7

0.1
0.1
1.8

0.1
0.1
3.7

0.1
0.1
7.9

6
0.2
0.9
0.1

0.2
0.9
0.1

0.2
0.9
0.5

0.2
0.9
1.8

0.2
0.9
5.3

0.2
0.9

13.3

0.2
0.9

29.6

7
4.6

47.5
0.1

4.6
47.2
0.2

4.6
47.0
1.1

4.6
47.1
4.5

4.6
47.2
14.4

4.6
47.4
40.7

4.6
47.1
99.3

8
422.5

�
0.1

422.6
�

0.4

421.5
�

2.4

422.4
�

10.5

421.9
�

37.8

422.1
�

115.2

422.3
�

309.8

9
�
�

0.1

�
�

0.7

�
�

4.5

�
�

22.4

�
�

90.5

�
�

300.4

�
�

888.2

10
�
�

0.1

�
�

1.1

�
�

8.2

�
�

45.9

�
�

202.2

�
�

733.5

�
�
�

Table 1. Fischer’s protocol scaled by the number of processes (rows) and the size of
maximum constant (columns). First line is a native UPPAAL model, second line is the
fastest translation to timed automata and using the UPPAAL engine, and third line is
our discrete TAPAAL engine. The symbol � stands for more than 900 seconds.

Patients Translations TAPAAL

1 0.11 0.04
2 28.08 0.93
3 >5400.00 30.47
4 >5400.00 1072.50

Table 2. Blood transfusion case study scaled by the number of patients; time is seconds

Theorem 2 (Correctness). Let TAPN (N,M0) be a closed TAPN, ϕ ∈ Φ
a proposition and k ∈ N a number such that size(cut(M0)) ≤ k. Algorithm 1
terminates, and it returns true if there is a maximal run {Mi} such that Mi |= ϕ
and size(cut(Mi)) ≤ k and false otherwise.

Proof (sketch). Termination follows from the fact that we only store markings
after applying the function cut , giving us together with at most k tokens in the
net a finite state-space. The soundness and completeness part of Theorem 2 rely
on Lemma 1 and Theorem 1 and details are given the full version of the paper.

ut

5 Experiments

The liveness algorithm has been implemented and fully integrated into the ver-
ification tool TAPAAL [8] and it can be downloaded (as a beta-release) from

http://www.tapaal.net. We performed a number of experiments1 and due to the
space limitation mention only two of them. The results of verification of Fischer’s
algorithm for mutual exclusion are given in Table 1. We asked here an EG query
checking whether there is an infinite schedule allowing us to repeatedly enter the
critical section within a given time interval. The query is not satisfied and hence
the whole state-space where the proposition holds is searched. The table shows
the verification times for a native UPPAAL model of the protocol (first line),
the best time for a translation (see [8] for details) to timed automata and then
using the UPPAAL engine (second line) and our discretized algorithm (third
line). The gray cells mark the experiments where our method was the fastest
one. The reader can observe that the DBM-based methods in the first two lines
are immune to scaling of constants. On the other hand, our algorithm scales
significantly better with increasing the number of processes. Hence for larger
instances, we can handle larger and larger constants while still outperforming
the DBM-based methods. In fact, the size of the constants we can deal with
for the given time limit grows more than linearly as we increase the number of
processes. We have observed similar behaviour in other case studies too, like e.g.
in the Lynch-Shavit protocol that is presented in the full version of the paper.

In order to test the performance on a realistic case-study, we verified sound-
ness (AF query) of a blood transfusion medical workflow (details can be found
in [3]) where the maximum constant is of size 90 and it considerably outper-
forms the translation approach verified via UPPAAL engine. Results are given
in Table 2 and we compare our engine with the fastest translation to UPPAAL
timed automata.

6 Conclusion

We presented a discrete algorithm for verification of liveness properties on ex-
tended timed-arc Petri nets and provided its implementation and integration into
the model checker TAPAAL. The main technical contribution is the partitioning
of the places in the net to three categories and an optimized computation of
the individual maximum constants, allowing us to design an efficient loop detec-
tion algorithm based on depth-first search. We proved the algorithm correct and
demonstrated on several examples its applicability as an alternative to DBM-
based search algorithms. The techniques can be easily adapted to work also for
reachability analysis.

Our approach is well suited for larger models with relatively small constants.
Due to an on-the-fly removal of dead tokens that appear in the net, we were able
to successfully verify models that are in general unbounded and where DBM-
based methods give inconclusive answers (for example in case of the Alternating
Bit Protocol (ABP) with perfect communication channels presented as the stan-
dard example in the TAPAAL distribution). In the future work we shall focus
on space-optimization of the proposed technique, on a symbolic computation
1 We report here the data obtained on MacBook Pro 2.7GHz INTEL Core i7 with 8

GB RAM and 64-bit versions of UPPAAL and TAPAAL.

of the delay operator and on comparing the method to BDD-based state space
exploration (as exploited e.g. in the tool Rabbit [6]).

References

1. P.A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Using forward reachability
analysis for verification of timed Petri nets. Nordic J. of Computing, 14:1–42, 2007.

2. G. Behrmann, A. David, K.G. Larsen, J. Hakansson, P. Petterson, Wang Yi, and
M. Hendriks. Uppaal 4.0. In QEST’06, pages 125 –126, sept. 2006.

3. C. Bertolini, Zh. Liu, and J. Srba. Verification of timed healthcare workflows using
component timed-arc Petri nets. In FHIES’12. Springer-Verlag, 2012. To appear.

4. D. Beyer. Efficient reachability analysis and refinement checking of timed au-
tomata using BDDs. In Proc. of CHARME’01, volume 2144 of LNCS, pages 86–91.
Springer-Verlag, 2001.

5. D. Beyer. Improvements in BDD-based reachability analysis of timed automata.
In Proc. of FME’01, volume 2021 of LNCS, pages 318–343. Springer-Verlag, 2001.

6. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for BDD-based verification
of real-time systems. In Proc. of CAV’03, volume 2725 of LNCS, pages 122–125.
Springer-Verlag, 2003.

7. M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata using
dense and discrete time semantics. In CHARME’99, volume 1703 of LNCS, pages
125–141. Springer, 1999.

8. A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba.
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In
TACAS’12, volume 7214 of LNCS, pages 492–497. Springer-Verlag, 2012.

9. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Joseph Sifakis, editor, Automatic Verification Methods for Finite State Systems,
volume 407 of LNCS, pages 197–212. Springer, 1989.

10. H.M. Hanisch. Analysis of place/transition nets with timed arcs and its application
to batch process control. In Application and Theory of Petri Nets 1993, volume
691 of LNCS, pages 282–299. Springer Berlin / Heidelberg, 1993.

11. L. Jacobsen, M. Jacobsen, and M. H. Møller. Undecidability of Coverability and
Boundedness for Timed-Arc Petri Nets with Invariants. In Proc. of MEMICS’09.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009.

12. L. Jacobsen, M. Jacobsen, M.H. Møller, and J. Srba. Verification of timed-arc
Petri nets. In SOFSEM’11, pages 46–72, 2011.

13. L. Lamport. Real-time model checking is really simple. In Dominique Borrione
and Wolfgang Paul, editors, Correct Hardware Design and Verification Methods,
volume 3725 of Lecture Notes in Computer Science, pages 162–175. Springer Berlin
/ Heidelberg, 2005.

14. K.G. Larsen and Y. Wang. Time-abstracted bisimulation: Implicit specifications
and decidability. Information and Computation, 134(2):75 – 101, 1997.

15. Louchka Popova-zeugmann. Essential states in time Petri nets. Informatik-
Berichte, 96, 1998.

16. V.V. Ruiz, D. de Frutos Escrig, and O. Marroquin Alonso. Decidability of proper-
ties of timed-arc Petri nets. In ICATPN’00, volume 1825 of LNCS, pages 187–206.
Springer-Verlag, 2000.

17. V.V. Ruiz, F. Cuartero Gomez, and D. de Frutos Escrig. On non-decidability
of reachability for timed-arc Petri nets. In Proceedings of the 8th International
Workshop on Petri Net and Performance Models (PNPM’99), pages 188–196, 1999.

A Proofs of Timed Bisimilarity

Before we proceed to Theorem 1, we will prove a technical lemma that will allow
us to provide a more structured proof of the theorem.

Lemma 2. Let M1,M
′
1,M2,M

′
2 be markings such that M1 ≡ M ′1 and M2 ≡

M ′2. Then M1]M2 ≡ M ′1]M ′2. If moreover M2 ⊆ M1 and M ′2 ⊆ M ′1, then
M1 \M2 ≡M ′1 \M ′2.

Proof. Let M1,M
′
1,M2,M

′
2 be markings as assumed in the lemma. By the defi-

nition of the multiset sum operator and the multiset difference operator, we get
for all p ∈ P the following equalities.

(M1]M2)≤(p) = M1≤(p)]M2≤(p) = M ′1≤(p)]M ′2≤(p) = (M ′1]M ′2)≤(p)

(M1 \M2)≤(p) = M1≤(p) \M2≤(p) = M ′1≤(p) \M ′2≤(p) = (M ′1 \M ′2)≤(p)

For all p ∈ P such that cat(p) = Std we also get the remaining two equations
establishing the desired equivalence.

|(M1]M2)>(p)| = |M1>(p)]M2>(p)| = |M1>(p)|+ |M2>(p)|
= |M1

′
>(p)|+ |M ′2>(p)| = |M ′1>(p)]M ′2>(p)|

= |(M ′1]M ′2)>(p)| (3)

|(M1 \M2)>(p)| = |M1>(p) \M2>(p)| = |M1>(p)| − |M2>(p)|
= |M1

′
>(p)| − |M ′2>(p)| = |M ′1>(p) \M ′2>(p)|

= |(M ′1 \M ′2)>(p)| (4)

Note that the requirement M2 ⊆M1 and M ′2 ⊆M ′1 is necessary for Equation (4)
as in equivalent markings the ages of tokens above the maximum constant do
not have to match but we want to be sure that all tokens from M2 and M ′2 are
indeed removed when the multiset difference operator is applied. ut

We can now give a complete proof of the main theorem.

Proof (Theorem 1). Consider the TAPN N = (P, T, IA,OA, g ,w ,Type, I) and a
pair of markings M1 and M2 such that M1 ≡M2. We want to show that ≡ is a
timed bisimulation, in other words, that

1. if M1
t→M ′1 then M2

t→M ′2 and M ′1 ≡M ′2,

2. if M1
d→M ′1 then M2

d→M ′2 and M ′1 ≡M ′2,
3. if M2

t→M ′2 then M1
t→M ′1 and M ′2 ≡M ′1, and

4. if M2
d→M ′2 then M1

d→M ′1 and M ′2 ≡M ′1.

Condition 1. Let a transition t ∈ T be enabled in the marking M1 by the sets
of tokens In1 ⊆M1 and Out1 according to Definition 2. We shall construct two
sets of tokens In2 ⊆M2 and Out2 that enable t in M2 and argue that

M ′1 = (M1 \ In1)]Out1 ≡ (M2 \ In2)]Out2 = M ′2 .

To simplify the proof, we will use Lemma 2 and argue instead for two simpler
(but equivalent) claims that In1 ≡ In2 and Out1 ≡ Out2. In what follows let
Intype = {(p, x) ∈ In | cat(p) = type} where type ∈ {Inv ,Dead ,Std}.

We shall now present the construction of the multisets In2 and Out2 from
the given multisets In1 and Out1. We start with the definition of In2 = InInv

2]
InDead

2] InStd
2 and argue that In2 ⊆M2.

– Let InInv
2 := InInv

1 . Clearly InInv
2 ≡ InInv

1 and all tokens in the invariant
places of M1 are also present in the equivalent marking M2, giving us that
InInv

2 ⊆M2 by the assumption that InInv
1 ⊆ In1 ⊆M1.

– Let InDead
2 := InDead

1 and again clearly InDead
2 ≡ InDead

1 . Any token (p, x) ∈
InDead

1 must satisfy that x ≤ Cmax(p); otherwise the set In1 would not
enable the transition t because the interval on the arc from p to t has an
upper-bound that is (by definition of dead-token places) strictly below x.
Hence we get InDead

2 ⊆M2 by the same arguments as in the first case.
– The set InStd

2 is now defined by two cases. For every token (p, x) ∈ InStd
1 :

• if x ≤ Cmax(p) we add (p, x) to the multiset InStd
2 , and

• if x > Cmax(p) we add to InStd
2 any token (p, x′) ∈M2 with x′ > Cmax(p)

that has not been added to InStd
2 yet. Such tokens can be always found

by the fact that |M1>(p)| = |M2>(p)| which follows from M1 ≡M2 and
from the assumption that cat(p) = Std .

We can conclude that InStd
1 ≡ InStd

2 and InStd
2 ⊆M2.

We have already argued in the three cases above that In2 ⊆ M2 and because
InInv

2 ≡ InInv
1 and InDead

2 ≡ InDead
1 and InStd

2 ≡ InStd
1 we get by Lemma 2 that

also
In2 = InInv

2] InDead
2] InStd

2 ≡ InInv
1] InDead

1] InStd
1 = In1 . (5)

Let us now continue with the definition of Out2 where we want to argue that
Out2 ≡ Out1.

– Normal output arcs. For each (t, p′) ∈ OA such that Type((t, p′)) = Normal
we add to Out2 as many tokens (p′, 0) as is the weight of the arc; formally
we add to Out2 the multiset of tokens {(p′, 0), (p′, 0), . . . , (p′, 0)}︸ ︷︷ ︸

w((t,p′))–times

. Clearly,

{(p′, x) ∈ Out2 | Type((t, p′)) = Normal} ≡ {(p′, x) ∈ Out1 | Type((t, p′)) =
Normal} as the newly added tokens are identical to those that are in Out1.

– Transport output arcs. For each output arc (t, p′) ∈ OA where Type((t, p′)) =
Transportj , there is a unique place p ∈ P with Type((p, t)) = Transportj and
in In1 there are the tokens (p, xi

p) ∈ In1, 1 ≤ i ≤ w((p, t)), that are moved to
p′. Now, for each 1 ≤ i ≤ w((p, t)), if xi

p ≤ Cmax(p) then also (p, xi
p) ∈ In2

and we add the token (p′, yi
p) where yi

p = xi
p into Out2; if xi

p > Cmax(p)
then there is a corresponding token (p, yi

p) ∈ In2 with yi
p > Cmax(p) and we

add (p′, yi
p) into Out2. What remains to be established is that Out2 ≡ Out1

for the tokens added in this second case. Assume we have added a token
(p′, yi

p) into Out2. If yi
p = xi

p then we are done. Otherwise there are two
cases according to the category of the place p′.
• If cat(p′) = Inv then we know that xi

p ≤ [I (p′)]R giving us that
xi

p ≤ Cmax(p) by the definitions in Figure 3 and the causality func-
tion in combination with the definition of Cmax. This means that by our
construction yi

p = xi
p.

• If cat(p′) = Dead or cat(p′) = Std then there are two subcases.
∗ If [g((p, t))]R 6= ∞ then clearly xi

p ≤ [g((p, t))]R ≤ Cmax(p) and by
our construction we get yi

p = xi
p.

∗ If [g((p, t))]R = ∞ then Cmax(p) ≥ Cmax(p′) because p′ ∈ cau(p)
which implies that cau(p′) ⊆ cau(p) and from the fact that Cmax(p)
is defined as max{Cplace(p′) | p′ ∈ cau(p)}. Now if xi

p > Cmax(p) ≥
Cmax(p′) then also yi

p > Cmax(p) ≥ Cmax(p′) and we are done also
in this case.

Hence we established that Out2 ≡ Out1 which together with the previously
proven fact In2 ≡ In1 implies by Lemma 2 that

M ′1 = (M1 \ In1)]Out1 ≡ (M2 \ In2)]Out2 = M ′2 .

What remains to be verified is that in the marking M2 the transition t is
indeed enabled by the multisets of tokens In2 and Out2. We do this by checking
the four conditions in Definition 2.

– For every input arc (p, t) ∈ IA which is not an inhibitor arc, we know that in
M1 the arc’s interval is satisfied by the tokens (p, xi

p), 1 ≤ i ≤ w((p, t)), that
are part of In1. We need to check that the corresponding tokens (p, yi

p), 1 ≤
i ≤ w((p, t)), in In2 also satisfy the interval, using the fact that In1 ≡ In2.
Indeed, if xi

p = yi
p then the statement is trivially true. Otherwise we know

that both xi
p, y

i
p > Cmax(p) and hence the tokens are in particular larger

than any integer constant appearing on the interval. This implies that the
interval on the arc (p, t) must be open to the right as the token xi

p fits into
the interval by our assumption. Hence yi

p also fits into the interval.
– For every inhibitor arc (p, t) ∈ IA, we know by the definition of categories

of places that cat(p) 6= Dead , meaning that both M1 and M2 must have the
same number of tokens in the place p. Moreover, by the arguments as above,
because in M1 the number of tokens in the interval of the inhibitor arc is
less than its weight, so will be the number of tokens in the marking M2.

– Now for every pair of transport arcs (p, t) and (t, p′) we know by the definition
of Out2 that the tokens moved from p to p′ preserve their ages. We just need
to verify that they also satisfy the invariant in the place p′. If [I (p)]R ≤
[I (p′)]R or [g(p, t)]R ≤ I (p′) then this is trivially true. Otherwise by the

definition of Cmax and by the definitions in Figure 3 we have Cmax(p) ≥ I (p′)
because of the pair of transport arcs (p, t) and (t, p′). This means that the
ages of tokens in In1 and In2 that travel across this pair of transport arcs
will be the same in both cases and we are done also with this case.

– The last condition that the tokens in Out2 produced by normal arcs are of
age 0 is true by the construction of Out2.

Condition 2. Assume that M1
d→ M ′1. This means that for any place p of type

Inv also x + d ∈ I (p) for any token x ∈ M1(p). Whenever cat(p) = Inv , all
tokens in the place p are of age at most Cmax(p) and thus M1(p) = M2(p) for
any such p. This means that M2

d→ M ′2. Moreover, by aging tokens in the two
markings M1 and M2 by equal delays cannot break any of the two requirements
of Definition 4. Therefore M ′1 ≡M ′2.

Conditions 3 and 4. The proofs of these two conditions are symmetric to the
two cases above. ut

B Proofs for Canonical Representative

B.1 Lemma 1.1

Proof (Lemma 1.1). We have to show that the two properties in Definition 4
hold for the pair of markings M and cut(M).

– cut(M)≤(p) = M≤(p) for all p ∈ P :
• If cat(p) ∈ {Inv ,Dead} then cut(M)(p) = M≤(p) by definition.
• If cat(p) = Std then

cut(M)(p) = M≤(p)]
{

Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸
|M>(p)| times

}
by definition and the tokens we add to the right are older than Cmax(p)
thus cut(M)≤(p) = M≤(p).

– |cut(M)>(p)| = |M>(p)| for p ∈ P such that cat(p) = Std :
• cut(M)(p) = M≤(p)]

{
Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸

|M>(p)| times

}
by definition

and thus cut(M)>(p) =
{

Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸
|M>(p)| times

}
and we con-

clude that |cut(M)>(p)| = |M>(p)|.
ut

B.2 Lemma 1.2

Proof (Lemma 1.2). Assume that M1 ≡M2. If cat(p) ∈ {Inv ,Dead} we have

cut(M1)(p) = M1≤(p) = M2≤(p) = cut(M2)(p).

If cat(p) = Std we have

cut(M1)(p) = M1≤(p)]
{

Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸
|M1>(p)| times

}
= M2≤(p)]

{
Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸

|M2>(p)| times

}
= cut(M2)(p).

ut

B.3 Lemma 1.3

Proof (Lemma 1.3). Propositions only ask about the number of tokens in differ-
ent places, not about the ages of the tokens. By Lemma 1 part 1 and Definition 4,
the markings M and cut(M) have exactly the same number of tokens at every
place, with the exception of dead-token places. Since a dead token place p must
satisfy p /∈ Places(ϕ), the number of tokens in this place is irrelevant for the
proposition. ut

C Correctness of the Liveness Algorithm

We shall now argue about the correctness of the liveness algorithm by proving
its termination, soundness and completeness.

Lemma 3 (Termination). Algorithm 1 terminates on any input.

Proof. The algorithm terminates once the Waiting stack gets empty. Observe
that only canonical markings of size at most k can be pushed to the Waiting
stack. There are only finitely many such canonical markings. The termination
now follows from the fact that in every iteration of the main while-loop one
marking is popped from the Waiting stack and it is put on the Passed list (unless
it is already there). Thanks to the first condition at line 30 such a marking will
never be pushed again to the Waiting stack. This implies the termination of the
main while-loop of the algorithm as the other while-loop at lines 20 to 24 surely
terminates, latest once the Trace stack gets empty. ut

In order to prove soundness and completeness of the algorithm, we first high-
light an invariant that shows the relationship between the stacks Waiting and
Trace. It is illustrated in Figure 5. The idea is that the liveness algorithm per-
forms a standard depth-first search using the Waiting stack and exploring only
canonical markings that satisfy the proposition ϕ and have no more than k to-
kens. The trace stack stores a path from the initial marking M0 to the currently
explored marking. This fact is formulated by the following lemma.

Lemma 4 (Invariant). The outer while-loop in Algorithm 1 satisfies the fol-
lowing invariant. If Trace = (M ′0,M

′
1, . . . ,M

′
n) then

– Waiting =
(
M0

0 ,M
1
0 , . . . ,M

k0
0︸ ︷︷ ︸

k0=M0.successors−1

,M0
1 ,M

1
1 , . . . ,M

k1
1︸ ︷︷ ︸

k1=M1.successors−1

, . . . , M0
n,M

1
n, . . . ,M

kn
n︸ ︷︷ ︸

kn=Mn.successors≥1

)
where M j

i is a canonical marking of the j’th so far unexplored M ′i-successor
that satisfies ϕ, and

– there is a real computation of the net M0 → M1 → · · · → Mn such that
M ′i = cut(Mi) for 1 ≤ i ≤ n.

Proof. Both claims of the invariant are trivially satisfied the first time the while-
loop is entered. Let us assume the invariant holds before executing the body of
the while-loop and let us pop a marking M from the Waiting stack at line 8.

– If M is not on the passed list, then all possible firing-successors and 1-delay-
successors are generated at lines 12 to 14 and added to the passed/waiting
data structure by the call to AddtoPW. Now all canonical successors that
are not already on the passed list, satisfy ϕ and their size is no more than
k are pushed on the Waiting stack (line 31) and the successor count for the
marking M is increased accordingly (line 32).

– If M is already on the passed list, there is nothing more to explore and the
successor count for the marking on the top of the Trace stack is decreased
by one.

Fig. 5. Invariant property connecting the stacks Trace and Waiting ; arrows point from
a marking on the Trace stack to its so far unexplored successors that satisfy ϕ

The inner while-loop at lines 20 to 24 now takes care that during the backtracking
all markings on the Trace list that have no further successors on the Waiting list
to explore are popped so that the first part of the invariant is recovered and the
top of the Trace stack corresponds to a marking that has at least one unexplored
successor on the Waiting stack.

The second part of the invariant follows from the fact that a canonical mark-
ing is pushed to the Trace stack at line 11 only if it is a so far unexplored
canonical successor of M ′n that is on the top of the Trace stack; this is implied
by the first part of the invariant. The fact that there is a real execution of the
net N going through markings that are equivalent to the canonical ones present
in the Trace stack follows from Theorem 1. By Lemma 1 part 2 and the fact
that cut(cut(M)) = cut(M) we get the claimed property. ut

We can now establish the soundness of the algorithm.

Lemma 5 (Soundness). Let (N,M0) be a marked TAPN and let ϕ ∈ Φ be a
proposition. If Algorithm 1 returns true then there is a maximal run {Mi} such
that Mi |= ϕ.

Proof. The algorithm can return true at two places. At line 17 and at line 29.
In the first case (termination at line 17), we know that the canonical mark-

ing M on the top of the Trace stack has no successors. By the second part of
Lemma 4, there is a real execution of the net M0 → M1 → · · · → Mn → M
where by Lemma 1 part 3 all markings satisfy ϕ and by Theorem 1 and the fact
that M ≡M it is a maximal run in the net N as requested.

In the second case (termination at line 29) we know that we found a loop
invariantly satisfying ϕ and consisting of canonical markings. By the same ar-
guments as in the first part of this lemma, there is a real execution that will
at the end reach a marking that is equivalent to some other marking already
seen during the trace. By repeatedly applying Theorem 1 we can unfold it to an
infinite run (not necessarily forming a loop) consisting of markings that satisfy
ϕ. Hence we found a maximal run where ϕ is invariantly true as requested. ut

Finally, we prove the completeness of the liveness algorithm.

Lemma 6 (Completeness). Let (N,M0) be a marked TAPN and let ϕ ∈ Φ
be a proposition. If there is a maximal run {Mi} such that Mi |= ϕ and
size(cut(Mi)) ≤ k for all i then Algorithm 1 returns true.

Proof. We assume that there is such a maximal run {Mi}. We have two cases.

– Let {Mi}ni=0 be a finite maximal run where Mn 9. Because our algorithm
performs a standard depth-first search and there is a trace from M0 to Mn

passing through markings that have a canonical size no more than k and all
satisfy ϕ, we will eventually (unless the algorithm already returned true for
some other reason) pop the marking cut(Mn) from the Waiting stack and
return true at line 17 as cut(Mn) does not enable any transition firing nor
allows for a positive time delay.

– Let {Mi} is an infinite maximal run. Consider now the sequence of markings
{cut(Mi)} that are explored in our search algorithm. As the size of each
canonical marking in this infinite sequence is bounded by k and the ages of
the tokens in each place p are bounded by Cmax(p)+1, there are only finitely
many such canonical markings. This means that there are some indices j and
k, 0 ≤ j < k, such that cut(Mj) = cut(Mk). In our search algorithm, unless
it already returned true, we will eventually get to the situation when the
first marking M ∈ {Mj ,Mj+1, . . . ,Mk} is popped from the Waiting stack
at line 8. This means that none of the markings Mj , Mj+1, . . . , Mk forming
the loop is on the Passed list yet. Hence the depth-first search from M will
eventually discover again the same marking M and at line 28 the algorithm
detects this and returns true as claimed by the lemma.

ut

D Verification of Lynch-Shavit Protocol

The TAPN model of the protocol was taken from [1] and we check for the exis-
tence of a possible schedule (EG query) that guarantees that the critical section
is repeatedly entered within a given interval. The details about the TAPAAL
model of the protocol can be found in [8] and the model with the liveness query is
available from the download section at http://www.tapaal.net. The verification
times (in seconds) for the native UPPAAL model, the translations and our algo-
rithm are presented in Table 3. The protocol documents a similar performance
as in case of Fischer’s protocol, showing even more clearly that by scaling the
size of the problem (number of processes), the size of constants where we can
verify the problem faster than the DBM-based methods is growing more then
linearly.

Processes \ Constants 3 5 7 9 11 13 15

5
0.1
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.3

0.1
0.1
1.0

0.1
0.1
2.5

0.1
0.1
5.4

0.1
0.1

11.0

6
0.2
1.2
0.1

0.2
1.2
0.2

0.2
1.2
0.8

0.2
1.1
2.6

0.2
1.2
7.5

0.2
1.1

18.7

0.2
1.3

40.7

7
5.1

51.3
0.1

5.1
51.2
0.4

5.1
51.4
1.7

5.1
51.2
6.5

5.1
51.3
20.8

5.1
52.5
58.4

5.1
51.5

139.5

8
456.2

�
0.1

457.0
�

0.6

450.1
�

3.4

450.6
�

15.0

458.6
�

53.2

459.4
�

159.2

452.7
�

425.9

9
�
�

0.1

�
�

1.0

�
�

6.5

�
�

31.7

�
�

125.4

�
�

412.7

�
�
�

Table 3. Lynch-Shavit protocol scaled by the number of processes (rows) and the size
of maximum constant (columns); first line is a native UPPAAL model, second line
is translation using the UPPAAL engine (the fastest one), third line is the discrete
TAPAAL engine; � stands for more than 900 seconds

