Tutorial 6

Exercise 1*

Draw a graphical representation of the complete lattice $(2^{\{a,b,c\}}, \subseteq)$ and compute supremum and infimum of the following sets:

- $\sqcap\{\{a\},\{b\}\} = ?$
- $\sqcup \{\{a\}, \{b\}\} = ?$
- \sqcap {{*a*}, {*a*, *b*}, {*a*, *c*}} = ?
- \sqcup { $\{a\}, \{a, b\}, \{a, c\}$ } = ?
- \sqcap {{*a*}, {*b*}, {*c*}} = ?
- \sqcup { $\{a\}, \{b\}, \{c\}\} = ?$
- \sqcap {{*a*}, {*a*, *b*}, {*b*}, \emptyset } = ?
- \sqcup { $\{a\}, \{a, b\}, \{b\}, \emptyset$ } = ?

Exercise 2

Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of $X (\sqcup X)$ and infimum of $X (\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq .)

Exercise 3

Let (D, \sqsubseteq) be a complete lattice. What are $\sqcup \emptyset$ and $\sqcap \emptyset$ equal to?

Exercise 4*

Consider the complete lattice $(2^{\{a,b,c\}}, \subseteq)$. Define a function $f : 2^{\{a,b,c\}} \to 2^{\{a,b,c\}}$ such that f is monotonic.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
- Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \perp and by applying repeatedly the function f until the fixed point is reached).

Exercise 5

Consider the following labelled transition system.

$$s \xleftarrow{b}{s_1 \xrightarrow{b}{s_2}} s_2^a$$

Compute for which sets of states $\llbracket X \rrbracket \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle t t \lor [b] X$
- $X = \langle a \rangle t \vee ([b] X \land \langle b \rangle t)$

Exercise 6 (optional)

Exercise 4.10, part 2. on page 83 in Reactive Systems: Modelling, Specificaton and Verification.