## Tutorial 6 - Solutions

## Exercise 1*

Draw a graphical representation of the complete lattice ( $2^{\{a, b, c\}}, \subseteq$ ) and compute supremum and infimum of the sets below.

The complete lattice:


- $\sqcap\{\{a\},\{b\}\}=\emptyset$
- $\sqcup\{\{a\},\{b\}\}=\{a, b\}$
- $\sqcap\{\{a\},\{a, b\},\{a, c\}\}=\{a\}$
- $\sqcup\{\{a\},\{a, b\},\{a, c\}\}=\{a, b, c\}$
- $\sqcap\{\{a\},\{b\},\{c\}\}=\emptyset$
- $\sqcup\{\{a\},\{b\},\{c\}\}=\{a, b, c\}$
- $\sqcap\{\{a\},\{a, b\},\{b\}, \emptyset\}=\emptyset$
- $\sqcup\{\{a\},\{a, b\},\{b\}, \emptyset\}=\{a, b\}$


## Exercise 2

Prove that for any partially ordered set $(D, \sqsubseteq)$ and any $X \subseteq D$, if supremum of $X(\sqcup X)$ and infimum of $X(\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of $\sqsubseteq$.)

We prove the claim for the supremum (least upper bound) of $X$. The arguments for the infimum are symmetric. Let $d_{1}, d_{2} \in D$ be two supremums of a given set $X$. This means that $X \sqsubseteq d_{1}$ and $X \sqsubseteq d_{2}$ as both $d_{1}$ and $d_{2}$ are upper bounds of $X$. Now because $d_{1}$ is the least upper bound and $d_{2}$ is an upper bound we get $d_{1} \sqsubseteq d_{2}$. Similarly, $d_{2}$ is the least upper bound and $d_{1}$ is an upper bound so $d_{2} \sqsubseteq d_{1}$. However, from antisymmetry and $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1}$ we get that $d_{1}=d_{2}$.

## Exercise 3

Let $(D, \sqsubseteq)$ be a complete lattice. What are $\sqcup \emptyset$ and $\sqcap \emptyset$ equal to?

- $\sqcup \emptyset=\perp=\sqcap D$.
- $\sqcap \emptyset=\top=\sqcup D$.


## Exercise 4*

Consider the complete lattice $\left(2^{\{a, b, c\}}, \subseteq\right)$. Define a function $f: 2^{\{a, b, c\}} \rightarrow 2^{\{a, b, c\}}$ such that $f$ is monotonic.

For example we define $f$ as follows (note that there are many possibilites):

| $S$ | $f(S)$ |
| :---: | :---: |
| $\emptyset$ | $\{a\}$ |
| $\{a\}$ | $\{a\}$ |
| $\{b\}$ | $\{a\}$ |
| $\{c\}$ | $\{a\}$ |
| $\{a, b, c\}$ | $\{a, b\}$ |
| $\{a, b\}$ | $\{a, b\}$ |
| $\{a, c\}$ | $\{a, b\}$ |
| $\{b, c\}$ | $\{a, b\}$ |

The function $f$ is monotonic which we can verify by a case inspection.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
- According to Tarski's fixed point theorem the largest fixed point $z_{\max }$ is given by $z_{\max }=\sqcup A$, where

$$
A=\left\{x \in 2^{\{a, b, c\}} \mid x \sqsubseteq f(x)\right\} .
$$

In our case, by the definition of $f$ we get $A=\{\emptyset,\{a\},\{a, b\}\}$. The supremum of $A$ in $2^{\{a, b, c\}}$ is $\{a, b\}$ so by Tarski's fixed point theorem, the largest fixed point of $f$ is $\{a, b\}$.

- Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from $\perp$ and by applying repeatedly the function $f$ until the fixed point is reached).
- First note that $\perp=\sqcap 2^{\{a, b, c\}}=\emptyset$. We now repeatedly apply $f$ until it stabilizes

$$
\begin{aligned}
f(\emptyset) & =\{a\} \\
f(f(\emptyset))=f(\{a\}) & =\{a\}
\end{aligned}
$$

and hence the least fixed point of $f$ is $\{a\}$.

## Exercise 5

Consider the following labelled transition system.


Compute for which sets of states $\llbracket X \rrbracket \subseteq\left\{s, s_{1}, s_{2}\right\}$ the following formulae are true.

- $X=\langle a\rangle t t \vee[b] X$
- The equation holds for the following sets of states: $\left\{s_{2}, s\right\},\left\{s_{2}, s_{1}, s\right\}$.
- $X=\langle a\rangle \# \vee([b] X \wedge\langle b\rangle \#)$
- The equation holds only for the set $\left\{s_{2}\right\}$.


## Exercise 6 (optional)

Exercise A.6, part 2. on page 91 in A note of Milner's CCS.

