Tutorial 6 - Solutions

Exercise 1*

Draw a graphical representation of the complete lattice $(2^{\{a,b,c\}}, \subseteq)$ and compute supremum and infimum of the sets below.

The complete lattice:

- \sqcap { $\{a\}, \{b\}\} = \emptyset$
- \sqcup { $\{a\}, \{b\}\} = \{a, b\}$
- \sqcap {{*a*}, {*a*, *b*}, {*a*, *c*}} = {*a*}
- \sqcup {a}, {a, b}, {a, c}} = {a, b, c}
- $\sqcap\{\{a\},\{b\},\{c\}\} = \emptyset$
- \sqcup { $\{a\}, \{b\}, \{c\}\} = \{a, b, c\}$
- $\sqcap \{\{a\}, \{a, b\}, \{b\}, \emptyset\} = \emptyset$
- $\sqcup \{\{a\}, \{a, b\}, \{b\}, \emptyset\} = \{a, b\}$

Exercise 2

Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of $X (\sqcup X)$ and infimum of $X (\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq .)

We prove the claim for the supremum (least upper bound) of X. The arguments for the infimum are symmetric. Let $d_1, d_2 \in D$ be two supremums of a given set X. This means that $X \sqsubseteq d_1$ and $X \sqsubseteq d_2$ as both d_1 and d_2 are upper bounds of X. Now because d_1 is the least upper bound and d_2 is an upper bound we get $d_1 \sqsubseteq d_2$. Similarly, d_2 is the least upper bound and d_1 is an upper bound so $d_2 \sqsubseteq d_1$. However, from antisymmetry and $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1$ we get that $d_1 = d_2$.

Exercise 3

Let (D, \sqsubseteq) be a complete lattice. What are $\sqcup \emptyset$ and $\sqcap \emptyset$ equal to?

- $\sqcup \emptyset = \bot = \sqcap D.$
- $\sqcap \emptyset = \top = \sqcup D.$

Exercise 4*

Consider the complete lattice $(2^{\{a,b,c\}}, \subseteq)$. Define a function $f : 2^{\{a,b,c\}} \to 2^{\{a,b,c\}}$ such that f is monotonic.

For example we define f as follows (note that there are many possibilites):

S	f(S)
Ø	$\{a\}$
$\{a\}$	$\{a\}$
$\{b\}$	$\{a\}$
$\{c\}$	$\{a\}$
$\{a, b, c\}$	$\{a,b\}$
$\{a,b\}$	$\{a,b\}$
$\{a, c\}$	$\{a,b\}$
$\{b,c\}$	$\{a,b\}$

The function f is monotonic which we can verify by a case inspection.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
 - According to Tarski's fixed point theorem the largest fixed point z_{max} is given by $z_{\text{max}} = \Box A$, where

$$A = \{ x \in 2^{\{a,b,c\}} \, | \, x \sqsubseteq f(x) \}.$$

In our case, by the definition of f we get $A = \{\emptyset, \{a\}, \{a, b\}\}$. The supremum of A in $2^{\{a, b, c\}}$ is $\{a, b\}$ so by Tarski's fixed point theorem, the largest fixed point of f is $\{a, b\}$.

- Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \perp and by applying repeatedly the function f until the fixed point is reached).
 - First note that $\perp = \Box 2^{\{a,b,c\}} = \emptyset$. We now repeatedly apply f until it stabilizes

$$\begin{split} f(\emptyset) &= \{a\} \\ f(f(\emptyset)) &= f(\{a\}) = \{a\} \end{split}$$

and hence the least fixed point of f is $\{a\}$.

Exercise 5

Consider the following labelled transition system.

Compute for which sets of states $[\![X]\!] \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle t t \lor [b] X$
 - The equation holds for the following sets of states: $\{s_2, s\}, \{s_2, s_1, s\}$.
- $X = \langle a \rangle t t \lor ([b] X \land \langle b \rangle t t)$
 - The equation holds only for the set $\{s_2\}$.

Exercise 6 (optional)

Exercise A.6, part 2. on page 91 in A note of Milner's CCS.