Semantics and Verification 2008function.Lecture 7Tarski's Fixed Point TheoremThen f has a unique largest fixed point z_{max} and a unique least fixed
point z_{min} given by: $z_{max} \stackrel{\text{def}}{=} \sqcup \{x \in D \mid x \sqsubseteq f(x)\}$ $z_{min} \stackrel{\text{def}}{=} \sqcap \{x \in D \mid f(x) \sqsubseteq x\}$

Tarski's Fixed Point Theorem – Summary

Let (D, \Box) be a **complete lattice** and let $f : D \to D$ be a **monotonic**

Computing Fixed Points in Finite Lattices If D is a finite set then there exist integers M, m > 0 such that • $z_{max} = f^{M}(\top)$ • $z_{min} = f^{m}(\bot)$

1/12 Lecture 7 () Semantics and Verification 2008 HML with One Recursively Defined Variable Syntax of Formulae Formulae are given by the following abstract syntax $F ::= X | tt | ff | F_1 \land F_2 | F_1 \lor F_2 | \langle a \rangle F | [a]F$ where $a \in Act$ and X is a distinguished variable with a definition • $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$ such that F_X is a formula of the logic (can contain X).

How to Define Semantics? For every formula F we define a function $O_F : 2^{Proc} \rightarrow 2^{Proc}$ s.t. • if S is the set of processes that satisfy X then • $O_F(S)$ is the set of processes that satisfy F.

Definition of Strong Bisimulation

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Strong Bisimulation A binary relation $R \subseteq Proc \times Proc$ is a **strong bisimulation** iff whenever $(s, t) \in R$ then for each $a \in Act$: • if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$ • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Two processes $p, q \in Proc$ are **strongly bisimilar** $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

$$\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$$

```
2 / 12 Lecture 7 () Semantics and Verification 2008
```

3 / 12

Definition of $O_F: 2^{Proc} \rightarrow 2^{Proc}$ (let $S \subseteq Proc$)

$$O_X(S) = S$$

$$O_{tt}(S) = Proc$$

$$O_{ff}(S) = \emptyset$$

$$O_{F_1 \land F_2}(S) = O_{F_1}(S) \cap O_{F_2}(S)$$

$$O_{F_1 \lor F_2}(S) = O_{F_1}(S) \cup O_{F_2}(S)$$

$$O_{(a)F}(S) = \langle \cdot a \cdot \rangle O_F(S)$$

$$O_{[a]F}(S) = [\cdot a \cdot] O_F(S)$$

 O_F is monotonic for every formula F

Lecture 7 ()

 $S_1 \subseteq S_2 \ \Rightarrow \ O_F(S_1) \subseteq O_F(S_2)$

Proof: easy (structural induction on the structure of F).

```
Lecture 7 ()
```

bisimulation as a fixed point

Function $\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$

 $(s, t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$:

o characteristic property

Lecture 7 ()

Observations

Hennessy-Milner logic with recursively defined variables

Strong Bisimulation as a Greatest Fixed Point

Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows:

• if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in S$ • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$.

• $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic

• S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of $\mathcal F$

• game semantics and temporal properties of reactive systems

ntics and Verification 2008

emantics and Verification 2008

 $\sim = | | \{ S \in 2^{(Proc \times Proc)} | S \subset \mathcal{F}(S) \}$

4 / 12

Lecture 7 ()

Semantics and Verification 2008

6 / 12

Semantics

Observation

We know that $(2^{Proc}, \subseteq)$ is a **complete lattice** and O_F is **monotonic**, so OF has a unique greatest and least fixed point.

Semantics of the Variable X• If $X \stackrel{\text{max}}{=} F_X$ then $\llbracket X \rrbracket = \{ J \{ S \subseteq Proc \mid S \subseteq O_{F_X}(S) \}.$

• If $X \stackrel{\min}{=} F_X$ then

 $\llbracket X \rrbracket = \bigcap \{ S \subseteq Proc \mid O_{F_X}(S) \subseteq S \}.$

Semantics and Verification 2008

Lecture 7 ()	Semantics and Verification 2008	7 / 12	Lecture 7 ()) Semantics	and Verification 200
Game Characterization	on		Selection of	Temporal Prop	perties
			Inv(F):Pos(F):	$X \stackrel{\max}{=} F \land [Act]X$ $X \stackrel{\min}{=} F \lor \langle Act \rangle X$	
Theorem • $s \models F$ if and only if t from (s, F)	he defender has a universal winning str	ategy	Safe(F):Even(F):	$X \stackrel{\max}{=} F \land ([Act]f$ $X \stackrel{\min}{=} F \lor (\langle Act \rangle$	$f \lor \langle Act angle X)$ $tt \land [Act]X)$
• $s \not\models F$ if and only if t from (s, F)	he attacker has a universal winning stra	ategy	 ● F U^w G: ● F U^s G: 	$X \stackrel{\max}{=} G \lor (F \land [X \stackrel{\min}{=} G \lor (F \land \langle A \rangle)]$	Act]X) $Act angle tt \land [Act]$
			Using until we	can express e.g. In	v(F) and Ev
			h	$nv(F)\equivF\;\mathcal{U}^{w}\;f$ f	Eve

• (s, [a]F) has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the attacker) • $(s, \langle a \rangle F)$ has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the defender) Semantics and Verification 2008 Properties Act]X Act X $([Act]ff \lor \langle Act \rangle X)$

Intuition: the attacker claims $s \not\models F$, the defender claims $s \models F$.

Configurations of the game are of the form (s, F)

• $(s, F_1 \land F_2)$ has two successors (s, F_1) and (s, F_2)

• $(s, F_1 \lor F_2)$ has two successors (s, F_1) and (s, F_2)

• (s, tt) and (s, ff) have no successors

• (s, X) has one successor (s, F_X)

(selected by the attacker)

(selected by the defender)

 $(F \wedge [Act]X)$ $(F \land \langle Act \rangle tt \land [Act]X)$

e.g. Inv(F) and Even(F):

∕^w ff $Even(F) \equiv tt \mathcal{U}^s F$ Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules given on the previous slide.

Finite Play

- The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration (s, ff).
- The **defender** is the winner of a finite play if the attacker gets stuck or the players reach a configuration (s, tt).

Infinite Play

- The **attacker** is the winner of an infinite play if X is defined as $X \stackrel{\min}{=} F_X.$
- The **defender** is the winner of an infinite play if X is defined as $X \stackrel{\text{max}}{=} F_X.$

Lecture 7 ()	Semantics and	d Verification 2008	9 / 12		
Examples of I	Nore Advanced	Recursive Formulae			
Nested Definition	ons of Recursive V	ariables			
$X \stackrel{\min}{=}$	$Y \lor \langle Act angle X$	$Y \stackrel{ ext{max}}{=} \langle a angle tt \wedge \langle Act angle Y$			
Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.					
Mutually Recurs	sive Definitions				
	$X \stackrel{\max}{=} [a]Y$	$Y\stackrel{\mathrm{max}}{=}\langle a angle X$			
Solution: consider a complete lattice $(2^{Proc} \times 2^{Proc}, \sqsubseteq)$ where $(S_1, S_2) \sqsubseteq (S'_1, S'_2)$ iff $S_1 \subseteq S'_1$ and $S_2 \subseteq S'_2$.					
Theorem (Chara	acteristic Property	for Finite-State Processes)			
Let <i>s</i> be a proces property <i>X_s</i> s.t.	ss with finitely man for all processes <i>t</i> :	y reachable states. There exists $s \sim t$ if and only if $t \in \llbracket X_s \rrbracket$.	а		

Lecture 7 ()

10 / 12

Lecture 7 ()

Game Characterization

Semantics and Verification 2008

11 / 12

Lecture 7 ()

Semantics and Verification 2008