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Verifying Correctness of Reactive Systems

Equivalence Checking Approach

Impl ≡ Spec
where ≡ is e.g. strong or weak bisimilarity.

Model Checking Approach

Impl |= F
where F is a formula from e.g. Hennessy-Milner logic.

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Theorem (for Image-Finite LTS)

It holds that p ∼ q if and only if p and q satisfy exactly the same
Hennessy-Milner formulae.
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Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff ) = 0

md(F ∧ G ) = md(F ∨ G ) = max{md(F ),md(G )}
md([a]F ) = md(〈a〉F ) = md(F ) + 1

Idea: a formula F can “see” only upto depth md(F ).

Theorem (let F be a HM formula and k = md(F ))

If the defender has a defending strategy in the strong bisimulation
game from s and t upto k rounds then s |= F if and only if t |= F .

Conclusion

There is no Hennessy-Milner formula F that can detect a deadlock
in an arbitrary LTS.
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Temporal Properties not Expressible in HM Logic

s |= Inv(F ) iff all states reachable from s satisfy F
s |= Pos(F ) iff there is a reachable state which satisfies F

Fact

Properties Inv(F ) and Pos(F ) are not expressible in HM logic.

Let Act = {a1, a2, . . . , an} be a finite set of actions. We define

〈Act〉F def
= 〈a1〉F ∨ 〈a2〉F ∨ . . . ∨ 〈an〉F

[Act]F
def
= [a1]F ∧ [a2]F ∧ . . . ∧ [an]F

Inv(F ) ≡ F ∧ [Act]F ∧ [Act][Act]F ∧ [Act][Act][Act]F ∧ . . .
Pos(F ) ≡ F ∨ 〈Act〉F ∨ 〈Act〉〈Act〉F ∨ 〈Act〉〈Act〉〈Act〉F ∨ . . .
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Infinite Conjunctions and Disjunctions vs. Recursion

Problems

infinite formulae are not allowed in HM logic

infinite formulae are difficult to handle

Why not to use recursion?

Inv(F ) expressed by X
def
= F ∧ [Act]X

Pos(F ) expressed by X
def
= F ∨ 〈Act〉X

Question: How to define the semantics of such equations?
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Solving Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n + 1 no solution
n = 1 ∗ n many solutions (every n ∈ N is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = ({7} ∩M) ∪ {7} one solution M = {7}
M = N r M no solution
M = {3} ∪M many solutions (every M ⊇ {3})

What about Equations over Processes?

X
def
= [a]ff ∨ 〈a〉X ⇒ find S ⊆ 2Proc s.t. S = [·a·]∅ ∪ 〈·a·〉S
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General Approach – Lattice Theory

Problem

For a set D and a function f : D → D, for which elements x ∈ D
we have

x = f (x) ?

Such x ’s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D,v) s.t.

D is a set

v ⊆ D × D is a binary relation on D which is

reflexive: ∀d ∈ D. d v d
antisymmetric: ∀d , e ∈ D. d v e ∧ e v d ⇒ d = e
transitive: ∀d , e, f ∈ D. d v e ∧ e v f ⇒ d v f
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Supremum and Infimum

Upper/Lower Bounds (Let X ⊆ D)

d ∈ D is an upper bound for X (written X v d)
iff x v d for all x ∈ X

d ∈ D is a lower bound for X (written d v X )
iff d v x for all x ∈ X

Least Upper Bound and Greatest Lower Bound (Let X ⊆ D)

d ∈ D is the least upper bound (supremum) for X (tX ) iff
1 X v d
2 ∀d ′ ∈ D. X v d ′ ⇒ d v d ′

d ∈ D is the greatest lower bound (infimum) for X (uX ) iff
1 d v X
2 ∀d ′ ∈ D. d ′ v X ⇒ d ′ v d
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Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D,v) is called complete lattice iff tX and
uX exist for any X ⊆ D.

We define the top and bottom by > def
= tD and ⊥ def

= uD.

Monotonic Function and Fixed Points

A function f : D → D is called monotonic iff

d v e ⇒ f (d) v f (e)

for all d , e ∈ D.

Element d ∈ D is called fixed point iff d = f (d).
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Tarski’s Fixed Point Theorem

Theorem (Tarski)

Let (D,v) be a complete lattice and let f : D → D be a
monotonic function.

Then f has a unique largest fixed point zmax and a unique least
fixed point zmin given by:

zmax
def
= t{x ∈ D | x v f (x)}

zmin
def
= u{x ∈ D | f (x) v x}
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Computing Min and Max Fixed Points on Finite Lattices

Let (D,v) be a complete lattice and f : D → D monotonic.

Let f 1(x)
def
= f (x) and f n(x)

def
= f (f n−1(x)) for n > 1, i.e.,

f n(x) = f (f (. . . f︸ ︷︷ ︸
n times

(x) . . .)).

Theorem

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(>)

zmin = f m(⊥)

Idea (for zmin): The following sequence stabilizes for any finite D

⊥ v f (⊥) v f (f (⊥)) v f (f (f (⊥))) v · · ·
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