Introduction Lattice Theory Tarski's Fixed Point Theorem	Introduction Lattice Theory Tarski's Fixed Point Theorem Solving Equations	Introduction Lattice Theory Tarski's Fixed Point Theorem Solving Equations
	Verifying Correctness of Reactive Systems	Is Hennessy-Milner Logic Powerful Enough?
Semantics and Verification 2008 Lecture 6	Equivalence Checking Approach $Impl \equiv Spec$ where \equiv is e.g. strong or weak bisimilarity. Model Checking Approach $Impl \models F$ where F is a formula from e.g. Hennessy-Milner logic.	Modal depth (nesting degree) for Hennessy-Milner formulae: • $md(tt) = md(ff) = 0$ • $md(F \land G) = md(F \lor G) = \max\{md(F), md(G)\}$ • $md([a]F) = md(\langle a \rangle F) = md(F) + 1$ Idea: a formula F can "see" only upto depth $md(F)$.
 Hennessy-Milner logic and temporal properties lattice theory, Tarski's fixed point theorem computing fixed points on finite lattices 	F, $G ::= tt ff F \land G F \lor G \langle a \rangle F [a]F$ Theorem (for Image-Finite LTS) It holds that $p \sim q$ if and only if p and q satisfy exactly the same Hennessy-Milner formulae.	Theorem (let <i>F</i> be a HM formula and $k = md(F)$) If the defender has a defending strategy in the strong bisimulation game from <i>s</i> and <i>t</i> upto <i>k</i> rounds then $s \models F$ if and only if $t \models F$. Conclusion There is no Hennessy-Milner formula <i>F</i> that can detect a deadlock in an arbitrary LTS.
Lecture 6 Semantics and Verification 2008 Equivalence Checking vs. Model Checking Weaknesses of Hennessy-Milner Logic Tarski's Fixed Point Theory Tarski's Fixed Point Theory	Lecture 6 Semantics and Verification 2008 Introduction Equivalence Checking vs. Model Checking Us. Model Checking Vs. Model Checking Vs. Model Checking Vs. Miner Logic Tarski's Fixed Point Theorem Torwing Equations	Lecture 6 Semantics and Verification 2008 Introduction Equivalence Checking vs. Model Checking Latitice Theory Tarski's Fixed Point Theorem Softwing Equations
Temporal Properties not Expressible in HM Logic	Infinite Conjunctions and Disjunctions vs. Recursion	Solving Equations is Tricky
$s \models Inv(F)$ iff all states reachable from s satisfy F $s \models Pos(F)$ iff there is a reachable state which satisfies F Fact Properties $Inv(F)$ and $Pos(F)$ are not expressible in HM logic.	Problemsinfinite formulae are not allowed in HM logicinfinite formulae are difficult to handle	Equations over Natural Numbers $(n \in \mathbb{N})$ $n = 2 * n$ one solution $n = 0$ $n = n + 1$ no solution $n = 1 * n$ many solutions (every $n \in \mathbb{N}$ is a solution)
Let $Act = \{a_1, a_2, \dots, a_n\}$ be a finite set of actions. We define • $\langle Act \rangle F \stackrel{\text{def}}{=} \langle a_1 \rangle F \lor \langle a_2 \rangle F \lor \dots \lor \langle a_n \rangle F$ • $[Act] F \stackrel{\text{def}}{=} [a_1] F \land [a_2] F \land \dots \land [a_n] F$	Why not to use recursion? • $Inv(F)$ expressed by $X \stackrel{\text{def}}{=} F \land [Act]X$ • $Pos(F)$ expressed by $X \stackrel{\text{def}}{=} F \lor \langle Act \rangle X$	Equations over Sets of Integers $(M \in 2^{\mathbb{N}})$ $M = (\{7\} \cap M) \cup \{7\}$ one solution $M = \{7\}$ $M = \mathbb{N} \setminus M$ no solution $M = \{3\} \cup M$ many solutions (every $M \supseteq \{3\}$)
$Inv(F) \equiv F \land [Act]F \land [Act][Act]F \land [Act][Act][Act][Act][Act]F \land \dots$ $Pos(F) \equiv F \lor \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle \langle Act \rangle F \lor \dots$	Question: How to define the semantics of such equations?	What about Equations over Processes? $X \stackrel{\text{def}}{=} [a] ff \lor \langle a \rangle X \implies \text{find } S \subseteq 2^{Proc} \text{ s.t. } S = [\cdot a \cdot] \emptyset \cup \langle \cdot a \cdot \rangle S$
Lecture 6 Semantics and Verification 2008	Lecture 6 Semantics and Verification 2008	Lecture 6 Semantics and Verification 2008

Introduction Lattice Theory Tarski's Fixed Point Theorem Partially Ordered Sets Supremum and Infimum Complete Lattices and Monotonic Functions	Introduction Lattice Theory Tarski's Fixed Point Theorem Complete Lattices and Monotonic Functions	Introduction Lattice Theory Tarski's Fixed Point Theorem Lattice Theory Tarski's Fixed Point Theorem
General Approach – Lattice Theory	Supremum and Infimum	Complete Lattices and Monotonic Functions
Problem For a set D and a function $f: D \to D$, for which elements $x \in D$ we have x = f(x) ? Such x 's are called fixed points.	 Upper/Lower Bounds (Let X ⊆ D) d ∈ D is an upper bound for X (written X ⊑ d) iff x ⊑ d for all x ∈ X d ∈ D is a lower bound for X (written d ⊑ X) iff d ⊑ x for all x ∈ X 	Complete Lattice A partially ordered set (D, \sqsubseteq) is called complete lattice iff $\sqcup X$ and $\sqcap X$ exist for any $X \subseteq D$. We define the top and bottom by $\top \stackrel{\text{def}}{=} \sqcup D$ and $\bot \stackrel{\text{def}}{=} \sqcap D$.
Partially Ordered Set Partially ordered set (or simply a partial order) is a pair (D, \sqsubseteq) s.t. • D is a set • $\sqsubseteq \subseteq D \times D$ is a binary relation on D which is • reflexive: $\forall d \in D. \ d \sqsubseteq d$ • antisymmetric: $\forall d, e \in D. \ d \sqsubseteq e \land e \sqsubseteq d \Rightarrow d = e$ • transitive: $\forall d, e, f \in D. \ d \sqsubseteq e \land e \sqsubseteq f \Rightarrow d \sqsubseteq f$	Least Upper Bound and Greatest Lower Bound (Let $X \subseteq D$) • $d \in D$ is the least upper bound (supremum) for $X (\sqcup X)$ iff • $X \sqsubseteq d$ • $\forall d' \in D. X \sqsubseteq d' \Rightarrow d \sqsubseteq d'$ • $d \in D$ is the greatest lower bound (infimum) for $X (\sqcap X)$ iff • $d \sqsubseteq X$ • $\forall d' \in D. d' \sqsubseteq X \Rightarrow d' \sqsubseteq d$	Monotonic Function and Fixed Points A function $f : D \to D$ is called monotonic iff $d \sqsubseteq e \Rightarrow f(d) \sqsubseteq f(e)$ for all $d, e \in D$. Element $d \in D$ is called fixed point iff $d = f(d)$.
Lecture 6 Semantics and Verification 2008 Introduction Lattice Theory For General Complete Lattices For Environ Lattices	Lecture 6 Semantics and Verification 2008 Introduction Lattice Theory For General Complete Lattices	Lecture 6 Semantics and Verification 2008
Tarski's Fixed Point Theorem For Finite Lattices	Tarski's Fixed Point Theorem For Finite Lattices Computing Min and Max Fixed Points on Finite Lattices	
Theorem (Tarski) Let (D, \sqsubseteq) be a complete lattice and let $f : D \rightarrow D$ be a monotonic function.	Let (D, \sqsubseteq) be a complete lattice and $f : D \to D$ monotonic. Let $f^1(x) \stackrel{\text{def}}{=} f(x)$ and $f^n(x) \stackrel{\text{def}}{=} f(f^{n-1}(x))$ for $n > 1$, i.e., $f^n(x) = \underbrace{f(f(\dots, f(x) \dots))}_{n \text{ times}}$.	
Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by: $z_{max} \stackrel{\text{def}}{=} \sqcup \{ x \in D \mid x \sqsubseteq f(x) \}$	Theorem If D is a finite set then there exist integers $M, m > 0$ such that • $z_{max} = f^M(\top)$ • $z_{min} = f^m(\bot)$	
$z_{min} \stackrel{\text{def}}{=} \sqcap \{ x \in D \mid f(x) \sqsubseteq x \}$	Idea (for z_{min}): The following sequence stabilizes for any finite D	
Lecture 6 Semantics and Verification 2008	$\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq f(f(f(\bot))) \sqsubseteq \cdots$ Lecture 6 Semantics and Verification 2008	