Introduction Hennessy-Minner Logic Correspondence between HM Logic and Strong Bisimilarity	Introduction Honnessy-Millare Logic Correspondence between HM Logic and Strong Bisimilarity	Introduction Honnessy-Minker Logic Correspondence between HM Logic and Strong Bisimilarity Equivalence Checking vs. Model Checking Modal and Temporal Properties
	Verifying Correctness of Reactive Systems	Model Checking of Reactive Systems
Semantics and Verification 2008	Let <i>Impl</i> be an implementation of a system (e.g. in CCS syntax). Equivalence Checking Approach	
Lecture 5	 Impl ≡ Spec ■ is an abstract equivalence, e.g. ~ or ≈ Spec is often expressed in the same language as Impl Spec provides the full specification of the intended behaviour 	Our Aim Develop a logic in which we can express interesting properties of reactive systems.
 Hennessy-Milner logic syntax and semantics correspondence with strong bisimilarity examples in CWB 	Impl ⊨ Property ● ⊨ is the satisfaction relation ● Property is a particular feature, often expressed via a logic ● Property is a partial specification of the intended behaviour	
Lecture 5 Introduction Hennessy-Milner Logic Correspondence between HM Logic and Strong Bisimilarity	Lecture 5 Semantics and Verification 2008 Introduction Hennessy-Milner Logic Syntax Semantics Correspondence between HM Logic and Strong Bisimilarity Negation in Hennessy-Milner Logic Denotational Semantics	Lecture 5 Semantics and Verification 2008 Introduction Hennessy-Milner Logic Correspondence between HM Logic and Strong Bisimilarity Pendetation Hennessy-Milner Logic Denotational Semantics
Logical Properties of Reactive Systems	Hennessy-Milner Logic – Syntax	Hennessy-Milner Logic – Semantics
 Modal Properties – what can happen now (possibility, necessity) drink a coffee (can drink a coffee now) does not drink tea drinks both tea and coffee drinks tea after coffee 	Syntax of the Formulae $(a \in Act)$ $F, G ::= tt ff F \land G F \lor G \langle a \rangle F [a]F$ Intuition: tt all processes satisfy this property ff no process satisfies this property	Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ be an LTS. Validity of the logical triple $p \models F$ ($p \in Proc, F$ a HM formula) $p \models tt$ for each $p \in Proc$ $p \models ff$ for no p (we also write $p \not\models ff$)
 Temporal Properties – behaviour in time never drinks any alcohol (safety property: nothing bad can happen) eventually will have a glass of wine (liveness property: something good will happen) 	\land , \lor usual logical AND and OR $\langle a \rangle F$ there is at least one <i>a</i> -successor that satisfies <i>F</i> [<i>a</i>] <i>F</i> all <i>a</i> -successors have to satisfy <i>F</i> Remark	$p \models F \land G \text{ iff } p \models F \text{ and } p \models G$ $p \models F \lor G \text{ iff } p \models F \text{ or } p \models G$ $p \models \langle a \rangle F \text{ iff } p \stackrel{a}{\longrightarrow} p' \text{ for some } p' \in Proc \text{ such that } p' \models F$ $p \models [a]F \text{ iff } p' \models F, \text{for all } p' \in Proc \text{ such that } p \stackrel{a}{\longrightarrow} p'$
Can these properties be expressed using equivalence checking?	Temporal properties like <i>always/never in the future</i> or <i>eventually</i> are not included.	We write $p \not\models F$ whenever p does not satisfy F .

Lecture 5 Semantics and Verification 2008

Lecture 5 Semantics and Verification 2008

Lecture 5 Semantics and Verification 2008

Introduction Hennessy-Milner Logic Correspondence between HM Logic and Strong Blaimiliarity What about Negation?	Introduction Hennessy-Milner Logic Correspondence between HM Logic and Strong Blaimlarty Hennessy-Milner Logic — Denotational Semantics	Introduction Hennessy-Miner Logic Correspondence between HM Logic and Strong Bisimilarity The Correspondence Theorem
For every formula F we define the formula F^c as follows: • $tt^c = ft$ • $ft^c = tt$ • $(F \land G)^c = F^c \lor G^c$ • $(F \lor G)^c = F^c \land G^c$ • $(\langle a \rangle F)^c = [a]F^c$ • $([a]F)^c = \langle a \rangle F^c$ Theorem (F^c is equivalent to the negation of F) For any $p \in Proc$ and any HM formula F • $p \models F \implies p \nvDash F^c$ • $p \nvDash F \implies p \models F^c$	For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F . Denotational Semantics: $\llbracket . \rrbracket : Formulae \rightarrow 2^{Proc}$ • $\llbracket tt \rrbracket = Proc$ • $\llbracket tt \rrbracket = Proc$ • $\llbracket tt \rrbracket = Proc$ • $\llbracket f \rrbracket = \emptyset$ • $\llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$ • $\llbracket F \land G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$ • $\llbracket (a)F \rrbracket = (\cdot a \cdot) \llbracket F \rrbracket$ • $\llbracket (a]F \rrbracket = [\cdot a \cdot] \llbracket F \rrbracket$ where $\langle \cdot a \cdot \rangle$, $[\cdot a \cdot] : 2^{(Proc)} \rightarrow 2^{(Proc)}$ are defined by $\langle \cdot a \cdot \rangle S = \{p \in Proc \mid \exists p'. p \xrightarrow{a} p' \text{ and } p' \in S\}$ $\llbracket \cdot a \cdot]S = \{p \in Proc \mid \forall p'. p \xrightarrow{a} p' \implies p' \in S\}.$	TheoremLet (Proc, Act, $\{\stackrel{a}{\longrightarrow} a \in Act\}$) be an LTS, $p \in Proc$ and F a formula of Hennessy-Milner logic. Then $p \models F$ if and only if $p \in \llbracket F \rrbracket$.Proof: by structural induction on the structure of the formula F .
Lecture 5 Introduction Hennessy-Millier Logic Correspondence between HM Logic and Strong Bisimilarity Image-Finite Labelled Transition Systems Example Sessions in CWB	Lecture 5 Introduction Hennessy-Milner Logic Correspondence between HM Logic and Strong Bisimilarity Relationship between HM Logic and Strong Bisimilarity	Lecture 5 Semantics and Verification 2008 Introduction Hennessy-Milner Logic Image-Finite Labelled Transition Systems Hennessy-Milner Theorem Example Sessions in CWB CWB Session CWB Session

Image-Finite System Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ be an LTS. We call it image-finite iff for every $p \in Proc$ and every $a \in Act$ the set $\{p' \in Proc \mid p \xrightarrow{a} p'\}$ is finite.	Theorem (Hennessy-Milner)Let (Proc. Act, $\{ \stackrel{a}{\longrightarrow} a \in Act \}$) be an image-finite LTS and $p, q \in Proc.$ Then $p \sim q$ if and only iffor every HM formula $F: (p \models F \iff q \models F).$	<pre>hm.cwb agent S = a.S1; agent S1 = b.0 + c.0; agent T = a.T1 + a.T2; agent T1 = b.0; agent T2 = c.0;</pre>	<pre>> input "hm.cwb"; > print; > help logic; > checkprop(S,<a>(T & <c>T)); true > checkprop(T,<a>(T & <c>T)); false > help dfstrong; > dfstrong(S,T); [a]T</c></c></pre>
---	--	--	---

Commenters.	and Marillandar	2000

Lecture 5

> exit;

borg\$ /pack/FS/CWB/cwb