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Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec
≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

Lecture 5 Semantics and Verification 2008

Introduction
Hennessy-Milner Logic

Correspondence between HM Logic and Strong Bisimilarity

Equivalence Checking vs. Model Checking
Modal and Temporal Properties

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of
reactive systems.
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Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?
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Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Intuition:

tt all processes satisfy this property

ff no process satisfies this property

∧, ∨ usual logical AND and OR

〈a〉F there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually
are not included.
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Hennessy-Milner Logic – Semantics

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc , F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff )

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F ,for all p′ ∈ Proc such that p
a−→ p′

We write p 6|= F whenever p does not satisfy F .
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What about Negation?

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G )c = F c ∨ G c

(F ∨ G )c = F c ∧ G c

(〈a〉F )c = [a]F c

([a]F )c = 〈a〉F c

Theorem (F c is equivalent to the negation of F )

For any p ∈ Proc and any HM formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c
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Hennessy-Milner Logic – Denotational Semantics

For a formula F let [[F ]] ⊆ Proc contain all states that satisfy F .

Denotational Semantics: [[ ]] : Formulae → 2Proc

[[tt]] = Proc

[[ff ]] = ∅
[[F ∨ G ]] = [[F ]] ∪ [[G ]]

[[F ∧ G ]] = [[F ]] ∩ [[G ]]

[[〈a〉F ]] = 〈·a·〉[[F ]]

[[[a]F ]] = [·a·][[F ]]

where 〈·a·〉, [·a·] : 2(Proc) → 2(Proc) are defined by

〈·a·〉S = {p ∈ Proc | ∃p′. p
a−→ p′ and p′ ∈ S}

[·a·]S = {p ∈ Proc | ∀p′. p
a−→ p′ =⇒ p′ ∈ S}.
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The Correspondence Theorem

Theorem

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS, p ∈ Proc and F a
formula of Hennessy-Milner logic. Then

p |= F if and only if p ∈ [[F ]].

Proof: by structural induction on the structure of the formula F .
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Image-Finite Labelled Transition System

Image-Finite System

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS. We call it image-finite
iff for every p ∈ Proc and every a ∈ Act the set

{p′ ∈ Proc | p a−→ p′}

is finite.
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Relationship between HM Logic and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let (Proc ,Act, { a−→| a ∈ Act}) be an image-finite LTS and
p, q ∈ Proc . Then

p ∼ q

if and only if

for every HM formula F : (p |= F ⇐⇒ q |= F ).
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CWB Session

hm.cwb

agent S = a.S1;
agent S1 = b.0 + c.0;

agent T = a.T1 + a.T2;
agent T1 = b.0;
agent T2 = c.0;

borg$ /pack/FS/CWB/cwb

> input "hm.cwb";
> print;
> help logic;
> checkprop(S,<a>(<b>T & <c>T));
true
> checkprop(T,<a>(<b>T & <c>T));
false
> help dfstrong;
> dfstrong(S,T);
[a]<b>T
> exit;
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