Semantics and Verification 2008

Lecture 5

Hennessy-Milner logic

syntax and semantics

correspondence with strong bisimilarity
examples in CWB

Lecture 5 () Semantics and Verification 2008

Logical Properties of Reactive Systems

Modal Properties — what can happen now (possibility, necessity)
o drink a coffee (can drink a coffee now)
o does not drink tea
o drinks both tea and coffee
Qo

drinks tea after coffee

1/12

Temporal Properties — behaviour in time
o never drinks any alcohol
(safety property: nothing bad can happen)
o eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Lecture 5 () Semantics and Verification 2008

4/12

Verifying Correctness of Reactive Systems

Let Imp/ be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach
Impl = Spec
o = is an abstract equivalence, e.g. ~ or =
o Spec is often expressed in the same language as Impl

o Spec provides the full specification of the intended behaviour

Model Checking of Reactive Systems

Our Aim
Develop a logic in which we can express interesting properties of reactive
’ systems.

Model Checking Approach
Impl |= Property
o [= is the satisfaction relation
o Property is a particular feature, often expressed via a logic

o Property is a partial specification of the intended behaviour

Lecture 5 () Semantics and Verification 2008

Hennessy-Milner Logic — Syntax

Syntax of the Formulae (a € Act)

F.Gu=t | fF| FAG | FVG | (a)F | [a]F

2/12 Lecture 5 () Semantics and Verification 2008 3/12

Hennessy-Milner Logic — Semantics

J Let (Proc, Act, {2+ a € Act}) be an LTS.

Intuition:
tt all processes satisfy this property
ff no process satisfies this property
A, V usual logical AND and OR
(a)F there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually are not

included.

Validity of the logical triple p = F (p € Proc, F a HM formula)
p = tt for each p € Proc
p = ff for no p (we also write p }~= ff)
pPEFAGIiffpEFandpl=G
pEFVGIiffpEForpEG
p k= (a)F iff p =2 p' for some p’ € Proc such that p’ |= F
p = [a]F iff p’ |= F.for all p' € Proc such that p -2 p’

We write p [~ F whenever p does not satisfy F.

Lecture 5 () Semantics and Verification 2008

5/12 Lecture 5 () Semantics and Verification 2008 6/12

What about Negation?

For every formula F we define the formula F€ as follows:
o ttc=1f
o ffC=1tt
o (FAG) =F°VvG©
o (FVG) =F°AG*
o ((a)F) = [alF*
o ([a]F)° = (a)F©

Theorem (F€ is equivalent to the negation of F)
For any p € Proc and any HM formula F

@ pEF=plEFe

@pEF=pEF°

Lecture 5 () Semantics and Verification 2008 7/12

Image-Finite Labelled Transition System

Image-Finite System

Let (Proc, Act,{-2+| a € Act}) be an LTS. We call it image-finite iff for
every p € Proc and every a € Act the set

{p' € Proc | p - p'}

is finite.

Lecture 5 () Semantics and Verification 2008 10 /12

Hennessy-Milner Logic — Denotational Semantics
For a formula F let [F] C Proc contain all states that satisfy F.

Denotational Semantics: [] : Formulae — 2Pro¢
o [tt] = Proc
o [Ff1=0
o [FvGl=[FlulG]
o [FAG]=[FINI[G]
o [(a)F] = (-a)[F]
o [[alF] = [-2][F]

where (-a-), [-a] : 2(Proc) — 2(Proc) are defined by

(a)S={pe Proc|3p'. p = p' and p’ € S}

[a]S={pcProc|¥p.p 2 p = p €S}

Lecture 5 () Semantics and Verification 2008 8/12

Relationship between HM Logic and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let (Proc, Act, {—2+| a € Act}) be an image-finite LTS and p, g € Proc.
Then
p~q
if and only if
for every HM formula F: (p = F < q = F).

Lecture 5 () Semantics and Verification 2008 11/12

The Correspondence Theorem

Theorem

Let (Proc, Act,{-2~| a € Act}) be an LTS, p € Proc and F a formula of
Hennessy-Milner logic. Then

pE F if and only if

p e [F]

Proof: by structural induction on the structure of the formula F.

Lecture 5 () Semantics and Verification 2008 9/12
CWB Session
borg$ /pack/FS/CWB/cwb
> input "hm.cwb";
hm.cwb ? print;
2gent 5 = a.51; hilpkloglzé <a>(T & <c>T));
agent S1 = b.0 + c.0; CRECKPropis,<a 1))
true
agent T = a.T1 + a.T2; checkprop(T,<a>(T & <c>T));
agent T1 = b.0; false
agent T2 = c.0; help dfstrong;
dfstrong(S,T);
[a]lT
> exit;

Lecture 5 () Semantics and Verification 2008 12/12

