
Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol	Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol Strong Bisimilarity – Properties	Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol Example – Buffer
Semantics and Verification 2008 Lecture 4 • properties of strong bisimilarity • weak bisimilarity and weak bisimulation games • properties of weak bisimilarity	Strong Bisimilarity = Properties Strong Bisimilarity is a Congruence for All CCS Operators Let P and Q be CCS processes such that $P \sim Q$. Then • $\alpha . P \sim \alpha . Q$ for each action $\alpha \in Act$ • $P + R \sim Q + R$ and $R + P \sim R + Q$ for each CCS process R • $P R \sim Q R$ and $R P \sim R Q$ for each CCS process R • $P[f] \sim Q[f]$ for each relabelling function f • $P \setminus L \sim Q \setminus L$ for each set of labels L. Following Properties Hold for any CCS Processes P, Q and R • $P + Q \sim Q + P$ • $P Nil \sim P$	Example - DurierBuffer of Capacity 1 $B_0^1 \stackrel{\text{def}}{=} in.B_1^1$ $B_0^1 \stackrel{\text{def}}{=} in.B_1^n$ $B_1^1 \stackrel{\text{def}}{=} out.B_0^1$ $B_1^n \stackrel{\text{def}}{=} in.B_{i+1}^n + \overline{out}.B_{i-1}^n$ for $0 < i < n$ $B_n^n \stackrel{\text{def}}{=} out.B_{n-1}^n$ Example: $B_0^2 \sim B_0^1 B_0^1$ B_1^2 $B_1^1 B_0^1$ $B_1^1 B_0^1$
example: a communication protocol and its modelling in CCS concurrency workbench (CWB) Locture 4 Strong Bisimilarity Properties	• $P Q \sim Q P$ • $P + Nil \sim P$ • $(P + Q) + R \sim P + (Q + R)$ • $(P Q) R \sim P (Q R)$ Lecture 4 Strong Bisimilarity Properties	$in \int \overline{out}$ B_2^2 $lecture 4$ Strong Bisimilarity $Definitions$
Case Study: Communication Protocol Summary Example – Buffer	Case Study: Communication Protocol Strong Bisimilarity – Summary	Weak Bisimilarity Case Study: Communication Protocol Weak Bisimilarity Properties of Weak Bisimilarity Problems with Internal Actions
Theorem For all natural numbers n: $B_0^n \sim \underbrace{B_0^1 B_0^1 \cdots B_0^1}_{n \text{ times}}$ Proof Construct the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$. $B_n = \{(B_n^n, B_1^1 B_1^1 \cdots B_1^1) \sum_{j=1}^n j = i\}$ $B_n = (B_0^n, B_0^1 B_0^1 \cdots B_0^1) \in \mathbb{R}$	 Properties of ~ an equivalence relation be largest strong bisimulation a congruence a congruence a (p Q ~ Q P) b (p Q) R ~ Q (p R) b ··· Operation	QuestionNO!Des $a.\tau.Ni ~ a.Ni$ hold?NO!Definition of $a.t.Ni ~ a.Ni$ hold?Definition of $a.t.Ni ~ a.Ni$ hold?Definition of $a.t.Ni ~ a.Ni ~ b.t.$ Colspan="2">Definition of $a.t.Ni ~ a.Ni ~ b.t.$ Colspan="2">Definition of $a.t.Ni ~ a.Ni ~ b.t.$ Definition of $a.t.Ni ~ b.t.Ni ~ $

Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol Definition of the Protocol Concurrency Workbench Example Sessions in CWB Verification Question Verification Question	Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol CCS Expressions in CWB	Strong Bisimilarity Weak Bisimilarity Case Study: Communication Protocol CWB Session
$Impl \stackrel{\mathrm{def}}{=} (Send Med Rec) \smallsetminus \{send, trans, ack, error\}$ $Spec \stackrel{\mathrm{def}}{=} acc.\overline{del}.Spec$	CCS DefinitionsCWB Program (protocol.cwb)Med $\stackrel{\text{def}}{=}$ send.Med'agent Med = send.Med';Med' $\stackrel{\text{def}}{=} \tau$.Err + trans.Medagent Med' = (tau.Err + 'trans.Med);Err $\stackrel{\text{def}}{=} error.Med$ agent Err = 'error.Med;	fire1\$ /pack/FS/CWB/cwb > help; > input "protocol.cwb";
Question $\operatorname{Impl} \stackrel{?}{\approx} \operatorname{Spec}$		<pre>> vs(5,Impl); > sim(Spec);</pre>
 Draw the LTS of Impl and Spec and prove (by hand) the equivalence. Use Concurrency WorkBench (CWB). 	Spec $\stackrel{\text{def}}{=}$ acc. $\overline{\text{del}}$.Spec agent Spec = acc.'del.Spec;	<pre>> eq(Spec,Impl); ** weak bisimilarity ** > strongeq(Spec,Impl); ** strong bisimilarity **</pre>

Lecture 4 Semantics and Verification 2008 Lecture 4 Semantics and Verification 2008 Lecture 4 Semantics and Verification 2008