|                                                                                                                                                                                                | Translation of Value Passing CCS to Standard CCS                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Semantics and Verification 2008                                                                                                                                                                | Main Idea<br>Handshake synchronization is extended with the possibility to exchange<br>integer values.                                                                                                                                                                                                                                                                              | Value Passing CCS<br>$C \stackrel{\text{def}}{=} in(x).C'(x)$ $\longrightarrow$ $C \stackrel{\text{def}}{=} \sum_{i \neq i} in(i).C'_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Lecture 3                                                                                                                                                                                      | $\overline{pay(6)}.Nil \mid pay(x).\overline{save(x/2)}.Nil \mid Bank(100) \ \downarrow 	au$                                                                                                                                                                                                                                                                                        | $C'(x) \stackrel{\text{def}}{=} \overline{out(x)}.C$ $C'_{i} \stackrel{\text{def}}{=} \overline{out(i)}.C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <ul> <li>value passing CCS</li> <li>behavioural equivalences</li> <li>strong bisimilarity and bisimulation games</li> <li>properties of strong bisimilarity</li> </ul>                         | $\begin{aligned} \textit{Nil} \mid \overline{\textit{save(3)}}.\textit{Nil} \mid \textit{Bank(100)} \\ \downarrow \tau \\ \textit{Nil} \mid \textit{Nil} \mid \textit{Bank(103)} \end{aligned}$ $\begin{aligned} \textit{Parametrized Process Constants} \\ \textit{For example: } \textit{Bank(total)} \stackrel{def}{=} \textit{save}(x).\textit{Bank(total} + x). \end{aligned}$ | $C_{i} \underbrace{c_{i}(i)}_{out(x)} C_{i} \underbrace{c_{i}(i)}_{out(1)} C_{i} \underbrace{c_{i}(i)}_{out(1)} C_{i} \underbrace{c_{i}(i)}_{out(1)} C_{i} \underbrace{c_{i}(i)}_{out(1)} C_{i} \underbrace{c_{i}(i)}_{in(1)} C_{i} \underbrace{c_{i}(i)}_{in(1)} \underbrace{c_{i}(i)}_{in(1$ |  |  |
| Lecture 3 () Semantics and Verification 2008 1 / 17                                                                                                                                            | Lecture 3 () Semantics and Verification 2008 2 / 17                                                                                                                                                                                                                                                                                                                                 | Lecture 3 () Semantics and Verification 2008 3 / 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CCS Has Full Turing Power                                                                                                                                                                      | Behavioural Equivalence                                                                                                                                                                                                                                                                                                                                                             | Goals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Fact<br>CCS can simulate a computation of any Turing machine.                                                                                                                                  | ImplementationSpecification $CM \stackrel{\text{def}}{=} coin. \overline{coffee}. CM$ $Spec \stackrel{\text{def}}{=} \overline{pub}. Spec$ $CS \stackrel{\text{def}}{=} \overline{pub}. \overline{coin}. coffee}. CS$ $Spec \stackrel{\text{def}}{=} \overline{pub}. Spec$ $Uni \stackrel{\text{def}}{=} (CM   CS) \setminus \{coin, coffee\}$                                      | <ul> <li>What should a reasonable behavioural equivalence satisfy?</li> <li>abstract from states (consider only the behaviour – actions)</li> <li>abstract from nondeterminism</li> <li>abstract from internal behaviour</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Remark<br>Hence CCS is as expressive as any other programming language but its use<br>is to rather <b>describe</b> the behaviour of reactive systems than to perform<br>specific calculations. | Question Are the processes Uni and Spec behaviorally equivalent?<br>$Uni \equiv Spec$                                                                                                                                                                                                                                                                                               | <ul> <li>What else should a reasonable behavioural equivalence satisfy?</li> <li>reflexivity P ≡ P for any process P</li> <li>transitivity Spec<sub>0</sub> ≡ Spec<sub>1</sub> ≡ Spec<sub>2</sub> ≡ ··· ≡ Impl gives that<br/>Spec<sub>0</sub> ≡ Impl</li> <li>symmetry P ≡ Q iff Q ≡ P</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

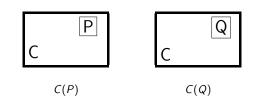
Lecture 3 ()

Semantics and Verification 2008

4 / 17

Lecture 3 ()

Semantics and Verification 2008


5 / 17

Lecture 3 ()

Semantics and Verification 2008

6 / 17

## Congruence



### Congruence Property

 $P \equiv Q$  implies that  $C(P) \equiv C(Q)$ 

Semantics and Verification 2008

| Lecture | 3 | 0 |  |
|---------|---|---|--|

### Strong Bisimilarity

Let  $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$  be an LTS.

Strong Bisimulation A binary relation  $R \subseteq Proc \times Proc$  is a **strong bisimulation** iff whenever  $(s, t) \in R$  then for each  $a \in Act$ : • if  $s \xrightarrow{a} s'$  then  $t \xrightarrow{a} t'$  for some t' such that  $(s', t') \in R$ • if  $t \xrightarrow{a} t'$  then  $s \xrightarrow{a} s'$  for some s' such that  $(s', t') \in R$ .

# Strong Bisimilarity

Two processes  $p_1, p_2 \in Proc$  are **strongly bisimilar**  $(p_1 \sim p_2)$  if and only if there exists a strong bisimulation R such that  $(p_1, p_2) \in R$ .

```
\sim = \cup \{ R \mid R \text{ is a strong bisimulation} \}
```

Trace Equivalence

Let  $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$  be an LTS.

Trace Set for  $s \in Proc$  $Traces(s) = \{w \in Act^* \mid \exists s' \in Proc. \ s \xrightarrow{w} s'\}$ 

Let  $s \in Proc$  and  $t \in Proc$ .

Trace Equivalence We say that s and t are **trace equivalent**  $(s \equiv_t t)$  if and only if Traces(s) = Traces(t)

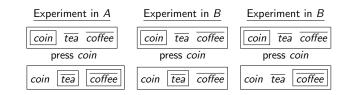
Lecture 3 () Semantics and Verification 2008

Basic Properties of Strong Bisimilarity

#### Theorem

7 / 17

 $\sim$  is an equivalence (reflexive, symmetric and transitive)


Theorem

 $\sim$  is the largest strong bisimulation

## Theorem

 $s \sim t$  if and only if for each  $a \in Act$ : • if  $s \xrightarrow{a} s'$  then  $t \xrightarrow{a} t'$  for some t' such that  $s' \sim t'$ • if  $t \xrightarrow{a} t'$  then  $s \xrightarrow{a} s'$  for some s' such that  $s' \sim t'$ .

# Black-Box Experiments



Main Idea Two processes are behaviorally equivalent if and only if an **external observer** cannot tell them apart.

| 8 / 17 | Lecture 3 () Semantics and Verification 2008                                                                                                                                                                | 9 / 17 |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
|        | How to Show Nonbisimilarity?                                                                                                                                                                                |        |  |  |  |  |
|        |                                                                                                                                                                                                             |        |  |  |  |  |
|        |                                                                                                                                                                                                             |        |  |  |  |  |
|        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                        |        |  |  |  |  |
|        | To prove that $s \not\sim t$ :                                                                                                                                                                              | 1      |  |  |  |  |
|        | <ul> <li>Enumerate all binary relations and show that none of them at the<br/>same time contains (s, t) and is a strong bisimulation. (Expensive:<br/>2<sup> Proc <sup>2</sup></sup> relations.)</li> </ul> |        |  |  |  |  |
|        | <ul> <li>Make certain <b>observations</b> which will enable to disqualify many<br/>bisimulation candidates in one step.</li> </ul>                                                                          |        |  |  |  |  |

• Use game characterization of strong bisimilarity.

Lecture 3 ()

Semantics and Verification 2008

10 / 17

Lecture 3 ()

Semantics and Verification 2008

11 / 17

Lecture 3 ()

Semantics and Verification 2008

## Strong Bisimulation Game

Let  $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$  be an LTS and  $s, t \in Proc$ .

We define a two-player game of an 'attacker' and a 'defender' starting from s and t.

- The game is played in **rounds** and configurations of the game are pairs of states from  $Proc \times Proc$ .
- In every round exactly one configuration is called **current**. Initially the configuration (*s*, *t*) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the attacker aims to prove the opposite.

# Rules of the Bisimulation Games

#### Game Rules

In each round the players change the current configuration as follows:

- **(1)** the attacker chooses one of the processes in the current configuration and makes an  $\xrightarrow{a}$ -move for some  $a \in Act$ , and
- ② the defender must respond by making an →-move in the other process under the same action a.

The newly reached pair of processes becomes the current configuration. The game then continues by another round.

#### Result of the Game

- If one player cannot move, the other player wins.
- If the game is infinite, the defender wins.

## Game Characterization of Strong Bisimilarity

#### Theorem

- States *s* and *t* are strongly bisimilar if and only if the defender has a **universal** winning strategy starting from the configuration (*s*, *t*).
- States *s* and *t* are not strongly bisimilar if and only if the attacker has a **universal** winning strategy starting from the configuration (*s*, *t*).

#### Remark

Bisimulation game can be used to prove both bisimilarity and nonbisimilarity of two processes. It very often provides elegant arguments for the negative case.

| Lecture 3 ()                                           | Semantics and Verification 2008 | 13 / 17          | Lecture 3 ()           | Semantics and Verification 2008 | 14 / 17 | Lecture 3 () | Semantics and Verification 2008 | 15 / 17 |
|--------------------------------------------------------|---------------------------------|------------------|------------------------|---------------------------------|---------|--------------|---------------------------------|---------|
| Strong Bisimilarity is a Congruence for CCS Operations |                                 | Other Properties | of Strong Bisimilarity |                                 |         |              |                                 |         |

| Theorem |  |  |  |
|---------|--|--|--|
|         |  |  |  |

Semantics and Verification 2008

Let P and Q be CCS processes such that  $P \sim Q. \label{eq:processes}$  Then

- $\alpha.P \sim \alpha.Q$  for each action  $\alpha \in Act$
- $P + R \sim Q + R$  and  $R + P \sim R + Q$  for each CCS process R
- $P \mid R \sim Q \mid R$  and  $R \mid P \sim R \mid Q$  for each CCS process R
- $P[f] \sim Q[f]$  for each relabelling function f
- $P \setminus L \sim Q \setminus L$  for each set of labels L.

Following Properties Hold for any CCS Processes P, Q and R•  $P + Q \sim Q + P$ •  $P | Q \sim Q | P$ •  $P + Nil \sim P$ •  $P | Nil \sim P$ •  $(P + Q) + R \sim P + (Q + R)$ •  $(P | Q) | R \sim P | (Q | R)$ 

Lecture 3 ()

16 / 17

Lecture 3 ()

Semantics and Verification 2008

17 / 17