Semantics and Verification 2008					
Lecture 1					
Lecturer (1-8): Lecturer (9-15):		srba@cs.aau.dk kgl@cs.aau.dk			
Assistant:	Bjørn Haagensen	bh@cs.aau.dk			

Focus of the Course

Overview of the Course

- Study of mathematical models for the formal description and analysis of programs.
- Particular focus on parallel and reactive systems.
- Verification tools and implementation techniques underlying them.

- Transition systems and CCS.
- Strong and weak bisimilarity, bisimulation games.
- Hennessy-Milner logic and bisimulation.
- Tarski's fixed-point theorem.
- Hennessy-Milner logic with recursively defined formulae.
- Tined CCS.
- Timed automata and their semantics.
- Binary decision diagrams and their use in verification.
- Two mini projects.

Lecture 1 Semantics and Verification 2008	Lecture 1 Semantics and Verification 2008	Lecture 1 Semantics and Verification 2008
Mini Projects	Lectures	Tutorials
		• Regularly before each lecture.
 Verification of a communication protocol in CWB. 	 Ask questions. 	• Supervised peer learning.
 Verification of a real-time algorithm in UPPAAL. 	• Take your own notes.	• Work in groups of 2 or 3 people.
	• Read the recommended literature as soon as possible after the	• Print out the exercise list, bring literature and your notes.
• Pensum dispensation.	lecture.	 Feedback from teaching assistant on your request.
		• Star exercises (*) (part of the exam).

Literature

Hints

- Individual and oral.
- Preparation time (solving one selected star exercise).
- Pensum dispensation.

- Book "Reactive Systems: Modelling, Specification and Verification" by L. Aceto, A. Ingólfsdóttir, K.G. Larsen and J. Srba. Available in the local bookshop at Fredrik Bajersvej 7B.
- On-line literature.

- Check regularly the course web-page.
- Anonymous feedback form on the course web-page.
- Attend and actively participate during tutorials.
- Take your own notes.

Aims of the Course

Present a general theory of reactive systems and its applications.

Lecture 1 Semantics and Verification 2008

- Design.
- Specification.
- Verification (possibly automatic and compositional).
- Give the students practice in modelling parallel systems in a formal framework.
- Give the students skills in analyzing behaviours of reactive systems.
- Introduce algorithms and tools based on the modelling formalisms.

Classical View

Characterization of a Classical Program

Program transforms an input into an output.

• Denotational semantics: a meaning of a program is a partial function

 $\textit{states} \hookrightarrow \textit{states}$

Lecture 1 Semantics and Verification 2008

- Nontermination is bad!
- In case of termination, the result is unique.

Reactive systems

What about:

- Operating systems?
- Communication protocols?
- Control programs?
- Mobile phones?
- Vending machines?

Is this all we need?

Lecture 1 Semantics and Verification 2008

Analysis of Reactive Systems

The Need for a Theory

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- communication and interaction
- parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Questions

How can we develop (design) a system that "works"?How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

How to Model Reactive Systems

Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
- Mars Pathfinder

Labelled Transition System

• ...

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$?

Lecture 1 Semantics and Verification 2008

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Definition

A labelled transition system (LTS) is a triple (*Proc*, *Act*, $\{\stackrel{a}{\longrightarrow} | a \in Act\}$) where

- *Proc* is a set of states (or processes),
- Act is a set of labels (or actions), and
- for every a ∈ Act, ^a→ ⊆ Proc × Proc is a binary relation on states called the transition relation.

Lecture 1 Semantics and Verification 2008

We will use the infix notation $s \xrightarrow{a} s'$ meaning that $(s, s') \in \xrightarrow{a}$.

Sometimes we distinguish the initial (or start) state.

Lecture 1 Semantics and Verification 2008

Sequencing, Nondeterminism and Parallelism

Binary Relations

Closures

Definition

A binary relation R on a set A is a subset of $A \times A$.

 $R \subseteq A imes A$

Sometimes we write x P x instead of

LTS can also describe: • sequencing (*a*; *b*)

• choice (nondeterminism) (a + b)

LTS explicitly focuses on interaction.

• limited notion of parallelism (by using interleaving) (a||b)

Sometimes we write x R y instead of $(x, y) \in R$.

Properties

- R is reflexive if $(x, x) \in R$ for all $x \in A$
- *R* is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$
- *R* is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$

Let R, R' and R'' be binary relations on a set A.

Reflexive Closure

R' is the reflexive closure of R if and only if

- $I R \subseteq R',$
- \bigcirc R' is reflexive, and
- R' is the *smallest* relation that satisfies the two conditions above, i.e., for any relation R'':
 if R ⊂ R'' and R'' is reflexive, then R' ⊂ R''.

Lecture 1 Semantics and Verification 2008 Lecture 1 Semantics and Verification 2008 Lecture 1 Semantics and Verification 2008 Closures Closures Labelled Transition Systems - Notation

Let R, R' and R'' be binary relations on a set A.

Symmetric Closure R' is the symmetric closure of R if and only if $R \subseteq R'$,

- **2** R' is symmetric, and
- *R'* is the *smallest* relation that satisfies the two conditions above, i.e., for any relation *R''*: if *R* ⊂ *R''* and *R''* is symmetric, then *R'* ⊂ *R''*.

Let R, R' and R'' be binary relations on a set A.

Transitive Closure

R' is the transitive closure of R if and only if

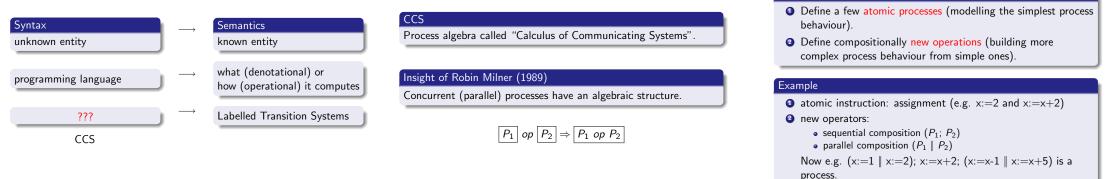
$I R \subseteq R',$

- \bigcirc R' is transitive, and
- *R'* is the *smallest* relation that satisfies the two conditions above, i.e., for any relation *R''*:
 if *R* ⊂ *R''* and *R''* is transitive, then *R'* ⊂ *R''*.

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

- we extend \xrightarrow{a} to the elements of Act^*
- $\longrightarrow = \bigcup_{a \in Act} \xrightarrow{a}$
- ${\ \bullet \ } \longrightarrow^*$ is the reflexive and transitive closure of \longrightarrow
- $s \xrightarrow{a}$ and $s \xrightarrow{a}$
- reachable states

How to Describe LTS?


Calculus of Communicating Systems

Process Algebra

Basic Principle

Semantics and Verification 2008

Lecture 1

Lecture 1 Semantics and Verification 2008

CCS Basics (Sequential Fragment)

- *Nil* (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions $\begin{pmatrix} def \\ = \end{pmatrix}$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.

Lecture 1 Semantics and Verification 2008