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Focus of the Course

Study of mathematical models for the formal description and analysis
of programs.

Particular focus on parallel and reactive systems.

Verification tools and implementation techniques underlying them.
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Overview of the Course

Transition systems and CCS.

Strong and weak bisimilarity, bisimulation games.

Hennessy-Milner logic and bisimulation.

Tarski’s fixed-point theorem.

Hennessy-Milner logic with recursively defined formulae.

Tined CCS.

Timed automata and their semantics.

Binary decision diagrams and their use in verification.

Two mini projects.
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Mini Projects

Verification of a communication protocol in CWB.

Verification of a real-time algorithm in UPPAAL.

Pensum dispensation.
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Lectures

Ask questions.

Take your own notes.

Read the recommended literature as soon as possible after the lecture.
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Tutorials

Regularly before each lecture.

Supervised peer learning.

Work in groups of 2 or 3 people.

Print out the exercise list, bring literature and your notes.

Feedback from teaching assistant on your request.

Star exercises (*) (part of the exam).
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Exam

Individual and oral.

Preparation time (solving one selected star exercise).

Pensum dispensation.
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Literature

Book “Reactive Systems: Modelling, Specification and Verification”
by L. Aceto, A. Ingólfsdóttir, K.G. Larsen and J. Srba. Available in
the local bookshop at Fredrik Bajersvej 7B.

On-line literature.
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Hints

Check regularly the course web-page.

Anonymous feedback form on the course web-page.

Attend and actively participate during tutorials.

Take your own notes.
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Aims of the Course

Present a general theory of reactive systems and its applications.

Design.

Specification.

Verification (possibly automatic and compositional).

1 Give the students practice in modelling parallel systems in a formal
framework.

2 Give the students skills in analyzing behaviours of reactive systems.

3 Introduce algorithms and tools based on the modelling formalisms.
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Classical View

Characterization of a Classical Program

Program transforms an input into an output.

Denotational semantics:
a meaning of a program is a partial function

states ↪→ states

Nontermination is bad!

In case of termination, the result is unique.

Is this all we need?
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Reactive systems

What about:

Operating systems?

Communication protocols?

Control programs?

Mobile phones?

Vending machines?
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Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from
its environment.

Key Issues:

communication and interaction

parallelism

Nontermination is good!

The result (if any) does not have to be unique.
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Analysis of Reactive Systems

Questions

How can we develop (design) a system that ”works”?

How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.
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The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

Intel’s Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

Mars Pathfinder

...
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Classical vs. Reactive Computing

Classical Reactive/Parallel

interaction no yes

nontermination undesirable often desirable

unique result yes no

semantics states ↪→ states ?
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How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Lecture 1 () Semantics and Verification 2008 17 / 28

Labelled Transition System

Definition

A labelled transition system (LTS) is a triple
(Proc ,Act, { a−→| a ∈ Act}) where

Proc is a set of states (or processes),

Act is a set of labels (or actions), and

for every a ∈ Act,
a−→ ⊆ Proc × Proc is a binary relation on states

called the transition relation.

We will use the infix notation s
a−→ s ′ meaning that (s, s ′) ∈ a−→.

Sometimes we distinguish the initial (or start) state.
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Sequencing, Nondeterminism and Parallelism

LTS explicitly focuses on interaction.

LTS can also describe:

sequencing (a; b)

choice (nondeterminism) (a + b)

limited notion of parallelism (by using interleaving) (a||b)
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Binary Relations

Definition

A binary relation R on a set A is a subset of A× A.

R ⊆ A× A

Sometimes we write x R y instead of (x , y) ∈ R.

Properties

R is reflexive if (x , x) ∈ R for all x ∈ A

R is symmetric if (x , y) ∈ R implies that (y , x) ∈ R for all x , y ∈ A

R is transitive if (x , y) ∈ R and (y , z) ∈ R implies that (x , z) ∈ R
for all x , y , z ∈ A
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Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Reflexive Closure

R ′ is the reflexive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is reflexive, and

3 R ′ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R ′′:
if R ⊆ R ′′ and R ′′ is reflexive, then R ′ ⊆ R ′′.
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Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Symmetric Closure

R ′ is the symmetric closure of R if and only if

1 R ⊆ R ′,

2 R ′ is symmetric, and

3 R ′ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R ′′:
if R ⊆ R ′′ and R ′′ is symmetric, then R ′ ⊆ R ′′.
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Closures

Let R, R ′ and R ′′ be binary relations on a set A.

Transitive Closure

R ′ is the transitive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is transitive, and

3 R ′ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R ′′:
if R ⊆ R ′′ and R ′′ is transitive, then R ′ ⊆ R ′′.
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Labelled Transition Systems – Notation

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

we extend
a−→ to the elements of Act∗

−→=
⋃

a∈Act
a−→

−→∗ is the reflexive and transitive closure of −→
s

a−→ and s 6 a−→
reachable states
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How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language −→ what (denotational) or
how (operational) it computes

???
−→ Labelled Transition Systems

CCS
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Calculus of Communicating Systems

CCS

Process algebra called “Calculus of Communicating Systems”.

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

P1 op P2 ⇒ P1 op P2
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Process Algebra

Basic Principle

1 Define a few atomic processes (modelling the simplest process
behaviour).

2 Define compositionally new operations (building more complex
process behaviour from simple ones).

Example

1 atomic instruction: assignment (e.g. x:=2 and x:=x+2)
2 new operators:

I sequential composition (P1; P2)
I parallel composition (P1 || P2)

Now e.g. (x:=1 || x:=2); x:=x+2; (x:=x-1 || x:=x+5) is a process.
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CCS Basics (Sequential Fragment)

Nil (or 0) process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (
def
=)

nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.
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