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Abstract These notes are intended for use in Semantics and Verification course
at AAU. They deal with strong and weak bisimilarity defined over labelled
transition systems and focus on the game characterization of bisimilarity. The
motivation and justification of the notions is provided in the other reading
material of the course. Our aim is to explain thoroughly the definitions of strong
and weak bisimilarity and provide a selection of examples which document their
use.

1 Introduction

Perhaps the most abstract process behaviour can be described as follows: a pro-
cess p performs an action and becomes a process p’. Processes are considered as
agents that can execute actions in order to communicate with their environment.
These actions can be observed by an external observer via communications and
determine the visible behaviour of the process.

This simple idea is formally captured by the notion of a labelled transition
system. Transition system with labels is perhaps the most basic model of a
process behaviour. Most of the formalisms within concurrency theory are given
their semantics by means of labelled transition systems via so called structural
operational semantics (or simply SOS) invented by Plotkin [5].

In labelled transition systems, processes are understood as nodes of certain
edge-labelled oriented graphs (labelled transition systems) and a change of a
process state caused by performing an action is understood as moving along an
edge labelled by the action name.

A labelled transition system consists therefore of a set of states (or processes
or configurations), a set of labels (or actions), and a transition relation —
describing a change of a process state: if a process p can perform an action a
and become a process p’, we write p N p’. Sometimes a state is singled out as
the start state in the labelled transition system under consideration.

Ezample 1. Let us start with the classical example of a tea/coffee vending ma-
chine. The very simplified behaviour of the process which determines the inter-
action of the machine with a costomer can be described as follows. From the
initial state representing the situation “waiting for a request”, (let us call the
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state p), two possible actions are enabled. Either the tea button or the coffee
button can be pressed (the corresponding action ‘tea’ or ‘coffee’ is executed)
and the internal state of the machine changes accordingly to p; or ps. Formally,
this can be described by the transitions
tea coffee
p—p1 and p — pa.

Now the customer is asked to insert the corresponding amount of money, let us
say one euro for a cup of tea and two euros for a cup of coffee. This is reflected
in the control state of the vending machine with corresponding changes. It can
be modelled by the transitions

1€ 2€
p1 — p3 and p2 — ps3.

Finally, the drink is collected and the machine returns to its initial state p,

ready to accept another customer. This corresponds to the transition
collect
p3 —

We shall often distinguish a so called start state (or initial state), which is one
selected state in which the system initially starts (in our example the state p).
O

It is convenient to use a graphical representation of labelled transition sys-
tems. The following picture represents the tea/coffee machine described above.

b

tea coffee
p1 collect D2

1€ 2€

b3

Sometimes, when referring only to the process p, we do not have to give
names to the other process states (in our example p;, p2 and p3) and it is
sufficient to provide the following labelled transition system for the process p.
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Remark 1. The definition of a labelled transitions systems allows situations like
that in Figure 1 (where p is the initial state). This means that the state p, where
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Figure 1. Labelled transition system with initial state p

the action ¢ can be performed in a loop is irrelevant for the behaviour of the
process p since pg can never be reached from p. This motivates us to introduce
the notion of reachable states. We say that a state p’ is reachable from p iff
there exists an oriented path from p to p’. The set of all such states is called
the set of reachable states. In our example this set contains exactly two states:
p and p;.

So far we were able to explicitly describe only finite-state processes (i.e.
processes that have only finitely many states). We simply enumerate all the
states and all the transitions. Transition systems can also be defined by using
process algebras. The idea of process algebras is based on defining a set of basic
(atomic) processes modelling very simple behaviours together with composition
operators which enable us to define complex behaviours from the atomic pro-
cesses by composing them in different ways. This main idea appears in many
variations; let us mention e.g. the classical process algebras CCS [4], ACP [2]
and CSP [3]. Process algebras enable us to define in a finite way labelled tran-
sition systems with infinitely many reachable states.

2 Labelled Transition Systems

We shall now formally define the notions discussed in the previous section.

Definition 1 (Labelled transition system).
A labelled transition system is a triple (Proc, Act,{—| a € Act}) where

— Proc is a set of states (or processes),

— Act is a set of labels (or actions), and

— for every a € Act, = C Proc x Proc is a binary relation on states called
the transition relation. We will use the infiz notation s — s meaning that
(s,8") €.

We shall often distinguish a so called start state (or initial state), which is
one selected state in which the system initially starts.

Sometimes the transition relation — is defined as a ternary relation —C
Proc x Act x Proc and we write s — s’ whenever (s, a,s’) €—. This is an
alternative way to define a labelled transition system and it gives exactly the
same notion as Definition 1.



Remark 2. Let us now recall different notations that can be used in connection
with labelled transitions systems.

— We can extend the transition relation to the elements of Act™ (all finite
strings over Act including the empty string €). The definition is as follows:
s — s for every s € Proc; and s — ' iff there is t € Proc such that s — t
and t — §' for every s,s’ € Proc, a € Act and w € Act*. In other words,

. . w
if w=ajas---a, for ai,as...,a, € Act then we write s — s’ whenever
there exist states sq1,...,s,_1 € Proc such that
al a2 as a4 an—1 Qn /
S§—81 — 89— 83—+ —> Sp_1 —> S .

For the transition system in Figure 1 we have e.g. p — p, p o, p and

bab
p1r — D

— We write s — s’ whenever there is an action a € Act such that s — s,
For the transition system in Figure 1 we have e.g. p — p1, p1 — P,
p2 — p1 and p2 — pa.

— We use the notation s — meaning that there is some s’ € Proc such that
s — §'. We also write s —~ whenever there is no s’ € Proc such that
s — ¢, and s —~ whenever s —~ for all a € Act.

b

For the transition system in Figure 1 we have e.g. p —, p 7bL>, pP1 —,
p1 -

— We write s —* §' iff s — & for some w € Act*. In other words, —* is
the reflexive and transitive closure of the relation —.
For the transition system in Figure 1 we have e.g. p —* p, p —™ p1, and

p2 —" p.

Definition 2 (Reachable states).

Let T = (Proc, Act, {~%~| a € Act}) be a labelled transition system and s € Proc
its initial state. We say that s’ € Proc is reachable in the transition system T
iff s —* s'. The set of reachable states contains all states reachable in T.

In the transition system from Figure 1 where p is the initial state, the set
of all reachable states is equal to {p,p;}.

3 Strong Bisimilarity

In this section we shall define strong bisimilarity and introduce its game char-
acterization.

Definition 3 (Strong bisimulation).

Let (Proc, Act,{-%=| a € Act}) be a labelled transition system. A binary relation
R C Proc x Proc is a strong bisimulation iff whenever (s,t) € R then for each
a€ Act:

— if s = &' then t - t' for some t' € Proc such that (s',t') € R, and
—ift 2 t' then s - ' for some s' € Proc such that (s',t') € R.



We say that two states p1,p2 € Proc are strongly bisimilar, and write p; ~ pa,
if and only if there exists a strong bisimulation R such that (p1,p2) € R.

Several properties of the relation ~ are mentioned in [1], in particular ~
is an equivalence relation and it is the largest strong bisimulation. We call it
strong bisimilarity or strong bisimulation equivalence.

Ezample 2. Consider a labelled transition system (Proc, Act,{—=| a € Act})
where

— Proc = {s, s1,s9,t,t1}
— Act = {a, b}

b
- 5= {(87 31)7 (37 32)7 (tv tl)} and —= {(317 32)7 (327 32)7 (tb tl)}'
Here is a graphical representation of the transition system.

S

a

t
2 1 ﬁ
O, O,
We will show that s ~ t. In order to do that, we have to define a strong
bisimulation R such that (s,t) € R. Let us define it as

S1 S

R = {(Sat)a (Slatl)’ (527t1)}'

The binary relation R can be graphically depicted by dotted lines like in
the following picture.
o
al

N
O
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Obviously, (s,t) € R. We have to show that R is a strong bisimulation,
i.e., that it satisfies Definition 3. For every pair of states from R, we have to
investigate all the possible transitions from both states and see whether they
can be matched by corresponding transitions from the other state. Note that a
transition under some label a can be matched only by a transition under the
same label a. We will now do the complete analysis of all steps needed to show
that R is a strong bisimulation, even though they are very simple and tedious.

— The pair (s,t):
e transitions from s:
% § — s1 can be matched by t — ¢; and (s1,t1) € R
% 5 — sy can be matched by t —— ¢ and (s2,t1) € R



% these are all the transitions from s
e transitions from t¢:

% t — ¢, can be matched e.g. by s — s and (s2,t1) € R (another
possibility would be to match it by s — s; but finding one possi-
bility is enough)

% these are all the transitions from ¢

— The pair (s1,%1):
e transitions from sy:
* 81 LN s9 can be matched by t; LI t1 and (so2,t1) € R
* these are all the transitions from s
e transitions from ¢q:
* LN t1 can be matched by sy LN so and (s2,t1) € R
% these are all the transitions from ¢;
— The pair (s2,t1):
e transitions from ss:
* 8o LN s9 can be matched by t; LI t; and (so,t1) € R
% these are all the transitions from s
e transitions from ¢;:
* 1 2, t; can be matched by so LI sg and (so2,t1) € R
% these are all the transitions from ¢

This completes the proof that R is a strong bisimulation and because (s,t) € R

we get that s ~ t.
In order to prove that e.g. s; ~ so we can use the following relation R =
{(s1,52), (s2,s2)}. The reader is invited to verify that R is a strong bisimulation.
O

Ezample 3. In this example we shall demonstrate that it is possible that the
initial state of a labelled transition system with infinitely many reachable states
can be strongly bisimilar to a state from which only finitely many states are
reachable. Consider (Proc, Act,{~%+| a € Act}) where

— Proc = {s; | i € N} U {t} where N = {1,2,3,...} is the set of natural
numbers

— Act = {a}

— === {(si,8141) | i € N} U{(t,1)}.

Here is a graphical representation of the transition system.

S1 a S92 a S3 a S4 a

t=
N

a

We can now observe that s; ~ t because
R = {(Si,t) | 1€ N}

is a strong bisimulation and it contains the pair (s1,¢). The reader is invited to
verify this simple fact. a



We can naturally ask the following question:
What techniques do we have to show that two states are not bisimilar?

In order to prove that for two given states s and t it is the case that s £ t,
we should by Definition 3 enumerate all binary relations over the set of states
and for each of them show that if it contains the pair (s,¢) then it is not a
strong bisimulation. For the transition system from Example 2 this translates
to investigating 2%° different candidates and in general for a transition system
with n states one would have to go through 27* different binary relations. In
what follows, we will introduce a game characterization of strong bisimilarity,
which will enable us to determine much more effectively that two states are not
strongly bisimilar.

The idea is that there are two players in the bisimulation game, called
‘attacker’ and ‘defender’. The attacker is trying to show that two given states
are not bisimilar while the defender aims to show the opposite. The formal
definition follows.

Definition 4 (Strong Bisimulation Game).

Let (Proc, Act,{-%~| a € Act}) be a labelled transition system. A strong bisimu-
lation game starting from the pair of states (s1,t1) € Procx Proc is a two-player
game of an ‘attacker’ and a ‘defender’.

The game is played in rounds and configurations of the game are pairs
of states from Proc X Proc. In every round exactly one configuration is called
current; initially the configuration (s1,t1) is the current one.

In each round the players change the current configuration (s,t) according
to the following rules.

1. The attacker chooses either a left or right side of the current configuration
(s,t) and an action a from Act.
— If the attacker chose left then he has to perform a transition s — s’ for
some state s’ € Proc.
— If the attacker chose right then he has to perform a transition t —s t/
for some state t' € Proc.
2. In this step the defender must provide an answer to the attack made in the
previous step.
— If the attacker chose left then the defender plays on the right side and
has to respond by making a transitions t — t' for some t' € Proc.
— If the attacker chose right then the defender plays on the left side and
has to respond by making a transitions s — s’ for some s' € Proc.
3. The configuration (s',t") becomes the current configuration and the game
continues by another round according to the rules described above.

A play of the game is a maximal sequence of configurations formed by the
players according to the rules described above, and starting from the initial
configuration (s1,%1). Note that a bisimulation game can have many different
plays according to the choices made by the attacker and the defender. The
attacker can choose a side, an action and a transition. The defender’s only



choice is in selecting one of the available transitions that are labelled with the
same action picked by the attacker.

We shall now define when a play is winning for the attacker and when for
the defender.

A finite play is lost by the player who is stuck and cannot make a move
from the current configuration (s,t) according to the rules of the game. Note
that attacker loses only if both s —~ and t —/, i.e., there is no transition from
both the left and the right side of the configuration. The defender loses if he
has (on his side of the configuration) no available transition under the action
selected by the attacker.

It can also be the case that none of the players is stuck in any configuration
and the play is infinite. In this situation the defender is the winner of the play.

A given play is always winning either for the attacker or the defender and
it cannot be winning for both at the same time.

The following proposition relates strong bisimilarity with the corresponding
game characterization (see e.g. [6,7]).

Proposition 1. States s; and t1 of a labelled transition system are strongly
bisimilar if and only if the defender has a universal winning strateqy in the
strong bisimulation game starting from the configuration (s1,t1). The states s;
and t1 are not strongly bisimilar if and only if the attacker has a universal
winning strategy.

By universal winning strategy we mean that the player can always win
the game, irrelevant of how the other player is selecting his moves. In case
that the opponent has more than one choice how to continue from the current
configuration, all these possibilities have to be considered.

Ezample 4. Let us recall the transition system from Example 2.
S t
a a \{

a
S1 S92 \ tl <~
\/b (=

We will show that the defender has a universal winning strategy from the con-
figuration (s,t) and hence show that s ~ ¢. In order to do that, we have to
consider all possible attacker’s moves from this configuration and define de-
fender’s response to each of them. The attacker can make three different moves
from (s,t):

1. attacker selects right side, action ¢ and makes the move ¢ — t;
2. attacker selects left side, action a and makes the move s —— s9
3. attacker selects left side, action @ and makes the move s —— s;

— Defender’s answer on attack 1. is by playing s — so.
(Even though there are more possibilities it is sufficient to provide only one.)
The current configuration becomes (sg,11).



— Defender’s answer on attack 2. is by playing t — .
The current configuration becomes again (sg,t1).

— Defender’s answer on attack 3. is by playing t — .
The current configuration becomes again (s1,%1).

Now it remains to show that the defender has a universal winning strategy from
the configurations (s2,t1) and (sy,%1).

From (sg,t1) is easy to see that any continuation of the game will always
go through the same current configuration (so,t1) and hence the game will be
necessarily infinite. According to the definition, the defender is the winner in
this case.

From (s1,t1) the attacker has two possible moves. Either s; LR 89 or t1 LN

t1. In the first case the defender answers by t; LN t1 and in the second case by

S1 LN s9. The next configuration is in both cases (s2,t1) and we already know
that the defender has a winning strategy from this configuration.
Hence we showed that the defender has a universal winning strategy from
the configuration (s, ) and according to Proposition 1 this means that s ~ ¢.
O

The game characterization of bisimilarity introduced above is simple, yet
powerful. It provides an intuitive understanding of this notion. It can be used
both to show that two states are strongly bisimilar as well as that they are not.
The technique is particularly useful for showing non-bisimilarity of two states.
This is demonstrated by the following examples.

Ezample 5. Let us consider the following transition system (we provide only its
graphical representation).

j; N
2 N

t3 ty

We will show that s 4 ¢ by describing a universal winning strategy for the
attacker in the bisimulation game starting from (s,¢). We will in fact show
two different strategies (but of course finding one is sufficient for proving non-
bisimilarity).

— In the first strategy, the attacker selects left side, action a and the transition
s —~ s1. Defender can answer by t 25 t; or t % t5. This means that we
will have to consider two different configurations in the next round, namely
(s1,t1) and (s1,t2). From (s1,t1) the attacker wins by playing s; £ 53 on
the left side and the defender cannot answer as there is no c-transition from
t1. From (s1,t2) the attacker wins by playing s; LI s9 and the defender
has again no answer from t5. As we analyzed all different possibilities for



the defender and in every one the attacker wins, we have found a universal
winning strategy for the attacker and hence s and ¢ are not bisimilar.

— Now we provide another strategy, which is easier to describe and involves
switching of sides. Starting from (s, t) the attacker plays on the right side
according to the transition t — t; and the defender can only answer by
s % 51 on the left side (no more configurations need to be examined as this
is the only defender’s possibility). The current configuration hence becomes
(s1,t1). In the next round the attacker plays s; LN s3 and wins the game

as t1 76L>
O

Ezxample 6. Let us consider a more complex transition system.

N N
% X

53 to

We will define attacker’s universal winning strategy from (s, ¢) and hence show
that s ¢ t.

In the first round the attacker plays on left side the move s — s; and
the defender can only answer by ¢t — ¢;. The current configuration becomes
(s1,t1). In the second round the attacker plays on right side according to the

transition t; b, t1 and the defender can only answer by s; LN s3. The current
configuration becomes (s3,t1). Now the attacker wins by playing again the

transition t; LN t1 (or ty LN to) and the defender loses because s3 —/. O

4 Weak Bisimilarity

We continue by defining the notion of weak bisimilarity and introduce the weak
bisimulation game. The main idea is that weak bisimilarity abstracts away from
internal behaviour of the systems, which is modelled by a special action 7.

Let (Proc, Act, {~%+| a € Act}) be a labelled transition system such that Act
contains a distinguished silent action 7. Actions from Act \ {7} will be called
visible actions. We define a set of weak transition relations ==C Proc x Proc
for all a € Act in such a way that == is the relation —— preceded and followed
by an arbitrary number of 7 transitions. Formally,

Lo dot | (=)0 = o(—)" ifa T
(—)* ifa=r.

The symbol o stands for composition of binary relations and (—)* is the
reflexive and transitive closure of the binary relation —. In words, if a # 7
then s == s’ means that from s there is a sequence of zero or more transitions

10



transitions labelled by 7, followed by one transition labelled by a, followed again
by zero or more transitions labelled by 7 such that we reach the state s’. By
writing s = s’ we understand that we can go from s to s’ via zero or more
transitions labelled by 7. In particular, for every state s we have s = s.

As before we extend the weak transition relation to the elements of Act*
and use the notation =% .

Example 7. Let us consider the following transition system.

T

N

S0 S1 59 S3 S4 D c
\_/
b

. a T T
We can now observe the following facts: s9 = s4, S9 = S2, S9 = So,
a ab abc ac b,
S9 =— 83, S =— S4, S0 — S4, So — S4, and S1 :,é> O

Definition 5 (Weak bisimulation).

Let (Proc, Act,{-%| a € Act}) be a labelled transition system (such that Act
possibly contains the distinguished silent action 7). A binary relation R C ProcXx
Proc is a weak bisimulation iff whenever (s,t) € R then for each a € Act:

— if s == ' then t == t' for some t' € Proc such that (s',t') € R, and
— ift 5t then s == s’ for some s’ € Proc such that (s',t') € R.

We say that two states p1,pe € Proc are weakly bisimilar, and write p1 = pa, if
and only if there exists a weak bisimulation R such that (p1,p2) € R.

Remark 3. 1t is possible to give an alternative definition of weak bisimilarity as
follows. A binary relation R C Proc X Proc is a weak bisimulation iff whenever
(s,t) € R then for each a € Act:

— if s =% &' then t == t' for some ' € Proc such that (s',) € R, and
— if t =% #' then s == s’ for some s’ € Proc such that (s',') € R.

It is straightforward (see e.g. [4]) to realize that this definition of weak bisimu-
lation defines the same notion as Definition 5. O

Several properties of the relation ~ are mentioned in [1], in particular = is
an equivalence relation and it is the largest weak bisimulation. We call it weak
bisimilarity or weak bisimulation equivalence.

Example 8. Let us consider the following transition system.

§—T >8] —2 > 59 t—">1

Obviously s 7 t. On the other hand s ~ ¢ because R = {(s,t), (s1,t), (s2,t1)} is
a weak bisimulation such that (s,¢) € R. It remains to verify that R is indeed
a weak bisimulation.

— Let us examine all possible transitions from the components of the pair
(s,t). If s 5 51 then t == ¢ and (s1,t) e R. If ¢t %5 t; then s == s and
(Sg, tl) € R.

11



— Let us examine all possible transitions from (s1,t). If s; %, s9 then t == #;
and (s2,t1) € R. Similarly if ¢ —. t; then s; == s5 and again (s2,t1) € R.

— In the last pair (s2,t1) neither s nor ¢; can perform any transition, so it is
safe to have this pair in R.

Hence we showed that every pair from R satisfies the condition given in Defi-
nition 5, which means that R is a weak bisimulation. O

The following proposition points out the relationship between strong and
weak bisimilarity.

Proposition 2 ([4]). If s ~ t then also s ~ t.

Proof. By definition s ~ ¢ means that there is a strong bisimulation R such
that (s,t) € R. It is enough to show that R is also a weak bisimulation. This is
almost obvious if we realize that for any two states p,p’ € Proc and any action
a € Act (including 7) it holds that p — p’ implies p == p/. O

Remark 4. Example 8 shows that the opposite direction of Proposition 2 does
not hold. Hence the fact that s &~ ¢t does not imply that necessarily s ~¢t. O

Similarly as for strong bisimilarity, showing that two states are not weakly
bisimilar is more difficult and means that we have to enumerate all binary
relations on states and verify that none of them is a weak bisimulation and at
the same time contains the pair of states that we test for equivalence.

Fortunately, the rules of the strong bisimulation game as defined in the
previous section need only be slightly modified in order to achieve a character-
ization of weak bisimilarity in terms of weak bisimulation games.

Definition 6 (Weak Bisimulation Game). A weak bisimulation game is
defined in the same way as strong bisimulation game in Definition 4, with the
only exception that the defender can answer using weak transition relation ==
instead of only —— as in the strong case. The attacker is still allowed to use
only the = moves.

All the definitions of a play and winning strategy are exactly as before and
we have a similar proposition as for the strong bisimulation game.

Proposition 3. States s1 and t1 of a labelled transition system are weakly
bisimilar if and only if the defender has a universal winning strategy in the
weak bisimulation game starting from the configuration (s1,t1). The states sy
and t1 are not weakly bisimilar if and only if the attacker has a universal win-
ning strategy.

We remind the reader of the fact that in the weak bisimulation game from
the current configuration (s,t), if the attacker chooses a move under the silent
action 7 (let us say s — s') then the defender can (as one possibility) simply
answer by doing ‘nothing’, i.e., by idling in the state ¢ (as we always have
t == t).

Ezxample 9. Consider the following transition system.

12
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We will show that s % t be defining a universal winning strategy for the attacker
in the weak bisimulation game from (s, t).

In the first round, the attacker selects the left side and action a and plays
the move s — 5. The defender has three possible moves to answer: (i) t == to
via ty, (i) t == t5 via t; and t3, and (iii) t == t3 via t;. In case (i) and (ii) the
current configuration becomes (s1,%2) and in case (iii) it becomes (s1,t3).

From the configuration (si,t2) the attacker wins by playing s; LN s3 and

the defender loses because to ;%x

From the configuration (s1,t3) the attacker plays from the right side the 7
move: t3 — to. Defender’s only answer from s; is by s; = s; because no 7
actions are enabled from s;. The current configuration becomes (si,t2) and as
argued above, the attacker has a winning strategy from this pair.

This concludes the proof and shows that s % ¢ because we found a universal
winning strategy for the attacker. a
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