
Is your Model Checker on Time?On the Complexity of Model Checking for Timed Modal LogicsLuca Aceto1 and François Laroussinie21 BRICS? ? ?, Department of Computer Science, Aalborg University,Fredrik Bajers Vej 7-E, DK-9220 Aalborg Ø, Denmark.Email: luca@cs.auc.dk, Fax: +45 98 15 98 892 Laboratoire Spéci�cation et Véri�cation, CNRS UMR 8643,ENS de Cachan, 61 av. du Pr. Wilson, 94235 Cachan, France.Email: fl@lsv.ens-cachan.fr, Fax: +33 1 47 40 24 64Abstract. This paper studies the structural complexity of model check-ing for (variations on) the speci�cation formalisms used in the tools CMCand Uppaal, and fragments of a timed alternation-free �-calculus. Foreach of the logics we study, we characterize the computational complexityof model checking, as well as its speci�cation and program complexity,using timed automata as our system model.1 IntroductionThe extension of the model checking paradigm to the speci�cation and veri�ca-tion of real-time systems has been thoroughly studied in the last few years. Thisextensive research e�ort has led to the development of speci�cation logics thatextend standard untimed formalisms with the quantitative analysis of timingconstraints (see, e.g., [4, 15, 18]), and to important theoretical results setting thelimits of decidability for model checking. This theory is now embodied in veri-�cation tools like HyTech [23], Kronos [24] and Uppaal [20], which have beensuccessfully applied to the veri�cation of real sized systems.The successful application of the aforementioned veri�cation tools to theanalysis of realistic systems indicates that automatic veri�cation of real-time,embedded software may be feasible in practice. However, despite many impor-tant theoretical results presented in op. cit., the literature is lacking a compre-hensive analysis of the structural complexity of model checking for real-timelogics. In the untimed case, model checking algorithms with a polynomial timecomplexity, and often small space requirements, have been developed for severalbranching time temporal logics [8, 9]. In the timed case, most of the model check-ing problems considered in the literature are PSPACE-hard [3, 10, 15]. Clearlythe quantitative analysis of timing constraints increases the complexity of modelchecking, but it is interesting to analyze precisely in which cases this complexityblow-up occurs. In the untimed case, several papers (see, e.g., [13, 22, 11]) studyin detail the e�ect of the temporal operators, the number of atomic propositions? ? ? Basic Research in Computer Science.

or the depth of operators' nesting in the complexity of model checking, givinga better understanding of the complexity issue. Here, among other things, weaddress the same kind of problem for the timed case: what happens if time isinserted either only in the model or only in the formula? And what happens ifwe use less expressive logics with restricted operators?We consider several timed modal logics: L� has been introduced in [18], and isthe speci�cation language used in the tool CMC [17];Ls is a fragment of L� whichhas been proposed in [19] in order to improve the e�ciency of model checking inpractice; SBLL [2] and L8S [1] have been introduced for their properties w.r.t.the testing timed automaton method that is currently used in veri�cation toolslike Uppaal to check for properties other than plain reachability ones.For each of these property languages, we study the computational complexityof model checking, using timed automata [5] as our system model. As argued byLichtenstein and Pnueli [21], the complexity of the model checking problem canbe measured in three di�erent ways. First, one can �x the speci�cation and mea-sure the complexity as a function of the size of the program being veri�ed (theprogram complexity measure). Secondly, one can �x the program and measurethe complexity as a function of the size of the speci�cation (the speci�cationcomplexity measure). Finally, the combined complexity of the model checkingproblem is measured as a function of the size of both the program and the spec-i�cation. In this paper we o�er complexity results for these three di�erent viewsof the model checking problem for the logics we consider. In so doing, we give ana posteriori justi�cation, couched in complexity-theoretic arguments, for someof the folk beliefs in the area of model checking for real-time systems, and forsome of the choices made by developers of real-time veri�cation tools.Outline of the Main Results. We begin by analyzing the complexity of modelchecking for L�;� , a timed alternation-free modal �-calculus (AFMC). In theuntimed setting, such a fragment of the modal �-calculus plays an importantrole as a speci�cation formalism because it is fairly expressive and its restrictedsyntax makes the symbolic evaluation of expressions very simple (more precisely,linear both in the size of the model and the speci�cation). In the real-time setting,we show that the complexity of model checking for the timed AFMC, and for itssublogic L� , is EXPTIME-complete, as are both the program complexity and thespeci�cation complexity. (Perhaps surprisingly, the model checking problem forL��and a fortiori for the timed AFMC�is EXPTIME-complete even if we �xthe model to be the inactive process without clocks, nil.) We also prove that themodel checking problem for L� without greatest �xpoints�essentially, a timedversion of Hennessy-Milner logic [14]�is PSPACE-complete.It is instructive to compare the above results with similar ones for the un-timed alternation-free �-calculus. As previously mentioned, for such a programlogic, we have algorithms for model checking that run in time linear both in thesize of the program and of the speci�cation. Moreover, both the program andthe speci�cation complexities are P-complete [6, 12]. Note, however, that theprogram complexity of the alternation-free �-calculus for concurrent programsis EXPTIME-complete [6], and this matches exactly the complexity results we2

Model checking Prog compl. Spec compl.L�;� ;L� EXPTIME-complete EXPTIME-complete EXPTIME-completeLs; SBLL; L8S PSPACE-complete PSPACE-complete PSPACE-completeL�� PSPACE-complete P PSPACE-completeL�s coNP-complete P coNP-completeSBLL�; L�8S PSPACE-complete PSPACE-complete coNP-completeTable 1: Overview of the Resultso�er for L�;� model checking. It is also interesting to note that the complexityof CTL model checking and reachability for concurrent programs is PSPACE-complete [6], matching the complexity of model checking for TCTL [4] and ofreachability in timed automata, respectively. These results seem to provide amathematical grounding to the folk belief that �clocks act like concurrent pro-grams�, and that increasing the number of clocks corresponds to adding parallelcomponents.We then proceed to develop a thorough analysis of the complexity of modelchecking for all the other timed modal property languages that we have foundin the literature. In each case, we o�er results pinpointing the program, thespeci�cation as well as the combined complexity of model checking for the prop-erty languages with and without �xpoints. An overview of the results we haveobtained is presented in Table 1, where L� denotes the �xpoint free fragmentof L. Here we just wish to point out that the model checking problem for theproperty language Ls is PSPACE-complete, no matter whether the complexity ismeasured with respect to the size of the program, of the speci�cation or of both.In light of the aforementioned results, and assuming that PSPACE is di�erentfrom EXPTIME, the model checking problem for Ls has a lower computationalcomplexity than that for L� . Our results thus o�er a complexity-theoretic justi-�cation for the claims in [19]. The source of the lower complexity derives fromthe observation that the model checking problem for Ls, unlike that for L� , canbe reduced in polynomial time to reachability checking in timed automata�aproblem whose PSPACE-completeness was shown in [5].2 Basic de�nitionsWe begin by brie�y reviewing a variation on the timed automaton model pro-posed by Alur and Dill [5] and the property languages that will be used in thisstudy.Timed Automata. Let Act be a �nite set of actions, and let N and R�0 denotethe sets of natural and non-negative real numbers, respectively. We write D forthe set of delay actions f�(d) j d 2 R�0g.Let C be a set of clocks. We use B(C) to denote the set of boolean expressionsover atomic formulae of the form x � p and x � y � p, with x; y 2 C, p 2 N,and �2 f<;>;=g. Moreover we write Bk(C) for the restriction of B(C) toexpressions where the integer constants belong to f0; : : : ; kg. Expressions inB(C) are interpreted over the collection of time assignments. A time assignment,3

or valuation, v for C is a function fromC to R�0. We write RC�0 for the collectionof valuations for C. Given g 2 B(C) and a time assignment v, the boolean valueg(v) describes whether g is satis�ed by v or not. For every time assignment vand d 2 R�0, we use v+d to denote the time assignment which maps each clockx 2 C to the value v(x)+d. For every C 0 � C, [C 0! 0]v denotes the assignmentfor C which maps each clock in C 0 to the value 0 and agrees with v over CnC 0.De�nition 1. A timed automaton (TA) is a quintuple A = hAct; N; n0; C;Eiwhere N is a �nite set of nodes, n0 is the initial node, C is a �nite set of clocks,and E � N�B(C)�Act�2C�N is a set of edges. The tuple e = hn; g; a; r; n0i 2 Estands for an edge from node n to node n0 with action a, where r denotes theset of clocks to be reset to 0 and g is the enabling condition (or guard). We useMCst(A) to denote the largest integer constant occurring in the guards of A.A state (or con�guration) of a timed automaton A is a pair (n; v) where n is anode of A and v is a time assignment for C. The initial state of A is (n0; [C ! 0])where n0 is the initial node of A, and [C ! 0] is the time assignment mappingall clocks in C to 0. The operational semantics of a timed automaton A is givenby the Timed Labelled Transition System (TLTS) TA = hSA;Act [D; s0; �!i,where SA is the set of states of A, s0 is the initial state of A, and �! is thetransition relation de�ned as follows:(n; v) a�! (n0; v0) i� 9hn; g; a; r; n0i 2 E: g(v) = tt ^ v0 = [r! 0]v(n; v) �(d)�! (n0; v0) i� n = n0 and v0 = v + dRemark 1. Note that we could consider extended TAs where we assign an invari-ant (i.e. a downward closed clock constraint) to each node to avoid excessive timedelays. All the results presented here will still hold for extended TAs. Note that,given a complexity class C, having a C-hardness result for (simple) TAs impliesthe same for extended TAs, while having a C membership result for extendedTAs implies the same for TAs.The speci�cation languages. We now de�ne L�;� a timed alternation-free modal�-calculus.De�nition 2. Let K be a �nite set of clocks, Id a set of identi�ers. The set L�;�of formulae over K and Id is generated by the following grammar:L�;� 3 ; ' ::= g j ' ^ j ' _ j hai ' j [a]' j 99' j 88'j K 0 in ' j max(X;') j min(X;') j Xwhere a 2 Act, g 2 B(K), K 0 � K and X 2 Id. Moreover, each occurrenceof an identi�er X in a formula has to be bound by a min(X;') (or max(X;'))operator, and it cannot occur in a '-subformula of the form max(X 0;) (resp.min(X 0;)). (This restriction corresponds to the �alternation-free� property.)New operators like tt, ff, g) (read `g implies ') can be easily de�ned.Let MCst(') be the largest integer constant occurring in the clock constraints in'. Given a TA A, we interpret formulae in L�;� w.r.t. extended con�gurations4

(n; v; u) j= [a] ' i� 8 (n0; v0): (n; v) a�! (n0; v0)) (n0; v0; u) j= '(n; v; u) j= 88 ' i� 8d 2R�0; (n; v + d; u+ d) j= '(n; v; u) j= g i� g(u) = tt(n; v; u) j= K 0 in ' i� (n; v; [K 0 ! 0]u) j= '(n; v; u) j= max(X;') i� (n; v; u) belongs to the largest solution of X = 'Table 2: Semantics of L�;� .(n; v; u), where (n; v) is a con�guration of A and u is a time assignment for K.Whereas the classical modal operators hai and [a] deal with action transitions,the operator 99 (resp. 88) denotes existential (resp. universal) quanti�cation overdelay transitions. The clocks in K are so-called formula clocks; they increasesynchronously with the automata clocks, and they are used as stopwatches formeasuring the time elapsing between states of the system. The formula K 0 in 'initializes the set of formula clocks K 0 to 0 in '. The constraints g are used tocompare the value of formula clocks in the current extended con�guration withan integer value. Finally, an extended con�guration satis�es max(Z;') (resp.(min(Z;')) if it belongs to the largest (resp. least) solution of the equationZ = ' over the complete lattice of sets of extended con�gurations. The existenceof these solutions is guaranteed by standard �xpoint theory. The semantics ofL�;� is sketched in Table 2. (The operators hai and 99 are duals of [a] and 88;the semantics of boolean operators is omitted.) The full formal details of thesemantics are standard [16].As an example of a property that can be expressed in L�;� using �xpointsand clock constraints, consider the formulamax�X;�[b]fxg in 99(hci tt ^ x � 3)� ^ [a]X ^ 88X� :This formula expresses the fact that, in every state that is reachable by per-forming a-actions and delays, every occurrence of a b-action can be followed bya c-action within 3 time units.Fragments of L�;� . The logic L� [18] is the fragment of L�;� in which onlygreatest �xpoints are allowed. The logic Ls [19] is the fragment of L� withoutthe existential modalities hai and 99, and where only a restricted disjunction ofthe form g _ ' (with g 2 B(K)) is allowed.The property languages SBLL and L8S extend Ls, and use a slightly di�erentkind of TAs where (1) U is a subset of Act s.t. any edge labeled with a 2 U has theguard tt and (2) Act contains the label � used for the internal action of automata.Moreover they are based on di�erent semantics (denoted by `) compared withL� and Ls: a formula ' holds for (n; v; u) only if ' holds for every (n0; v0; u)with (n0; v0) reachable from (n; v) in zero or more � -transitions. For example,(n; v; u) ` [a]' i� for every (n; v) ��!� (n0; v0) we have that (n0; v0) a�! (n00; v00)implies (n00; v00; u) ` '. Moreover (n; v; u) ` 88' i� for every (n0; v0) reached from(n; v) by using � -transitions and delay transitions (of total duration d), we have(n0; v0; u+ d) ` '.SBLL extends Ls by allowing the use of hai tt subformulae with a 2 U . L8S5

extends SBLL with new operators 88S with S � U . A formula 88S' holds for(n; v; u) i� ' holds for any (n0; v0; u+ d) s.t. (n0; v0) is reachable from (n; v) byusing only � -transitions and delay transitions (with total duration d), but delaytransitions occur only in states in which none of the actions in S are enabled.These two languages can be translated into L� in the following sense: for any' 2 L8S , there exists an L� formula ' s.t. A ` ' i� A j= '. For example, wehave that [a] = max(X; [a] ^ [�]X). An important property [2, 1] of SBLLand L8S is that their model checking problem can be reduced to a reachabilityproblem: for any formula ' of these languages, we can build a testing automatonT' s.t. A ` ' i� a reject node is not reachable in the parallel composition(AjT'). Moreover it has been shown that L8S is expressive enough to encodeany reachability property [1].Veri�cation of timed systems. Automatic veri�cation of timed systems is possi-ble despite the uncountably in�nite number of con�gurations associated with atimed automaton. The decision procedure for A j= ' is based on the well knownregion technique [4]. Given A and ', it is possible to partition the in�nite setof time assignments over C+ = C [K into a �nite number of regions in such away that two extended con�gurations (n; u) and (n; v), where u; v 2 RC+�0 are inthe same region, satisfy the same formulae. Formally the regions can be de�nedas the equivalence classes induced by the equivalence relation over valuationsde�ned thus: given u; v 2 RC+�0 , u and v are in the same region i� they satisfythe same clock constraints in BM (C+), where M = max(MCst(A); MCst(')).We write [u] for the region which contains the time assignment u, and use RClkto denote the (�nite) set of all regions for a set Cl of clocks and the maximumconstant k. Given a region [u] in RClk and C 0 � Cl, we de�ne the reset operatorthus: [C 0 ! 0][u] = [[C 0! 0]u]. Moreover, given a region , its successor region,denoted by succ(), is the region 0 s.t. for any u 2 there exists � 2 R�0 with[u+�] = 0, and [u+�0] 2 f; 0g, for every �0 < �. The region succ() is di�erentfrom i� (x � k) = tt for some clock x.Now, given a timed automaton A = hAct; N; n0; C;Ei, a set K of formulaclocks and an integer constant M with M � MCst(A), we can de�ne a sym-bolic semantics [18] over the �nite transition system (S;!), called region graph,de�ned thus: S = N � RC[KM and != (Sa a�!)[succ�!. The symbolic se-mantics is closely related to the standard one: for every L�;� formula whoseclock constraints do not use constants greater than M , and u 2 , (n;) j= 'i� (n; u) j= '. Therefore each instance of the timed model checking problemcan be reduced to an untimed model checking query over the region graph.Note that the size of RC+M is in O(jC+j! �M jC+j). Moreover for any region ,jf0j0 = succi(); i 2 Ngj � 2 � jC+j � (M + 1).The reachability problem, which is a fundamental question in system veri�cation,is know to be PSPACE-complete [3, 10]. Moreover the model checking problemfor TCTL (a timed extension of CTL) is PSPACE-complete [4].We shall use the abbreviations A+t j=? 	+t, A j=? 	+t and A+t j=? 	 todenote, respectively, the model checking problems where clocks are allowed both6

in automata and speci�cations, where clocks are allowed only in speci�cationsand where clocks are allowed only in automata.3 Complexity results for model checkingWe now consider the complexity of model checking (MC) for the property lan-guages introduced previously. These results require to de�ne what are the size ofa timed automaton A = hAct; N; n0; C;Ei and a formula ' 2 L�;�. The size j'jof a formula is its length. We de�ne jAj as jN j+ jCj+ jEj+MCst(A)+�e2E jgej,and assume a binary encoding for the elements of the sets N and C. Consider-ing constants represented in unary or binary does not change our results exceptwhen it is explicitly mentioned.Theorem 1. The complexity of L�;� and L� model checking is EXPTIME-complete. Moreover, we have that the speci�cation and program complexities ofL�;� and L� model checking are also EXPTIME-complete.Proof. EXPTIME membership: We have seen that A j= ' i� ~A j= ' where~A is an untimed automaton (the region graph) whose size is exponential in jAjand over which ' is interpreted as an untimed formula. If we modify slightly ~Aby adding the transitive closure of succ�!, the size of the resulting automaton isstill exponential in jAj, and 99 and 88 become �one step� modalities. Then ' is asimple (untimed) alternation-free �-calculus formula for which model checkingis linear in j ~Aj and j'j [9]. This gives the EXPTIME membership for L�;� andL� .EXPTIME-hardness: Deciding whether a given linear bounded alternatingTuring machine (LBATM) M accepts a given input string w is EXPTIME-complete [7], and it can be reduced in polynomial time to a MC problemAM j= �with � 2 L� . The main idea is that we can build a TA AM over actions s andaccept s.t. any s-transition of AM corresponds to a step of M due to thetape boundness (see [3, 10]). By following the same approach proposed in [6] foruntimed concurrent systems, the alternating behaviour1 ofM can be handled byan L� formula of the form: � = max(X; [accept]ff^ 88 [s] 99 hsiX). Intuitively �holds for AM if the current �or� state is not an accepting state and after any step(leading to an �and� state), there exists a transition leading to a non-accepting�or� state and so on. We have AM j= � i� the LBATMM does not accept w.This gives the EXPTIME-hardness for L� and L�;� .Speci�cation complexity: In fact the acceptance of w by a LBATMM can bereduced in polynomial time to a problem of the form nil j= 	M;w where 	M;w isan L� formula. This encoding is based on the use of formula clocks to representthe con�gurations ofM. This gives the EXPTIME-hardness.Program complexity: This is due to the proof of EXPTIME-hardness for L�model checking where the formula � = max(X; [accept]ff ^ 88 [s] 99 hsiX) doesnot depend on the LBATMM. 21 We assume w.l.o.g. that we have a strict alternation of �or� and �and� states in M,and that the initial and �nal states are �or� states.7

satt = 1 a1 x1 := 0 t = 2 a2 x2 := 0 t = n an xn := 0rnr1r0 t = 1 a1 t = 2 a2 t = n an t = n ^ ~' endFig. 1: The automaton A(') with ~' = '[pi xi = n� i; �pi xi = n].Remark 2. In [15], a timed �-calculus T� has been proposed, and MC for T� wasshown to be PSPACE-hard. T� is more expressive than L�;� because it allowsfor �xpoint alternations and it uses a powerful binary operator . (instead of ourmodalities hai and 99). In fact the proof of Theorem 1 can be adapted2 to T�and this yields an improved lower bound on the complexity of T� MC. Moreover,using techniques from [6], we can prove that the MC problem for T� (and theextension of L�;� with alternations) is in EXPTIME, and is thus EXPTIME-complete. To the best of our knowledge this is the �rst precise characterizationof the complexity of MC for this logic.Theorem 2. The model checking problem for L�� is PSPACE-complete. More-over the speci�cation complexity of L�� MC is PSPACE-complete. The programcomplexity of L�� MC is in P, if the integer constants in the automata are rep-resented in unary.Proof. PSPACE membership: A nondeterministic model checking algorithmin PSPACE can be easily de�ned by considering the parts of the region graphassociated to A j= ' only when they are required. The di�erence with L� is thatwe do not need to compute arbitrary sets of con�gurations for �xpoints.PSPACE-hardness: Let � = Q1p1 : : :Qnpn:' be an instance of the QBF(Quanti�ed Boolean Formulae) problem, where each Qi 2 f9; 8g and ' is apropositional formula over the pi's. We reduce the validity of � to a modelchecking problem. Consider the TA A(') in Figure 1 and the L�� formula~� = 99(ha1i tt ^O1(99(ha2i tt ^O2 : : :99(hani tt ^Onhsati tt))))where Oi is haii (resp. [ai]) if Qi is 9 (resp. 8). Clearly A(') j= ~� i� � is valid.Speci�cation complexity: In fact any QBF instance can be encoded as aproblem of the form nil j= �, with � 2 L�� , by using formula clocks. This entailsthe PSPACE-hardness of speci�cation complexity.Program complexity: Let ' be a given L�� formula. We can de�ne a poly-nomial (in jAj) algorithm by building the pertinent part of the region graph inan �on the �y� manner. The key points are that (1) deciding if ' holds for aTA A needs to consider only sequences with at most j'j action transitions and(2) between two action transitions the number of possible delay transitions isbounded by 2(jCAj + jKj)(max(MCst(A); MCst(')) + 1) which is polynomial injAj if MCst(A) is given in unary. The time complexity of such an algorithm is inO(jAj2j'j) and, as ' is �xed, the program complexity is in P. 22 For ex. by considering a formula like: �X:accept_ [tt.(po ^:(tt.(pe^:X)))] wherepe (resp. po) marks even (resp. odd) states.8

Note that some of our proofs are based upon the realization that the MC prob-lems of the form nil j= ' (where ' is a formula in any of the logics considered sofar) are just as hard as the MC problems for arbitrary TA. Thus the worst-casecomplexity of MC for these real-time logics may be seen as deriving solely fromthe use of clocks in formulae. This pattern will remain true for all the propertylanguages we study in what follows, except SBLL� and L�8S.The property language Ls has been introduced in [19] as a sub-language ofL� that allows for more e�cient model checking algorithms. To the best of ourknowledge, however, such an intention has not been supported yet by precisecomplexity theoretic considerations. These we now proceed to present.Theorem 3. The complexity of Ls MC is PSPACE-complete. Moreover, thespeci�cation and program complexities of Ls MC are also PSPACE-complete.Proof. PSPACE membership: For every Ls formula ', it is possible to builda TA T' such that, for any TA A, A j= ' i� a reject node of T' is not reachablein the parallel composition (AjT') [2]. The size of T' is linear in that of ' and(AjT') can be seen as a new TA �A corresponding to the product A�T'. Thereduction of A j= ' to a reachability problem for �A is done in polynomial time,and thus gives the PSPACE membership.PSPACE-hardness: A reachability question for node n in a TA A can be re-duced to checking that A 6j= max(X; [in_n]ff ^ [a]X ^ 88X) if we suppose thatevery edge in A has label a, except for a new transition hn; tt; in_n; ;; ni.Speci�cation complexity: It is possible to reduce reachability in a linearbounded nondeterministic Turing machine M with input w to a problem ofthe form nil j= �M;w by means of the same kind of encoding used for L� .Program complexity: It is PSPACE-complete because the formula expressingthe reachability problem does not depend on the input automaton. 2Theorem 4. The model checking problem for L�s is coNP-complete, as is thespeci�cation complexity of model checking. The program complexity of L�s is inP, if the constants in the input automata are represented in unary.The property languages SBLL and L8S have the same complexity:Theorem 5. The complexity of SBLL and L8S model checking is PSPACE-complete. Moreover we have that the speci�cation and program complexities ofSBLL and L8S MC are also PSPACE-complete.For the property languages SBLL� and L�8S, we obtain the following result:Theorem 6. The MC problem for SBLL� and L�8S is PSPACE-complete. Thespeci�cation complexity of MC for SBLL� and L�8S is coNP-hard, and is coNP-complete if constants in the formulae are represented in unary. Finally, the pro-gram complexity of MC for SBLL� and L8S is PSPACE-complete.There is an implicit recursion (over � and delay transitions) which is hidden inthe semantics of the SBLL� operator 88, and this recursion is su�cient to makeSBLL� and L�8S model checking PSPACE-hard.9

L�� L8SSBLLL�sL�8SSBLL� PSPACEEXPTIMEcoNPLsL�;�L� L! L0 stands for"L is more expressive than L0"Fig. 2: Expressiveness vs complexity of model checkingConcluding remarks. The relationships between the relative expressive powerof the property languages that we have considered, and the complexity of theirmodel checking problems is summarized in Figure 2. (There L �! L0 meansthat any model checking problem A j= ' with ' 2 L0 can be reduced in lineartime to a veri�cation ~A j= ~' with ~' 2 L.)Note that, for every speci�cation language we consider, the proof of C-hardness of the MC problem uses formulae without clocks. This implies thatthe problems A+t j=? 	 and A+t j=? 	+t have the same complexity. The remarkabout the complexity of MC problems of the form nil j= ' shows that A j=? 	+tand A+t j=? 	+t also have the same complexity. Therefore the complexity of MCdoes not depend on whether time is added to the model, to the speci�cation orto both.References1. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen, The power of reach-ability testing for timed automata, in Proc. of FSTTCS'98, LNCS 1530, December1998, pp. 245�256.2. L. Aceto, A. Burgueño, and K. G. Larsen, Model checking via reachabil-ity testing for timed automata, in Proc. of TACAS '98, LNCS 1384, April 1998,pp. 263�280.3. R. Alur, Techniques for Automatic Veri�cation of Real-time Systems, PhD thesis,Stanford University, 1991.4. R. Alur, C. Courcoubetis, and D. Dill, Model-checking in dense real-time,Information and Computation, 104 (1993), pp. 2�34.5. R. Alur and D. Dill, A theory of timed automata, Theoretical Computer Sci-ence, 126 (1994), pp. 183�235.6. O. Bernholtz, M. Y. Vardi, and P. Wolper, An automata-theoretic approachto branching-time model checking, in Proc. of the 6th. International Conference onComputer-Aided Veri�cation, CAV'94, D. Dill, ed., vol. 818 of Lecture Notes inComputer Science, California, USA, June 1994, Stanford, Springer-Verlag.7. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc.Comput. Mach., 28 (1981), pp. 114�133.10

8. E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic veri�cation of�nite state concurrent system using temporal logic, ACM Trans. on ProgrammingLanguages and Systems, 8 (1986), pp. 244�263.9. R. Cleaveland, A linear-time model-checking algorithm for the alternation-freemodal �-calculus, Formal Methods in Systems Design, 2 (1993), pp. 121�147.10. C. Courcoubetis and M. Yannakakis, Minimum and maximum delay problemsin real-time systems, Formal Methods in System Design, (1992), pp. 385�415.11. S. Demri and P. Schnoebelen, The complexity of propositional linear temporallogics in simple cases (extended abstract), in Proc. 15th Ann. Symp. TheoreticalAspects of Computer Science (STACS'98), LNCS 1373, Paris, France, Feb. 1998,Springer Verlag, 1998, pp. 61�72.12. S. Dziembowski, M. Jurdzi«ski, and D. Niwi«ski, On the expression complex-ity of the modal �-calculus model checking. Unpublished manuscript, November1996.13. E. A. Emerson, C. S. Jutla, and A. P. Sistla, On model-checking for frag-ments of �-calculus, in Proceedings of the Fifth International Conference ComputerAided Veri�cation, Elounda, Greece, July 1993, C. Courcoubetis, ed., vol. 697 ofLecture Notes in Computer Science, Springer-Verlag, 1993, pp. 385�396.14. M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concur-rency, J. Assoc. Comput. Mach., 32 (1985), pp. 137�161.15. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic modelchecking for real-time systems, Information and Computation, 111 (1994), pp. 193�244.16. D. Kozen, Results on the propositional �-calculus, Theoretical Computer Science,27 (1983), pp. 333�354.17. F. Laroussinie and K. G. Larsen, CMC: A tool for compositional model-checking of real-time systems, in Proc. IFIP Joint Int. Conf. Formal DescriptionTechniques & Protocol Speci�cation, Testing, and Veri�cation (FORTE-PSTV'98),Kluwer Academic Publishers, 1998, pp. 439�456.18. F. Laroussinie, K. G. Larsen, and C. Weise, From timed automata to logic -and back, in Proc. of the 20th. International Symposium on Mathematical Founda-tions of Computer Science, MFCS'95, J. Wiedermann and P. Hájek, eds., vol. 969 ofLecture Notes in Computer Science, Prague, Czech Republic, August 28 - Septem-ber 1 1995, Springer-Verlag, pp. 529�539.19. K. G. Larsen, P. Pettersson, and W. Yi, Model-checking for real-time sys-tems, in Proceedings of the 10th International Conference on Fundamentals ofComputation Theory, H. R. (Ed.), ed., Dresden, Germany, August 1995, LNCS965, pp. 62�88.20. , UPPAAL in a Nutshell, Journal of Software Tools for Technology Transfer,1 (1997), pp. 134�152.21. O. Lichtenstein and A. Pnueli, Checking that �nite state concurrent programssatisfy their linear speci�cation, in Conference Record of the Twelfth Annual ACMSymposium on Principles of Programming Languages, New Orleans, Louisiana,Jan. 1985, pp. 97�107.22. A. P. Sistla and E. M. Clarke, The complexity of propositional linear temporallogics, J. Assoc. Comput. Mach., 32 (1985), pp. 733�749.23. T.A. Henzinger and P.-H. Ho, and H. Wong-Toi, HyTech: A Model Checkerfor Hybrid Systems, Journal of Software Tools for Technology Transfer, 1 (1997),pp. 110�122.24. S. Yovine, Kronos: A Veri�cation Tool for real-Time Systems, Journal of SoftwareTools for Technology Transfer, 1 (1997), pp. 123�133.11

