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Abstrat. In lassial timed automata, as de�ned by Alur and Dill[AD90,AD94℄ and sine widely studied, the only operation allowed tomodify the loks is the reset operation. For instane, a lok an neitherbe set to a non-null onstant value, nor be set to the value of anotherlok nor, in a non-deterministi way, to some value lower or higher thana given onstant. In this paper we study in details suh updates.We haraterize in a thin way the frontier between deidability and un-deidability. Our main ontributions are the following :- We exhibit many lasses of updates for whih emptiness is undeid-able. These lasses depend on the lok onstraints that are used �diagonal-free or not � whereas it is well known that these two kindsof onstraints are equivalent for lassial timed automata.- We propose a generalization of the region automaton proposed byAlur and Dill, allowing to handle larger lasses of updates. Theomplexity of the deision proedure remains Pspae-omplete.
1 IntrodutionSine their introdution by Alur and Dill [AD90,AD94℄, timed automata areone of the most studied models for real-time systems. Numerous works have beendevoted to the �theoretial� omprehension of timed automata and their exten-sions (among a lot of them, see [ACD+92℄, [AHV93℄, [AFH94℄, [ACH94℄, [Wil94℄,[HKWT95℄, [BD00℄, [BDGP98℄) and several model-hekers are now available(HyTeh1 [HHWT95,HHWT97℄, Kronos2 [Yov97℄, Uppaal3 [LPY97℄). Theseworks have allowed to treat a lot of ase studies (see the web pages of the tools)and it is preisely one of them � the ABR protool [BF99,BFKM99℄ � whih hasmotivated the present work. Indeed, the most simple and natural modelizationof the ABR protool uses updates whih are not allowed in lassial timed au-tomata, where the only authorized operations on loks are resets. Therefore we? This work has been partly supported by the frenh projet RNRT �Calife�1 http://www-ad.ees.berkeley.edu/�tah/HyTeh/2 http://www-verimag.imag.fr/TEMPORISE/kronos/3 http://www.dos.uu.se/dos/rtmv/uppaal



2have onsidered updates onstruted from simple updates of one of the followingforms:x :�  j x :� y + ; where x; y are loks,  2 Q + ; and � 2 f<;�;=; 6=;�; >gMore preisely, we have studied the (un)deidability of the emptiness problemfor the extended timed automata onstruted with suh updates. We all thesenew automata updatable timed automata. We have haraterized in a thin waythe frontier between lasses of updatable timed automata for whih emptinessis deidable or not. Our main results are the following :- We exhibit many lasses of updates for whih emptiness is undeidable. Asurprising result is that these lasses depend on the lok onstraints that areused � diagonal-free (i.e. where the only allowed omparisons are between alok and a onstant) or not (where the di�erene of two loks an also beompared with a onstant). This point makes an important di�erene with�lassial� timed automata for whih it is well known that these two kindsof onstraints are equivalent.- We propose a generalization of the region automaton proposed by Alur andDill, whih allows to handle large lasses of updates. We thus onstrut an(untimed) automaton whih reognizes the untimed language of the onsid-ered timed automaton. The omplexity of this deision proedure remainsPspae-omplete.Note that these deidable lasses are not more powerful than lassial timedautomata in the sense that for any updatable timed automaton of suh alass, a lassial timed automaton (with "�transitions) reognizing the samelanguage � and even most often bisimilar � an be e�etively onstruted.But in most ases, an exponential blow-up seems unavoidable and thus atransformation into a lassial timed automaton an not be used to obtainan e�ient deision proedure. These onstrutions of equivalent automataare available in [BDFP00b℄.The paper is organized as follows. In setion 2, we present basi de�nitions oflok onstraints, updates and updatable timed automata, generalizing lassialde�nitions of Alur and Dill. The emptiness problem is brie�y introdued insetion 3. Setion 4 is devoted to our undeidability results. In setion 5, we pro-pose a generalization of the region automaton de�ned by Alur and Dill. Wethen use this proedure in setions 6 (resp. 7) to exhibit large lasses of updat-able timed automata using diagonal-free lok onstraints ( resp. arbitrary lokonstraints) for whih emptiness is deidable. A short onlusion summarizesour results.For lak of spae, this paper does not ontain proofs whih an be found in[BDFP00a℄.2 About Updatable Timed AutomataIn this setion, we brie�y reall some basi de�nitions before introduing an ex-tension of the timed automata, initially de�ned byAlur andDill [AD90,AD94℄.



32.1 Timed words and loksIf Z is any set, let Z� (resp. Z!) be the set of �nite (resp. in�nite) sequenes ofelements in Z. And let Z1 = Z� [ Z!.In this paper, we onsider T as time domain, Q + as the set of non-negativerational and � as a �nite set of ations. A time sequene over T is a �nite orin�nite non dereasing sequene � = (ti)i�1 2 T1 . A timed word ! = (ai; ti)i�1is an element of (� � T)1 , also written as a pair ! = (�; �), where � = (ai)i�1is a word in �1 and � = (ti)i�1 a time sequene in T1 of same length.We onsider an at most ountable set X of variables, alled loks. A lokvaluation over X is a mapping v : X ! T that assigns to eah lok a time value.The set of all lok valuations over X is denoted TX . Let t 2 T, the valuationv + t is de�ned by (v + t)(x) = v(x) + t, 8x 2 X .2.2 Clok onstraintsGiven a subset of loks X � X , we introdue two sets of lok onstraints overX. The most general one, denoted by C(X), is de�ned by the following grammar:' ::= x �  jx� y �  j' ^ ' j :' j truewhere x; y 2 X;  2 Q + ; � 2 f<;�;=; 6=;�; >gWe will also use the proper subset of diagonal-free onstraints, denoted byCdf (X), where the omparison between two loks is not allowed. This set isde�ned by the grammar:' ::= x �  j' ^ ' j :' j true;where x 2 X;  2 Q + and � 2 f<;�;=; 6=;�; >gWe write v j= ' when the lok valuation v satis�es the lok onstraint '.2.3 UpdatesAn update is a funtion from TX to P(TX) whih assigns to eah valuation aset of valuations. In this work, we restrit ourselves to loal updates whih arede�ned in the following way.A simple update over a lok z has one of the two following forms:up ::= z :�  j z :� y + dwhere  2 Q + ; d 2 Q ; y 2 X and � 2 f<;�;=; 6=;�; >gLet v be a valuation and up be a simple update over z. A valuation v0 is in up(v)if v0(y) = v(y) for any lok y 6= z and if v0(z) veri�es:�v0(z) �  if up = z :� v0(z) � v(y) + d if up = z :� y + d



4A loal update over a set of loks X is a olletion up = (upi)1�i�k of simpleupdates, where eah upi is a simple update over some lok xi 2 X (note thatit ould happen that xi = xj for some i 6= j). Let v; v0 2 Tn be two lokvaluations. We have v0 2 up(v) if and only if, for any i, the lok valuation v00de�ned by �v00(xi) = v0(xi)v00(y) = v(y) for any y 6= xiveri�es v00 2 upi(v). The terminology loal omes from the fat that v0(x) dependson x only and not on the other values v0(y).Example 1. If we take the loal update (x :> y; x :< 7), then it means that thevalue v0(x) must verify : v0(x) > v(y)^v0(x) < 7. Note that up(v) may be empty.For instane, the loal update (x :< 1; x :> 1) leads to an empty set.For any subset X of X , U(X) is the set of loal updates whih are ol-letions of simple updates over loks of X. In the following, we needto distinguish the following subsets of U(X) :- U0(X) is the set of reset updates. A reset update up is an update suh thatfor every lok valuations v, v0 with v0 2 up(v) and any lok x 2 X, eitherv0(x) = v(x) or v0(x) = 0.- Ust(X) is the set of onstant updates. A onstant update up is an updatesuh that for every lok valuations v, v0 with v0 2 up(v) and any lokx 2 X, either v0(x) = v(x) or v0(x) is a rational onstant independent ofv(x).2.4 Updatable timed automataAn updatable timed automaton over T is a tuple A = (�;Q; T; I; F;R;X), where� is a �nite alphabet of ations, Q is a �nite set of states, X � X is a �nite setof loks, T � Q � [C(X)� � � U(X)℄ �Q is a �nite set of transitions, I � Qis the subset of initial states, F � Q is the subset of �nal states, R � Q is thesubset of repeated states.Let C � C(X) be a subset of lok onstraints and U � U(X) be a subset ofupdates, the lass Aut(C;U) is the set of all timed automata whose transitionsonly use lok onstraints of C and updates of U . The usual lass of timedautomata, de�ned in [AD90℄, is the family Aut(Cdf (X);U0(X)).A path in A is a �nite or an in�nite sequene of onseutive transitions:P = q0 '1;a1;up1������! q1 '2;a2;up2������! q2 : : : ; where (qi�1; 'i; ai; upi; qi) 2 T; 8i > 0The path is said to be aepting if it starts in an initial state (q0 2 I) and eitherit is �nite and it ends in an �nal state, or it is in�nite and passes in�nitelyoften through a repeated state. A run of the automaton through the path P isa sequene of the form:hq0; v0i '1;a1;up1������!t1 hq1; v1i '2;a2;up2������!t2 hq2; v2i : : :



5where � = (ti)i�1 is a time sequene and (vi)i�0 are lok valuations suh that:8<:v0(x) = 0; 8x 2 Xvi�1 + (ti � ti�1) j= 'ivi 2 upi (vi�1 + (ti � ti�1))Remark that any set upi(vi�1 + (ti � ti�1)) of a run is non empty.The label of the run is the timed word w = (a1; t1)(a2; t2) : : : If the path P isaepting then the timed word w is said to be aepted by the timed automaton.The set of all timed words aepted by A over the time domain T is denoted byL(A; T), or simply L(A).Remark 1. A �folklore� result on timed automata states that the familiesAut(C(X);U0(X)) and Aut(Cdf (X);U0(X)) are language-equivalent. This is be-ause any lassial timed automaton (using reset updates only) an be trans-formed into a diagonal-free lassial timed automaton reognizing the samelanguage (see [BDGP98℄ for a proof). Another �folklore� result states thatonstant updates are not more powerful than reset updates i.e. the familiesAut(C(X);Ust(X)) and Aut(C(X);U0(X)) are language-equivalent.3 The Emptiness ProblemFor veri�ation purposes, a fundamental question about timed automata is todeide whether the aepted language is empty. This problem is alled the empti-ness problem. To simplify, we will say that a lass of timed automata is deidableif the emptiness problem is deidable for this lass. The following result, due toAlur and Dill [AD90℄, is one of the most important about timed automata.Theorem 1. The lass Aut(C(X);U0(X)) is deidable.The priniple of the proof is the following. Let A be an automaton ofAut(C(X);U0(X)), then a Bühi automaton (often alled the region automaton ofA) whih reognizes the untimed language Untime(L(A)) of L(A) is e�etivelyonstrutible. The untime language of A is de�ned as follows : Untime(L(A)) =f� 2 �1 j there exists a time sequene � suh that (�; �) 2 L(A)g.The emptiness of L(A) is obviously equivalent to the emptiness of Un-time(L(A)) and sine the emptiness of a Bühi automaton on words is deidable[HU79℄, the result follows. In fat, the result is more preise: testing emptinessof a timed automaton is Pspae-omplete (see [AD94℄ for the proofs).Remark 2. From [AD94℄ (Lemma 4.1) it su�es to prove the theorem above fortimed automata where all onstants appearing in lok onstraints are integers(and not arbitrary rationals). Indeed, for any timed automaton A, there existssome positive integer Æ suh that for any onstant  of a lok onstraint of A,Æ: is an integer. Let A0 be the timed automaton obtained from A by replaingeah onstant  by Æ � , then it is immediate to verify that L(A0) is empty if andonly if L(A) is empty.



64 Undeidable Classes of Updatable Timed AutomataIn this setion we exhibit some important lasses of updatable timed automatawhih are undeidable. All the proofs are redutions of the emptiness problemfor ounter mahines.4.1 Two ounters mahineReall that a two ounters mahine is a �nite set of instrutions over two ounters(x and y). There are two types of instrutions over ounters:- inrementation instrution of ounter i 2 fx; yg :p : i := i+ 1 ; goto q (where p and q are instrution labels)- derementation (or zero-testing) instrution of ounter i 2 fx; yg :p : if i > 0 � then i := i� 1 ; goto qelse goto q0The mahine starts at instrution labelled by s0 with x = y = 0 and stops at aspeial instrution Halt labelled by sf .Theorem 2. The emptiness problem of two ounters mahine is undeidable[Min67℄.4.2 Diagonal-free automata with updates x := x� 1We onsider here a diagonal-free onstraints lass.Proposition 1. Let U be a set of updates ontaining both fx := x � 1 jx 2 Xgand U0(X). Then the lass Aut(Cdf (X);U) is undeidable.Sketh of proof. We simulate a two ounters mahine M with an updatabletimed automaton AM = (�;Q; T; I; F;R;X) with X = fx; y; zg, � = fag (foronveniene reasons labels are omitted in the proof) and equipped with updatesx := x� 1 and y := y � 1. Cloks x and y simulate the two ounters.Simulation of an inrement appears on Figure 1. Counter x is impliitly inre-mented by letting the time run during 1 unit of time (this is ontrolled with thetest z = 1). Then the other ounter y is deremented with the y := y�1 update.
p qz = 1; z := 0 z = 0; y := y � 1z = 0Fig. 1. Simulation of a inrementation operation over ounter x.

Simulation of a derement appears on Figure 2. Counter x is either derementedusing the x := x� 1 update if x � 1, or unhanged otherwise.



7p qq'
x � 1 z = 0; x := x� 1z = 0 x = 0Fig. 2. Simulation of a derementation operation on the ounter x.Remark that we never ompare two loks but only use guards of the form i � with i 2 fx; y; zg and  2 f0; 1g.To omplete the de�nition of AM, we set I = fs0g and F = fsfg. The languageof M is empty if and only if the language of AM is empty and this impliesundeidability of emptiness problem for the lass Aut(Cdf (X);U).4.3 Automata with updates x := x+1 or x :> 0 or x :> y or x :< ySurprisingly, lasses of arbitrary timed automata with speial updates are unde-idable.Proposition 2. Let U be a set of updates ontaining U0(X) and (1) fx := x+1 jx 2 Xg or (2) fx :> 0 jx 2 Xg or (3) fx :> y jx; y 2 Xg or (4) fx :< y jx; y 2Xg, then the lass Aut(C(X);U) is undeidable.Sketh of proof. The proofs are four variations of the onstrution given forproposition 1. The idea is to replae every transition labelled with updates x :=x� 1 or y := y� 1 (framed with dashed lines on pitures) by a small automatoninvolving the other kinds of updates only. The ounter mahine will be nowsimulated by an updatable timed automaton with four loks fw; x; y; zg. Weshow how to simulate an x := x� 1 in any of the four ases :(1) Firstly lok w is reset, then update w := w+1 is performed until x�w = 1(reall that x simulates a ounter and that we are interested to its integervalues). Seondly, lok x is reset and update x := x+ 1 is performed untilx = w.(2) A w :> 0 is guessed, followed by a test x�w = 1. Then a x :> 0 is guessed,followed by a test x = w.(3) Clok w is reset, w :> w is guessed and test x� w = 1 is made. Then lokx is reset, x :> x is guessed and test x = w is made.(4) A w :< x is guessed, followed by test x � w = 1. Then a x :< x is guessed,followed by a test x = w.In the four ases, operations are made instantaneously with the help of test z = 0performed at the beginning and at the end of the derementation simulation.Remark that for any ase we use omparisons of loks. We will see in setion 6that lasses of diagonal-free timed automata equipped with any of these fourupdates are deidable.Let us end the urrent setion with a result about mixed updates. Updates ofthe kind y +  �: x :� z + d (with ; d 2 N ) an simulate lok omparisons. Infat, in order to simulate a test x�w = 1, it su�es to guess a w+1 �: z0 :� x



8followed by a x �: z0 :� w + 1. Both guesses have solutions if and only if[w+1;x℄ = [x;w+1℄ = fxg if and only if (x�w = 1). In onlusion, we annotmix di�erent kinds of updates anyhow, while keeping diagonal-free automatadeidable:Proposition 3. Let U be a set of updates ontaining U0(X) and fx+  �: y :�z + d jx; y; z 2 X ; ; 0 2 N g. Then the lass Aut(Cdf (X);U) is undeidable.
5 Constrution of an Abstrat Region AutomatonWe want to hek emptiness of the timed language aepted by some timed au-tomaton. To this aim, we will use a tehnique based on the original onstrutionof the region automaton ([AD94℄).5.1 Constrution of a region graphLet X � X be a �nite set of loks. A family of regions over X is a ouple(R; Su) where R is a �nite set of regions (i.e. of subsets of TX ) and thesuessor funtion Su : R! R veri�es that for any region R 2 R the followingholds:- for eah v 2 R, there exists t 2 T suh that v + t 2 Su(R) and for every0 � t0 � t, v + t0 2 (R [ Su(R))- if v 2 R, then for all t 2 T, v + t 2 Su�(R)Let U � U(X) be a �nite set of updates. Eah update up 2 U indues naturally afuntionup : R! P(R) whih maps eah region R into the set fR0 2 R jup(R)\R0 6= ;g. The set of regions R is ompatible with U if for all up 2 U and for allR; R0 2 R: R0 2 up(R) () 8v 2 R; 9v0 2 R0 suh that v0 2 up(v)Then, the region graph assoiated with (R; Su;U) is a graph whose set of nodesis R and whose verties are of two distint types:R �! R0 if R0 = Su(R)R =)up R0 if R0 2 up(R)Let C � C(X) be a �nite set of lok onstraints. The set of regions R is om-patible with C if for all ' 2 C and for all R 2 R: either R � ' or R � :'.5.2 Constrution of the region automatonLet A be a timed automaton in Aut(C;U). Let (R; Su) be a family of re-gions suh that R is ompatible with C and U . We de�ne the region automaton�R;Su(A) assoiated with A and (R; Su), as the �nite (untimed) automatonde�ned as follows:



9- Its set of loations is Q�R; its initial loations are (q0;0) where q0 is initialand 0 is the region where all loks are equal to zero; its repeated loationsare (r; R) where r is repeated in A and R is any region; its �nal loationsare (f;R) where f is �nal in A and R is any region.- Its transitions are de�ned by:� (q; R) "�! (q; R0) if R! R0 is a transition of the region graph,� (q; R) a�! (q0; R0) if there exists a transition (q; '; a; up; q0) in A suhthat R � ' and R =)up R0 is a transition of the region graph.Theorem 3. Let A be a timed automaton in Aut(C;U) where C (resp. U) isa �nite set of lok onstraints (resp. of updates). Let (R; Su) be a family ofregions suh that R is ompatible with C and U . Then the automaton �R;Su(A)aepts the language Untime(L(A)).Assume we an enode a region in a polynomial spae, then we an deide theemptiness of the language in polynomial spae. It su�es to guess an aeptedrun in the automaton by remembering only the two urrent suessive on�gu-rations of the region automaton (this is the same proof than in [AD94℄).We will now study some lasses of timed automata, and onsider partiularregions whih verify the onditions required by the region automaton. This willlead us to some deidability results using the above onstrution.6 Considering Diagonal-Free Updatable Timed AutomataDe�nition of the regions we onsider - We onsider a �nite set of loks X � X .We assoiate an integer onstant x to eah lok x 2 X, and we de�ne the setof intervals:Ix = f[℄ j 0 �  � xg [ f℄; + 1[ j 0 �  < xg [ f℄x; +1[gLet � be a tuple ((Ix)x2X ;�) where:- 8x 2 X, Ix 2 Ix- � is a total preorder on X0 = fx 2 X j Ix is an interval of the form ℄; +1[gThe region (de�ned by) � is thus
R(�) = 8<: j 8x 2 X; v(x) 2 Ixjv 2 TX j 8x; y 2 X0; the following holdsjj x � y () fra(v(x)) � fra(v(y))

9=;The set of all regions de�ned in suh a way will be denoted by R(x)x2X .
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Example 2. As an example, assume we haveonly two loks x and y with the onstantsx = 3 and y = 2. Then, the set of regionsassoiated with those onstants is desribed inthe �gure beside. The hashed region is de�nedby the following: Ix =℄1; 2[, Iy =℄0; 1[ and thepreorder � is de�ned by x � y and y 6� x.



10We obtain immediately the following proposition:Proposition 4. Let C � Cdf (X) be suh that for any lok onstraint x �  ofC, it holds  � x. Then the set of regions R(x)x2X is ompatible with C.Note that the result does not hold for any set of onstraints inluded in C(X).For example, the region (℄1;+1[�℄1; +1[; ;) is neither inluded in x � y � 1nor in x� y > 1.
Computation of the suessor funtion - Let R = ((Ix)x2X ;�) be a region. Weset Z = fx 2 X j Ix is of the form [℄g. Then the region Su(R) = ((I 0x)x2X ;�0)is de�ned as follows, distinguishing two ases:1. If Z 6= ;, then- I 0x = 8<: Ix if x 62 Z℄; + 1[ if Ix = [℄ with  6= x℄x;1[ if Ix = [x℄- x �0 y if (x � y) or Ix = [℄ with  6= x and I 0y has the form ℄d; d+ 1[2. If Z = ;, let M be the set of maximal elements of �. Then- I 0x = � Ix if x 62M[+ 1℄ if x 2M and Ix =℄; + 1[- �0 is the restrition of � to fx 2 X j I 0x has the form ℄d; d+ 1[gTaking the previous example, the suessor of the gray region is de�ned byIx =℄1; 2[ and Iy = [1℄ (drawn as the thik line).We will now de�ne a suitable set of updates ompatible with the regions.
What about the updates ? - We onsider now a loal update up = (upx)x2X overa �nite set of loks X � X suh that for any lok x, upx is in one of the fourfollowing subsets of U(X), eah of them being given by an abstrat grammar:- detx ::= x :=  jx := z + d with  2 N , d 2 Z and z 2 X.- infx ::= x :C  jx :C z + d j infx ^ infx with C2 f<;�g,  2 N , d 2 Z andz 2 X.- supx ::= x :B  jx :B z + d j supx ^ supx with B2 f>;�g,  2 N , d 2 Z andz 2 X.- intx ::= x :2 (; d) jx :2 (; z + d) jx :2 (z + ; d) jx :2 (z + ; z + d) where( and ) are either [ or ℄, z is a lok and , d are in Z.Let us denote by U1(X) this set of loal updates. As in the ase of simple updates,we will give a neessary and su�ient ondition for R0 to be in up(R) when R,R0 are regions and up is a loal update.



11Case of simple updates - We will �rst prove that for any simple update up,R(x)x2X is ompatible with up. To this aim, we onstrut the regions belongingto up(R) by giving a neessary and su�ient ondition for a given region R0 tobe in up(R).Assume that R = ((Ix)x2X ;�) where � is a total preorder on X0 and that up isa simple update over z, then the region R0 = ((I 0x)x2X ;�0) (where �0 is a totalpreorder on X 00) is in up(R) if and only if I 0x = Ix for all x 6= z and :if up = z :�  with  2 N : I 0z an be any interval of Iz whih intersetsf j  � g and� either I 0z has the form [d℄ or ℄z ; +1[, X 00 = X0 n fzg and �0=� \(X 00�X 00).� either I 0z has the form ℄d; d + 1[, X 00 = X0 [ fzg and �0 is any totalpreorder whih oinides with � on X0 n fzg.if up = z :� y +  with  2 Z : we assume in this ase that z � y + . Thusif Iy is any interval in Iy then Iy +  is inluded in an interval of Iz (inpartiular, whenever Iy is non bounded then Iy +  is non bounded, whihis essential in order to prove the ompatibility).I 0z an be any interval of Iz suh that there exists � 2 I 0z, � 2 Iy with� � � +  and� either I 0z has the form [d℄ or ℄z ; +1[, X 00 = X0 n fzg and �0=� \(X 00�X 00).� either I 0z has the form ℄d; d+ 1[, X 00 = X0 [ fzg and� If y 62 X0, �0 is any total preorder on X 00 whih oinides with � onX0 n fzg.� If y 2 X0, then:� either Iy +  6= I 0z and �0 is any total preorder on X 00 whihoinides with � on X0 n fzg� either Iy +  = I 0z and �0 is any total preorder on X 00 whihoinides with � in X0 n fzg and veri�es:� z �0 y and y �0 z if � is =� z �0 y and y 6�0 z if � is <� z �0 y if � is �� y �0 z if � is �� z 6�0 y and y �0 t if � is >� (z �0 y and y 6�0 z) or (z 6�0 y and y �0 z) if � is 6=From this onstrution, it is easy to verify that R(x)x2X is ompatible with anysimple update.
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Example 3. We take the regions desribed in the�gure beside. We want to ompute the updatingsuessors of the region 0 by the update x :> y+2.The three updating suessors are drawn in the�gure beside. Their equations are:- Region 1: I 0x =℄2; 3[, I 0y =℄0; 1[ and y �0 x- Region 2: I 0x = [3℄, I 0y =℄0; 1[- Region 3: I 0x =℄3;+1[, I 0y =℄0; 1[



12Remark 3. Note that the fat that updates of the form z := z�1 (even used withdiagonal-free onstraints only) lead to undeidability of emptiness (Setion 4),is not in ontradition with our onstrution. This is beause we an not assumethat z � z � 1.Case of loal updates - We will use the semantis of the loal updates fromsetion 2.3 to ompute the updating suessors of a region. Assume that R =((Ix)x2X ;�) and that up = (upx)x2X is a loal update over X then R0 =((I 0x)x2X ;�0) 2 up(R) if and only if there exists a total preorder �00 on a subsetof X [X 0 (where X 0 is a disjoint opy of X) verifyingy �00 z () y � z for all y; z 2 Xy0 �00 z0 () y �0 z for all y; z 2 Xand suh that, for any simple update upi appearing in upx, the regionRi = ((Ii;x)x2X ;�i) de�ned by
Ii;x = � Ix if x 6= xiI 0x otherwise and � y �i z () y � z for y; z 6= xi� xi �i z () x0i �00 z for z 6= xi� z �i xi () z �00 x0i for z 6= xibelongs to upi(R).Assume now that U is a set of updates inluded in U1(X). It is then tehnial,but without di�ulties, to show that under the following hypothesis:- for eah simple update y :� z +  whih is part of some loal update of U ,ondition y � z +  holdsthe family of regions (R(x)x2X ; Su) is ompatible with U . In fat, the setX [X 0 and the preorder �00 both enode the original and the updating regions.This onstrution allows us to obtain the desired result for loal updates.Remark 4. In our de�nition of U1(X), we onsidered restrited set of loal up-dates. Without suh a restrition, it an happen that no suh preorder �00 exists.For example, let us take the loal update x :> y ^ x :< z and the region R de-�ned by Ix = [0℄, Iy = Iz =℄0; 1[, z � y and y 6� z. Then the preorder �00 shouldverify the following : y �00 x0, x0 �00 z, z �00 y and y 6� z, but this leads to aontradition. There is no suh problem for the loal updates from U1(X), as weonly impose to eah lok x0 to have a value greater than or lower than someother lok values.For the while, we have only onsidered updates with integer onstants but animmediate generalization of Remark 2 allows to treat updates with any rationalonstants. We have therefore proved the following theorem:Theorem 4. Let C � Cdf (X) be a set of diagonal-free lok onstraints. Let U �U1(X) be a set of updates. Let (x)x2X be a family of onstants suh that for eahlok onstraint y �  of C, ondition  � y holds and for eah update z :� y+ of U , ondition z � y +  holds. Then the family of regions (R(x)x2X ; Su) isompatible with C and U .



13Remark 5. Obviously, it is not always the ase that there exists a family ofinteger onstants suh that for eah update y :� z+  of U , ondition y � z+ holds. Nevertheless:� It is the ase when all the onstants  appearing in updates y :� z +  arenon-negative.� In the general ase, the existene of suh a family is deidable thanks toresults on systems on linear Diophantine inequations [Dom91℄.For any ouple (C;U) verifying the hypotheses of theorem 4, by applying theo-rem 3, the family Aut(C;U) is deidable. Moreover, sine we an enode a regionin polynomial spae, testing emptiness is Pspae, and even Pspae-omplete(sine it is the ase for lassial timed automata).Remark 6. The p-automata used in [BF99℄ to modelize the ABR protool anbe easily transformed into updatable timed automata from a lass whih ful�llsthe hypotheses of theorem 4. Their emptiness is then deidable.
7 Considering Arbitrary Updatable Timed Automata
In this setion, we allow arbitrary lok onstraints. We thus need to de�ne abit more ompliated set of regions. To this purpose we onsider for eah pairy, z of loks (taken in X � X a �nite set of loks), two onstants d�y;z � d+y;zand we de�ne Jy;z = f℄�1; d�y;z [g [ f[d℄ j d�y;z � d � d+y;zg [f℄d; d+ 1[ j d�y;z � d < d+y;zg [ f℄d+y;z ; +1[gThe region de�ned by a tuple ((Ix)x2X ; (Jx;y)x;y2X ;�) where- 8x 2 X; Ix 2 Ix- if X1 denotes the set f(y; z) 2 X2 j Iy or Iz is non boundedg, then8(y; z) 2 X1; Jy;z 2 Jy;z- � is a total preorder on X0 = fx 2 X j Ix is an interval of the form ℄; +1[gis the following subset of TX :8>><>>:

j 8x 2 X; v(x) 2 Ixjj 8x; y 2 X0; it holdsjv 2 TX jj x � y () fra(v(x)) � fra(v(y))jj 8y; z 2 X1; v(y)� v(z) 2 Jy;zj
9>>=>>;



14In fat, we do not have to keep in mind the values d��;� as y and z play symmetrialroles and d�y;z is equal to �d+z;y , thus we set dy;z = d+y;z . The set of all regionsde�ned in suh a way will be denoted by R(y)x2X ;(dy;z)y;z2X .
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Example 4. Assume that we have only two loksx and y and that the maximal onstants are x =3 and y = 2, with loks onstraints x�y � 0 andx�y � 1. Then, the set of regions assoiated withthose onstants is desribed in the �gure beside.The gray region is de�ned by Ix =℄3;+1[, Iy =℄2;+1[ and �1 < y�x < 0 (i.e. Jy;x is ℄� 1; 0[).
The region Su(R) an be de�ned in a way similar to the one used in thediagonal-free ase. We also have to notie that this set of regions is ompatiblewith the lok onstraints we onsider.Indeed we de�ne the set U2(X) of loal updates up = (upx)x2X where for eahlok x, upx is one of the following simple updates:x :=  jx := y jx :<  jx :� 
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From the undeidability results of Setion 4,we have to restrit the used updates if wewant to preserve deidability. For example, ifwe onsider the update y := y + 1 and theregions desribed in the �gure beside, the im-ages of the region 1 are the regions 1, 2 and 3.But we an not reah region 1 (resp. 2, resp.3) from any point of region 1. Thus, this set ofregions does not seem to be ompatible withthe update y := y + 1.By onstrutions similar to the ones of Setion 6, we obtain the following theo-rem:Theorem 5. Let C � C(X) be a set of lok onstraints. Let U � U2(X) be aset of updates. Let (x)x2X and (dy;z)y;z2X be families of onstants suh that- for eah lok onstraint y �  of C, ondition  � y holds,- for eah lok onstraint x� y � , ondition  � dx;y holds,- for eah update y :<  or y :�  or y := , it holds  � y, and for eah lokz, ondition z � + dy;z holds,- for eah update y := z, ondition y � z holdsThen the family of regions (R(x)x2X ;(dy;z)y;z2X;Su) is ompatible with C and U.Thus, the lass Aut(C;U) is deidable, and as in the previous ase, testingemptiness of updatable timed automata is Pspae-omplete (unlike the aseof diagonal-free updates, the previous system of Diophantine equations alwayshas a solution).
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2 Example 5. We take the regions we used before.We want to ompute the updating suessors ofthe region 0 by the update x :< 2. The four up-dating suessors are drawn in the �gure beside.Their equations are:- Region 1: I 0x = [0℄ and I 0y =℄2;+1[- Region 2: I 0x =℄0; 1[, I 0y =℄2;+1[and Jy;x =℄1;+1[- Region 3: I 0x = [1℄ and I 0y =℄2;+1[- Region 4: I 0x =℄1; 2[, I 0y =℄2;+1[and Jy;x =℄1;+1[8 ConlusionThe main results of this paper about the emptiness problem are summarized inthe following table:U0(X) [ � � � Cdf (X) C(X); Pspae Pspaefx :=  jx 2 Xg [ fx := y jx; y 2 Xg Pspae Pspaefx :<  jx 2 X ;  2 Q +g Pspae Pspaefx := x+ 1 jx 2 Xg Pspae Undeidablefx :>  jx 2 X ;  2 Q +g Pspae Undeidablefx :> y jx; y 2 Xg Pspae Undeidablefx :< y jx; y 2 Xg Pspae Undeidablefx :� y +  jx; y 2 X ;  2 Q +g Pspae Undeidablefx := x� 1 jx 2 Xg Undeidable UndeidableOne of the surprising fats of our study is that the frontier between what isdeidable and not depends on the diagonal onstraints (exept for the x := x�1update), whereas it is well-known that diagonal onstraints do not inrease theexpressive power of lassial timed automata.Note that, as mentionned before, the deidable lasses are not more power-ful than lassial timed automata in the sense that for any updatable timedautomaton of suh a lass, a lassial timed automaton (with "�transitions)reognizing the same language � and even most often bisimilar � an be e�e-tively onstruted [BDFP00b℄. However, in most ases an exponential blow-upseems unavoidable. This means that transforming updatable timed automatainto lassial timed automata annot onstitute an e�ient strategy to solve theemptiness problem.In the existing model-hekers, time is represented through data strutures likeDBM (Di�erene Bounded Matrix) or CDD (Clok Di�erene Diagrams). Aninteresting and natural question is to study how suh strutures an be used todeal with updatable timed automata.Aknowledgements: We thank Béatrie Bérard for helpful disussions.
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