
Introduction Relations and their relation Decidability Summary

Deciding Knowledge in Security Protocols under
Equational Teories

Presentation by Willard Þór Rafnsson

Martín Abadi Véronique Cortier

November 9, 2007

Martín Abadi, Véronique Cortier 1

Deciding Knowledge in Security Protocols under Equational Teories Presentation by Willard Þór Rafnsson



Introduction Relations and their relation Decidability Summary

A key issue in security protocol analysis:
Knowledge of attackers & participants.

Deducibility `
Indistinguishability ≈s

How do these relations relate?
Messages employ functions axiomatized in an equational theory.

For which equational theories are the relations decidable?
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As we shall see, a large class of equational theories has polynomial
time deducability and indistinguishability.
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Assumptions

Assumptions:
Messages are formulae, expressed as frames.
Environment considered as protocol attacker.
Security guarantee: Attacker never learns x .

Deduction: frames never expose enough knowledge for x to be
deduced.
Indistinguishability: Attacker cannot tell x apart from any
other value.

Note: knowing a value 6= knowing where the value was applied.
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Initial Definitions

Σ : finite set of function symbols
k , n, s ∈ Nam, infinite set
x , y , z ∈ Var, infinite set
u, v ,w ∈ Nam ∪ Var

Definition (Term)

Given Σ, Nam and Var, the set of terms is generated by the
grammar

T ::= n
| x
| f (T , . . . ,T ),

where f ranges over Σ.

Assumption: all T closed (no free x). L,M,N,U,V range over T .
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Initial Definitions

Definition (Equational Theory)

An equational theory E is a set of equations M = N. M =E N
when M,N are closed and M = N ∈ E .

Example (Simple equational theory)

Σ = {pair, fst, snd}
E0 = {fst(pair(x , y)) = x , snd(pair(x , y)) = y}
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Initial Definitions

Definition (Frame)

A frame, denoted φ, ϕ, ψ, is of the form

ϕ = νñσ,

where ñ is a finite set names, and σ = {M1/x1, . . . ,Ml/xl} a
substitution.

dom(ϕ)
def
= {x1, . . . , xl}.

A

x1
x2

. . .
xl

M1
M2

Ml
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Initial Definitions

Example (Frame in the Applied Pi calculus)

A def
= νs({pk(s)/y} | a〈(M, sign(M, sk(s)))〉)

ϕ(A) = νs{pk(s)/y}
dom(ϕ(A)) = {y}

A

y

pk(s)
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Deduction & Static Equivalence

Definition (Deduction, `)
For a given equational theory E , we say M may be deduced from φ,
written φ ` M, when that fact is derivable using the axioms

νñσ ` M
, if ∃x ∈ dom(σ) [xσ = M]

νñσ ` s
, if s 6∈ ñ

φ ` M1 · · ·φ ` Ml

φ ` f (M1, . . . ,Ml )
, if f ∈ Σ

φ ` M M =E M ′

φ ` M ′
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Deduction & Static Equivalence

Proposition (Deduction condition)

T closed term, φ = νñσ.

φ ` T ⇐⇒ ∃ζ [fn(ζ) ∩ ñ = ∅ ∧ ζσ =E T ]

Example (Applying the deduction condition)

φ
def
= νks {enc(s,k)/x, k/y}︸ ︷︷ ︸

σ

.

Then φ ` k and φ ` s holds, since

dec(x , y)σ = s
yσ = k .
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Deduction & Static Equivalence

Definition (Static Equivalence more )

Let ϕ,ψ be frames. Then

ϕ ≈s ψ ⇐⇒ dom(ϕ) = dom(ψ)
∧∀M,N [(M =E N)ϕ ⇐⇒ (M =E N)ψ]
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Deduction & Static Equivalence

Example (Static Equivalence)

φ1
def
= νk {enc(0,k)/x, k/y}

φ2
def
= νk {enc(1,k)/x, k/y}

Attacker cannot use ` to distinguish φ1, φ2, as we have

φ1 ` T ⇐⇒ φ2 ` T .

However, ≈s distinguishes φ1, φ2.

(dec(x , y) =E 0)φ1 holds,
(dec(x , y) =E 0)φ2 false,
=⇒ φ1 6≈s φ2,

but not if we remove {k/y}.
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` reduces to ≈s , but not converse.

Proposition (` reduces to ≈s)

Let E be an equational theory over Σ, Σβ
def
= Σ ] {0, 1, enc, dec},

Eβ
def
= E ] {dec(enc(x , y), y) = x}, φ = νñ {M1/x1. . . . ,Ml/xl}, and

M a closed term.

φ `E M ⇐⇒ νñ {M1/x1, . . . ,Ml/xl , enc(0,M)/xl+1} 6≈sβ

νñ {M1/x1, . . . ,Ml/xl , enc(1,M)/xl+1}

φ ` M ⇐⇒ enough information is in φ for attacker to tell apart

xl+11 = enc(0,M)
xl+12 = enc(1,M).
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` reduces to ≈s , but not converse.

Proposition (≈s decidable 6=⇒ ` decidable)

There exists an equational theory E3 such that ≈sE3
is undecidable,

while `E3 is decidable.

Proof idea more .
Engineer a problem which abuses the exhaustiveness of the check
for static equivalence. Authors: LetM(M1,M2) simulate TMs
M1,M2 on turn on input w as determined by a choice string
s ⊆ {1, 2}∗. M1,M2 share δ,Q, and tape. Problem: check whether

M(M1,M2),w →s1 ,M(M1,M2),w →s2 same tape
⇐⇒ M(M ′1,M

′
2),w →s1 ,M(M ′1,M

′
2),w →s2 same tape
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` reduces to ≈s , but not converse.

Corollary (Relation between ` and ≈s)

Let E be some equational theory.
≈sE decidable =⇒ `E decidable.
≈sE decidable ⇐=6 `E decidable.

Thus, ` ≤m ≈s , while ≈s 6≤m `.
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Convergent Subterm Theories

Proposition (E decidable 6=⇒ ` decidable)

There exists a decidable equational theory E2 such that `E2 is
undecidable.

Proof idea more .
Encode PCP as a deduction problem in an equational theory which
models dominos.

We need a concrete class of decidable equational theories to
establish our main result.
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Convergent Subterm Theories

Definition (Convergent Subterm Theory more )

A finite set E of equations on form M = N, where N is a subterm
of M, and where r(E ),the set of all (left-to-right) rewrites on the
form M → N, converges.

Notation:

U → V ⇐= U,V closed ∧
U reduces to V in one step w. rules in r(E )

U ↓ : normalform of U (fully reduced)
U =E V ⇐⇒ U ↓= V ↓
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Convergent Subterm Theories

Example (Convergent Subterm Theories)

The equational theory

E0
def
= {fst(pair(x , y)) = x , snd(pair(x , y)) = y},

is convergent. For instance,

fst(pair(snd(pair(0, 1))), 1) → snd(pair(0, 1))
→ 1
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Main Result

Theorem (Polynomial Time Decidability)

For any frames φ, φ′, and any closed term M, it holds that φ ` M
and φ ≈s φ

′ are polynomial-time decidable in |φ|, |φ′|, and |M|, for
any convergent subterm theory.

The remainder of this presentation gives a hint as of how to
compute φ ` M and φ ≈s φ

′, and the time complexity involved.

Note: Size of T : |u| = 1, |f (T1, . . . ,Tl )| = 1 + Σl
i=1|Ti |.
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Main Result

Definition (Subterms and Saturation (informal) more )

Let φ = νñ{M1/x1, . . . ,Mk/xk} be a frame, and st(φ) the set of
subterms of the Mi s. The saturation sat(φ) of φ is the minimal set
s.t. it contains

1 What is directly “leaked” to the environment, that is,
M1, . . . ,Mk ,

2 What you can “see” inside all Ni ∈ sat(φ), and
3 What you cannot “see” inside M1, . . . ,Mk , but can reconstruct

from some elements Ni ∈ sat(φ).

Note: sat(φ) ⊆ st(φ). That is, sat(φ) is all information in φ that
an attacker can learn.

Martín Abadi, Véronique Cortier 22

Deciding Knowledge in Security Protocols under Equational Teories Presentation by Willard Þór Rafnsson



Introduction Relations and their relation Decidability Summary

Main Result

Example (Computing the Saturation)

Let
Σ = {pair, fst, snd, enc, dec, 0, 1}

r(E ) =


fst(pair(x , y))→ x
snd(pair(x , y))→ y
dec(enc(x , y), y)→ x


cE = max1≤i≤k{|Mi |, ar(Σ) + 1} = 5
φ = νs{enc(pair(1,1),s)/x1, s/x2}
st(φ) = {enc(pair(1, 1), s), s}

sat(φ) = {enc(pair(1, 1), s), s}︸ ︷︷ ︸
pt.1

∪{pair(1, 1), 1}︸ ︷︷ ︸
pt.2∗

∪ ∅︸︷︷︸
pt.3

.

= st(φ)

*: C1 [y1, y2] = dec(y1, y2); |C1| ≤ cE
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Main Result

Example (continued)

Now let
φ′ = νs{enc(pair(0,1),s)/x1, 0/x2, 1/x3}.

Here, pt. 3 will let the attacker learn pair(0, 1), eventhough the
attacker cannot see the content of the encrypted message.
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Main Result

Time complexity of computing sat(φ):
Max |φ| saturation steps, as sat(φ) ⊆ st(φ).
Each step:

All C [M1, . . . ,Mk ], where |C | ≤ cE computed for all Mi ’s in
sat(φ). Max O(|φ|cE +1) computations.
All f (M1, . . . ,Mk), where f (M1, . . . ,Mk) ∈ st(φ). Max
|Σ||φ|ar(Σ) terms (O(|φ|ar(Σ)))

|φ|O(|φ|max(ar(Σ),cE +1)) = O(|φ|cE +2), by def. of cE .
polynomial.
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Main Result

Proposition (Decidability of ` (informal) more )

φ ` M ⇐⇒ attacker can, by use of his knowledge sat(φ) and
contexts, construct M ↓, without using secrets unknown to him (ñ)

Proposition (Decidability of ≈s (informal) more )

φ ≈s φ
′ ⇐⇒ φ and φ′ satisfy each other’s equalities, Eq(φ) and

Eq(φ′) (up to cE bound).
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Main Result

Time complexity of computing φ ` M:
Reducing M to normal form: polynomial.
Computing sat(φ): polynomial.
Checking existence of a context C for which
M ↓== C [M1, . . . ,Mk ]: O(|M||φ|2), polynomial.
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Main Result

Time complexity of computing φ ≈s φ
′:

Compute sat(φ), sat(φ′): polynomial.
Max. O((|φ|cE )2) equalities in Eq(φ). polynomial.
For all C1,C2 s.t. |C1|, |C2| ≤ cE , and for all Mi ,M ′i ∈ sat(φ),
check equalities

(C1[ζM1 , . . . , ζMk ] =E C2[ζM1 , . . . , ζMk ])φ, and
(C1[ζM1 , . . . , ζMk ] =E C2[ζM1 , . . . , ζMk ])φ′.

Elements being compared are DAGs of polynomial size. Time
per comparison: polynomial.
Comparing a polynomial number of elements a polynomial
number of times, each comparison taking polynomial time:
polynomial.
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Highlights:
Deduction can be performed in terms of static equivalence.

Illustrates the power of static equivalence.
Checking static equivalence can be done in polynomial time.

Static equivalence of Applied Pi processes integrated into
analysis tools, for reasoning about security protocols
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Concern:
The article is excellent. . . until you reach page 7.

The 2+ page introduction could be made more brief to
improve the mediation of the key result.

The use of DAGs in the decidability proof of static equivalence.
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The end.
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The remaining slides are supplementary slides.
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Definition (Term equality back )

Let ϕ = νñσ be a frame, and M,N be terms.

(M =E N)ϕ ⇐⇒ Mσ =E Nσ
∧ñ ∩ (fn(M) ∪ fn(N)) = ∅.
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Proof of “≈s decidable 6=⇒ ` decidable” back .

T = term; sequence of choices
φ = M(M1,M2)
φ′ = M(M ′1,M

′
2)

Tφ = Machine tape + #choices made

φ 6≈s φ
′ undecidable. Finding the T1,T2 s.t. (T1 =E T2)φ
and (T1 6=E T2)φ′ may take forever. Example: feed
“a” to the TM M1 = M2 = start // GFED@ABCq1 a 7→ q1,L

ll
.

φ ` T decidable. Since #choices is known, proving or
disproving ∃T [(Tφ =E U)] is easy; T must have
same #choices as U. No exhaustion.
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Proof of “E decidable 6=⇒ ` decidable” back .
Let

E2 =


x · (y · z) = (x · y) · z

[x1, y1] · [x2, y2] = [x1 · x2, y1 · y2]
f ([x · y , x · y ]) = f ([x , x ])

 .

Map PCP input {(ui , vi ) | ui , vi ∈ A∗} to σ = {[ui ,vi ]/xi}. Now, the
PCP has a match ⇐⇒

∃a ∈ A [νAσ `E2 f ([a, a])] .

Example PCP instances to experiment on are on the following slide.
go
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Example (Simple PCP examples)

The PCP instance

P = {(a, b), (b, c), (c , a)}

has no match, while

P ′ = {(a, b), (b, c), (c , a), (a, aa), (aa, a)}

does.

back
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Definition (Convergent Subterm Theory back )

Let

E def
=

n⋃
i=1

{Mi = Mi}; fn(Mi ) = fn(Ni ) = ∅.

E is a Convergent Subterm Theory if

r(E )
def
=
⋃n

i=1{Mi → Ni} convergent (rewrite rules),
each Ni is a proper subterm of Mi or a constant.
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Definition (Subterms and Saturation back )

Let φ = νñ{M1/x1, . . . ,Mk/xk} be a frame, and
st(φ) = {M | M is a subterm of a Mi}. The saturation sat(φ) of φ
is the minimal set s.t.

1 ∀1 ≤ i ≤ k [Mi ∈ sat(φ)]

2


M1, . . . ,Mk ∈ sat(φ)
∧C [M1, . . . ,Mk ]→ M
∧|C | ≤ cE
∧fn(C ) ∩ ñ = ∅
∧M ∈ st(φ)

 =⇒ M ∈ sat(φ)

3

{
M1, . . . ,Mk ∈ sat(φ)
∧f (M1, . . . ,Mk) ∈ st(φ)

}
=⇒ f (M1, . . . ,Mk) ∈ sat(φ)
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Proposition (Decidability of ` back )

Let φ = νñσ, M be closed. φ ` M ⇐⇒ there exists C and
M1, . . . ,Mk ∈ sat(φ) s.t. fn(C ) ∩ ñ = ∅ and
M ↓== C [M1, . . . ,Mk ] (syntactic equiv.).
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Proposition (Decidability of ≈s back )

∀φ, φ′
[
φ ≈s φ

′ ⇐⇒ φ |= Eq(φ′) ∧ φ′ |= Eq(φ)
]
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