Introduction	

Relations and their relation

Decidability 000 00000000 Summary

Deciding Knowledge in Security Protocols under Equational Teories Presentation by Willard Þór Rafnsson

Martín Abadi Véronique Cortier

November 9, 2007

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

A key issue in security protocol analysis:

- Knowledge of attackers & participants.
 - $\bullet \ \ \mathsf{Deducibility} \vdash \\$
 - $\bullet \ \ {\rm Indistinguishability} \approx_s$

How do these relations relate?

Messages employ functions axiomatized in an equational theory.

• For which equational theories are the relations decidable?

4 D K 4 B K 4 B K

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

As we shall see, a large class of equational theories has polynomial time deducability and indistinguishability.

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

3

(日) (同) (三) (

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

- Assumptions
- Initial Definitions
- 2 Relations and their relation
 - Deduction & Static Equivalence
 - \vdash reduces to \approx_s , but not converse.

3 Decidability

- Convergent Subterm Theories
- Main Result

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
0	0000	ooo	
0000	000	oooooooo	

The authors:

Martín Abadi, Véronique Cortier. "Deciding Knowledge in Security Protocols under Equational Theories".

In Proc. 31st Int. Coll. Automata, Languages, and Programming (ICALP'2004), Turku, Finland, July 2004, volume 3142 of Lecture Notes in Computer Science, pages 46-58. Springer, 2004.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

イロト イポト イラト イ

Introduction	Relations and their relation	Decidability	Summary
0000	0000 000	000	
Assumptions			

Assumptions:

- Messages are formulae, expressed as *frames*.
- Environment considered as protocol attacker.
- Security guarantee: Attacker never learns x.
 - Deduction: frames never expose enough knowledge for x to be deduced.
 - Indistinguishability: Attacker cannot tell x apart from any other value.
- Note: knowing a value \neq knowing where the value was applied.

6

(日) (同) (三) (

Introduction	Relations and their relation	Decidability	Summary
o ●000	0000 000	000	
Initial Definitions			

- Σ : finite set of function symbols
- $k, n, s \in Nam$, infinite set
- $x, y, z \in Var$, infinite set
- $u, v, w \in \mathsf{Nam} \cup \mathsf{Var}$

Definition (Term)

Given $\Sigma,$ Nam and Var, the set of *terms* is generated by the grammar

$$\begin{array}{c} \vdots = n \\ \mid x \\ \mid f(T, \dots, T), \end{array}$$

where f ranges over Σ .

Assumption: all T closed (no free x). L, M, N, U, V range over T.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Introduction	Relations and their relation	Decidability	Summary
o o●oo	0000 000	000 0000000	
Initial Definitions			

Definition (Equational Theory)

An equational theory E is a set of equations M = N. $M =_E N$ when M, N are closed and $M = N \in E$.

Example (Simple equational theory)

$$\Sigma = \{ \text{pair, fst, snd} \}$$

$$E_0 = \{ \text{fst}(\text{pair}(x, y)) = x, \text{snd}(\text{pair}(x, y)) = y \}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
0 00●0	0000 000	000	
Initial Definitions			

Definition (Frame)

A frame, denoted $\phi, \varphi, \psi,$ is of the form

$$\varphi = \nu \tilde{n}\sigma,$$

where \tilde{n} is a finite set names, and $\sigma = \{M_1/x_1, \ldots, M_l/x_l\}$ a substitution.

 $\operatorname{dom}(\varphi) \stackrel{\operatorname{def}}{=} \{x_1, \ldots, x_l\}.$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

<ロト <回ト < 回ト < 回ト < 回ト = 三回

Introduction	Relations and their relation	Decidability	Summary
0 000●	0000 000	000	
Initial Definitions			

Example (Frame in the Applied Pi calculus)

$$\begin{array}{ll} A & \stackrel{\text{def}}{=} \nu s(\{ pk(s)/y \} \mid \overline{a} \langle (M, sign(M, sk(s))) \rangle) \\ \varphi(A) &= \nu s\{ pk(s)/y \} \\ dom(\varphi(A)) &= \{ y \} \end{array}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

3

10

Introduction	Relations and their relation	Decidability	Summary
0 0000		000	
Deduction & Static Equivale			

Definition (Deduction, \vdash)

For a given equational theory E, we say M may be deduced from ϕ , written $\phi \vdash M$, when that fact is derivable using the axioms

$$\overline{\nu \tilde{n}\sigma \vdash M}$$
, if $\exists x \in \operatorname{dom}(\sigma) [x\sigma = M]$ $\overline{\nu \tilde{n}\sigma \vdash s}$, if $s \notin \tilde{n}$

$$\frac{\phi \vdash M_1 \cdots \phi \vdash M_l}{\phi \vdash f(M_1, \dots, M_l)}, \text{ if } f \in \Sigma \qquad \frac{\phi \vdash M \quad M =_E M'}{\phi \vdash M'}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

(日) (同) (三) (

Introduction	Relations and their relation	Decidability	Summary
	○●○○ ○○○	000	
Deduction & Static Ed	quivalence		

Proposition (Deduction condition)

T closed term, $\phi = \nu \tilde{n} \sigma$.

$$\phi \vdash T \iff \exists \zeta \,[\mathrm{fn}(\zeta) \cap \tilde{n} = \emptyset \land \zeta \sigma =_E T]$$

Example (Applying the deduction condition)

$$\phi \stackrel{\text{def}}{=} \nu ks \underbrace{\{ \operatorname{enc}(s,k)/x, k/y \}}_{\sigma}.$$

Then $\phi \vdash k$ and $\phi \vdash s$ holds, since

$$dec(x, y)\sigma = s$$

$$y\sigma = k.$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
0 0000	0000 000	000	
Deduction & Static Equi	ivalence		

Definition (Static Equivalence)

Let φ, ψ be frames. Then

$$\varphi \approx_{s} \psi \iff \operatorname{dom}(\varphi) = \operatorname{dom}(\psi)$$

$$\wedge \forall M, N [(M =_{E} N)\varphi \iff (M =_{E} N)\psi]$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

글 🕨 🖂 글

13

Introduction	Relations and their relation	Decidability	Summary
o 0000	0000 000	000 0000000	
Deduction & Static Ed	Juivalence		

Example (Static Equivalence)

$$\phi_1 \stackrel{\text{def}}{=} \nu k \{ \operatorname{enc}(0,k)/x, k/y \} \\ \phi_2 \stackrel{\text{def}}{=} \nu k \{ \operatorname{enc}(1,k)/x, k/y \}$$

Attacker cannot use \vdash to distinguish ϕ_1, ϕ_2 , as we have

$$\phi_1 \vdash T \iff \phi_2 \vdash T.$$

However, \approx_s distinguishes ϕ_1, ϕ_2 .

$$(\operatorname{dec}(x, y) =_E 0)\phi_1 \text{ holds,} (\operatorname{dec}(x, y) =_E 0)\phi_2 \text{ false,} \Longrightarrow \phi_1 \not\approx_s \phi_2,$$

but not if we remove $\{k/y\}$.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
0000	0000 •00	000	
\vdash reduces to $pprox_{m{s}}$, but not con	verse.		

Proposition (\vdash reduces to \approx_s)

Let *E* be an equational theory over Σ , $\Sigma_{\beta} \stackrel{\text{def}}{=} \Sigma \uplus \{0, 1, \text{enc, dec}\},\ E_{\beta} \stackrel{\text{def}}{=} E \uplus \{ \text{dec}(\text{enc}(x, y), y) = x \}, \phi = \nu \tilde{n} \{ M_1 / x_1 \dots, M_l / x_l \}, \text{ and } M \text{ a closed term.} \}$

$$\phi \vdash_{E} M \iff \nu \tilde{n} \{ \frac{M_{1}/x_{1}, \ldots, M_{l}/x_{l}, \operatorname{enc}(0, M)/x_{l+1}}{\nu \tilde{n} \{ \frac{M_{1}/x_{1}, \ldots, M_{l}/x_{l}, \operatorname{enc}(1, M)/x_{l+1} \}} \not\approx_{s_{\beta}}$$

 $\phi \vdash M \iff$ enough information is in ϕ for attacker to tell apart

$$\begin{array}{l} x_{l+1_1} = \mathrm{enc}(0,M) \\ x_{l+1_2} = \mathrm{enc}(1,M). \end{array}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

イロト イヨト イヨト ・

Introduction	Relations and their relation	Decidability	Summary
	0000 0 0 0	000	
\vdash reduces to \approx_{s} , but	not converse.		

Proposition (\approx_s decidable $\neq \Rightarrow$ \vdash decidable)

There exists an equational theory E_3 such that $\approx_{s_{E_3}}$ is undecidable, while \vdash_{E_3} is decidable.

Proof idea 🕩 more

Engineer a problem which abuses the exhaustiveness of the check for static equivalence. Authors: Let $\mathcal{M}(M_1, M_2)$ simulate TMs M_1, M_2 on turn on input w as determined by a choice string $s \subseteq \{1, 2\}^*$. M_1, M_2 share δ, Q , and tape. Problem: check whether

$$\begin{split} \mathcal{M}(M_1, M_2), & w \to^{s_1}, \mathcal{M}(M_1, M_2), w \to^{s_2} \text{ same tape} \\ \iff \mathcal{M}(M_1', M_2'), & w \to^{s_1}, \mathcal{M}(M_1', M_2'), w \to^{s_2} \text{ same tape} \end{split}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000	000	
0000	000	0000000	
\vdash reduces to $pprox_{s}$, but i	not converse.		

Corollary (Relation between \vdash and \approx_s)

Let E be some equational theory.

- \approx_{s_E} decidable $\implies \vdash_E$ decidable.
- \approx_{s_E} decidable $\Leftarrow \vdash_E$ decidable.

Thus, $\vdash \leq_m \approx_s$, while $\approx_s \not\leq_m \vdash$.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

イロト 不得下 イヨト イヨト

Introduction	Relations and their relation	Decidability	Summary
	0000 000	• 00 •••••	
Convergent Subterm Theories			

Proposition (*E* decidable $\neq \Rightarrow \vdash$ decidable)

There exists a decidable equational theory E_2 such that \vdash_{E_2} is undecidable.

Proof idea • more .

Encode PCP as a deduction problem in an equational theory which models dominos.

We need a concrete class of decidable equational theories to establish our main result.

18

Introduction	Relations and their relation	Decidability	Summary
o 0000	0000 000		
Convergent Subterm Theories			

Definition (Convergent Subterm Theory **Prove**)

A finite set *E* of equations on form M = N, where *N* is a *subterm* of *M*, and where r(E), the set of all (left-to-right) rewrites on the form $M \rightarrow N$, converges.

Notation:

 $\begin{array}{rcl} U \to V & \Leftarrow & U, V \text{ closed } \land \\ & & U \text{ reduces to } V \text{ in one step w. rules in } r(E) \\ U \downarrow & : & \text{normalform of } U \text{ (fully reduced)} \\ U =_E V \iff & U \downarrow = V \downarrow \end{array}$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

Introduction	Relations and their relation	Decidability	Summar
	0000 000	000	
Convergent Subterm T	heories		

Example (Convergent Subterm Theories)

The equational theory

$$E_0 \stackrel{\text{def}}{=} \{ \operatorname{fst}(\operatorname{pair}(x, y)) = x, \operatorname{snd}(\operatorname{pair}(x, y)) = y \},\$$

is convergent. For instance,

$$\begin{array}{l} \mathrm{fst}(\mathrm{pair}(\mathrm{snd}(\mathrm{pair}(0,1))),1) \to \mathrm{snd}(\mathrm{pair}(0,1)) \\ \to 1 \end{array}$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Decidability ○○○ ●○○○○○○○

Theorem (Polynomial Time Decidability)

For any frames ϕ, ϕ' , and any closed term M, it holds that $\phi \vdash M$ and $\phi \approx_s \phi'$ are polynomial-time decidable in $|\phi|, |\phi'|$, and |M|, for any convergent subterm theory.

The remainder of this presentation gives a hint as of how to compute $\phi \vdash M$ and $\phi \approx_s \phi'$, and the time complexity involved.

Note: Size of *T*:
$$|u| = 1$$
, $|f(T_1, ..., T_l)| = 1 + \sum_{i=1}^l |T_i|$.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

イロト 不得下 イヨト イヨト

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	
Main Result			

Definition (Subterms and Saturation (informal) • more)

Let $\phi = \nu \tilde{n}\{M_1/x_1, \dots, M_k/x_k\}$ be a frame, and $\operatorname{st}(\phi)$ the set of subterms of the M_i s. The saturation $\operatorname{sat}(\phi)$ of ϕ is the minimal set s.t. it contains

- What is directly "leaked" to the environment, that is, M_1, \ldots, M_k ,
- **2** What you can "see" inside all $N_i \in sat(\phi)$, and
- **③** What you cannot "see" inside $M_1, ..., M_k$, but can reconstruct from some elements $N_i ∈ sat(\phi)$.

Note: $sat(\phi) \subseteq st(\phi)$. That is, $sat(\phi)$ is all information in ϕ that an attacker can learn.

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

조田縣 지원은 지금은 지금은 것을

Introduction	Relations and their relation	Decidability	Summar
	0000 000	000	
Main Result			

Example (Computing the Saturation)

Let

$$\begin{split} \Sigma &= \{ \text{pair, fst, snd, enc, dec, 0, 1} \} \\ \mathbf{r}(E) &= \begin{cases} \text{fst}(\text{pair}(x, y)) \to x \\ \text{snd}(\text{pair}(x, y)) \to y \\ \text{dec}(\text{enc}(x, y), y) \to x \end{cases} \\ \mathbf{c}_E &= \max_{1 \leq i \leq k} \{ |M_i|, \operatorname{ar}(\Sigma) + 1 \} = 5 \\ \phi &= \nu s \{ \exp((\operatorname{pair}(1, 1), s) / x_1, s / x_2 \} \\ \text{st}(\phi) &= \{ \exp((\operatorname{pair}(1, 1), s), s \} \\ \text{sat}(\phi) &= \underbrace{\{ \exp((\operatorname{pair}(1, 1), s), s \} \cup \underbrace{\{ \operatorname{pair}(1, 1), 1 \}}_{pt.2*} \cup \underbrace{\emptyset}_{pt.3} . \\ &= \operatorname{st}(\phi) \end{split}$$

*:
$$C_1[y_1, y_2] = dec(y_1, y_2); |C_1| \le c_E$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

イロト イポト イヨト イヨト

2

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	
Main Result			

Example (continued)

Now let

$$\phi' = \nu s \{ \operatorname{enc}(\operatorname{pair}(0,1),s) / x_1, 0 / x_2, 1 / x_3 \}.$$

Here, pt. 3 will let the attacker learn pair(0, 1), eventhough the attacker cannot see the content of the encrypted message.

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

(日) (同) (三) (

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	
Main Result			

Time complexity of computing $sat(\phi)$:

- Max $|\phi|$ saturation steps, as $\operatorname{sat}(\phi) \subseteq \operatorname{st}(\phi)$.
- Each step:
 - All $C[M_1, \ldots, M_k]$, where $|C| \le c_E$ computed for all M_i 's in $\operatorname{sat}(\phi)$. Max $\mathcal{O}(|\phi|^{c_E+1})$ computations.
 - All $f(M_1, \ldots, M_k)$, where $f(M_1, \ldots, M_k) \in st(\phi)$. Max $|\Sigma||\phi|^{ar(\Sigma)}$ terms $(\mathcal{O}(|\phi|^{ar(\Sigma)}))$
- $|\phi|\mathcal{O}(|\phi|^{\max(\operatorname{ar}(\Sigma), c_E+1)}) = \mathcal{O}(|\phi|^{c_E+2})$, by def. of c_E . polynomial.

25

イロト 不得下 イヨト イヨト

Introduction	Relations and their relation	Decidability	Summa
	0000 000	00000000	
Main Result			

Proposition (Decidability of \vdash (informal) \frown more)

 $\phi \vdash M \iff$ attacker can, by use of his knowledge $\operatorname{sat}(\phi)$ and contexts, construct $M \downarrow$, without using secrets unknown to him (\tilde{n})

Proposition (Decidability of \approx_s (informal) \frown more)

 $\phi \approx_{s} \phi' \iff \phi$ and ϕ' satisfy each other's equalities, Eq(ϕ) and Eq(ϕ') (up to c_{E} bound).

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 00000000	
Main Result			

Time complexity of computing $\phi \vdash M$:

- Reducing *M* to normal form: *polynomial*.
- Computing $sat(\phi)$: polynomial.
- Checking existence of a context C for which
 M ↓== C[M₁,..., M_k]: O(|M||φ|²), polynomial.

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	
Main Result			

Time complexity of computing $\phi \approx_s \phi'$:

- Compute $sat(\phi)$, $sat(\phi')$: *polynomial*.
- Max. $\mathcal{O}((|\phi|^{c_E})^2)$ equalities in Eq(ϕ). polynomial.
- For all C_1, C_2 s.t. $|C_1|, |C_2| \le c_E$, and for all $M_i, M'_i \in \text{sat}(\phi)$, check equalities
 - $(C_1[\zeta_{M_1},...,\zeta_{M_k}] =_E C_2[\zeta_{M_1},...,\zeta_{M_k}])\phi$, and • $(C_1[\zeta_{M_1},...,\zeta_{M_l}] =_E C_2[\zeta_{M_1},...,\zeta_{M_l}])\phi'$.
- Elements being compared are DAGs of polynomial size. Time per comparison: *polynomial*.
- Comparing a polynomial number of elements a polynomial number of times, each comparison taking polynomial time: *polynomial*.

イロト イヨト イヨト ・

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

Highlights:

- Deduction can be performed in terms of static equivalence.
 - Illustrates the power of static equivalence.
- Checking static equivalence can be done in polynomial time.
 - Static equivalence of Applied Pi processes integrated into analysis tools, for reasoning about security protocols

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Concern:

- The article is excellent... until you reach page 7.
 - The 2+ page introduction could be made more brief to improve the mediation of the key result.
- The use of DAGs in the decidability proof of static equivalence.

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

The end.

- ・ロト ・西ト ・ヨト ・ヨー うへぐ

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

31

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000	

The remaining slides are supplementary slides.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

イロト イポト イヨト イ

32

Introduction	Relations and their relation	Decidability	Summary
0 0000	0000 000	000	

Definition (Term equality **back**)

Let $\varphi = \nu \tilde{n} \sigma$ be a frame, and M, N be terms.

$$(M =_E N)\varphi \iff M\sigma =_E N\sigma$$

$$\wedge \tilde{n} \cap (\operatorname{fn}(M) \cup \operatorname{fn}(N)) = \emptyset.$$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

<ロト <回ト < 回ト < 回ト < 回ト = 三回

Introduction
0000

Relations and their relation

Decidability 000 00000000 Summary

Proof of " \approx_s decidable $\neq \rightarrow \vdash$ decidable" \triangleright back.

- T = term; sequence of choices $\phi = \mathcal{M}(M_1, M_2)$ $\phi' = \mathcal{M}(M'_1, M'_2)$ $T\phi = \text{Machine tape} + \# choices \text{ made}$
- $\phi \not\approx_s \phi'$ <u>undecidable</u>. Finding the T_1, T_2 s.t. $(T_1 =_E T_2)\phi$ and $(T_1 \neq_E T_2)\phi'$ may take forever. Example: feed "a" to the TM $M_1 = M_2 = \text{ start} \longrightarrow (q_1) \Rightarrow \phi = q_1, L$.
 - $\phi \vdash T$ <u>decidable</u>. Since #*choices* is known, proving or disproving $\exists T [(T\phi =_E U)]$ is easy; T must have same #*choices* as U. No exhaustion.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Proof of "*E* decidable $\neq \rightarrow$ \vdash decidable" \triangleright back.

Let

$$E_{2} = \left\{ \begin{array}{rrrr} x \cdot (y \cdot z) &=& (x \cdot y) \cdot z \\ [x_{1}, y_{1}] \cdot [x_{2}, y_{2}] &=& [x_{1} \cdot x_{2}, y_{1} \cdot y_{2}] \\ f([x \cdot y, x \cdot y]) &=& f([x, x]) \end{array} \right\}.$$

Map PCP input $\{(u_i, v_i) \mid u_i, v_i \in A^*\}$ to $\sigma = \{[u_i, v_i]/x_i\}$. Now, the PCP has a match \iff

$$\exists a \in A \left[\nu A \sigma \vdash_{E_2} f([a, a]) \right].$$

Example PCP instances to experiment on are on the following slide.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

イロト 不得下 イヨト イヨト 二日

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Example (Simple PCP examples)

The PCP instance

$$P = \{(a, b), (b, c), (c, a)\}$$

has no match, while

$${\sf P}'=\{(a,b),(b,c),(c,a),(a,aa),(aa,a)\}$$

does.

back

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

3

36

Introduction	Relations and their relation	Decidability	Summary
0 0000	0000 000	000 0000000	

Definition (Convergent Subterm Theory **Deck**)

Let

$$E \stackrel{\mathrm{def}}{=} \bigcup_{i=1}^{n} \{M_i = M_i\}; \operatorname{fn}(M_i) = \operatorname{fn}(N_i) = \emptyset.$$

E is a Convergent Subterm Theory if

- $r(E) \stackrel{\text{def}}{=} \bigcup_{i=1}^{n} \{M_i \to N_i\}$ convergent (rewrite rules),
- each N_i is a proper subterm of M_i or a constant.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Definition (Subterms and Saturation • back)

Let $\phi = \nu \tilde{n} \{ M_1 / x_1, \dots, M_k / x_k \}$ be a frame, and st $(\phi) = \{ M \mid M \text{ is a subterm of a } M_i \}$. The saturation sat (ϕ) of ϕ is the minimal set s.t.

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

イロト 不得下 イヨト イヨト

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Proposition (Decidability of \vdash **Deck**)

Let $\phi = \nu \tilde{n}\sigma$, M be closed. $\phi \vdash M \iff$ there exists C and $M_1, \ldots, M_k \in \operatorname{sat}(\phi)$ s.t. $\operatorname{fn}(C) \cap \tilde{n} = \emptyset$ and $M \downarrow == C[M_1, \ldots, M_k]$ (syntactic equiv.).

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Þór Rafnsson

39

イロト イヨト イヨト ・

Introduction	Relations and their relation	Decidability	Summary
	0000 000	000 0000000	

Proposition (Decidability of \approx_s \triangleright_{back})

$\forall \phi, \phi' \left[\phi \approx_{s} \phi' \iff \phi \models \operatorname{Eq}(\phi') \land \phi' \models \operatorname{Eq}(\phi) \right]$

Martín Abadi, Véronique Cortier

Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

40

イロト イロト イヨト イヨト 二日