Deciding Knowledge in Security Protocols under Equational Teories

Presentation by Willard Pór Rafnsson

Martín Abadi Véronique Cortier

November 9, 2007

A key issue in security protocol analysis:

- Knowledge of attackers \& participants.
- Deducibility \vdash
- Indistinguishability \approx_{s}

How do these relations relate?
Messages employ functions axiomatized in an equational theory.

- For which equational theories are the relations decidable?

As we shall see, a large class of equational theories has polynomial time deducability and indistinguishability.
(1) Introduction

- Assumptions
- Initial Definitions
(2) Relations and their relation
- Deduction \& Static Equivalence
- \vdash reduces to \approx_{s}, but not converse.
(3) Decidability
- Convergent Subterm Theories
- Main Result
(4) Summary

The authors:

Martín Abadi, Véronique Cortier.
"Deciding Knowledge in Security Protocols under Equational Theories".
In Proc. 31st Int. Coll. Automata, Languages, and Programming (ICALP'2004), Turku, Finland, July 2004, volume 3142 of Lecture Notes in Computer Science, pages 46-58. Springer, 2004.

Assumptions:

- Messages are formulae, expressed as frames.
- Environment considered as protocol attacker.
- Security guarantee: Attacker never learns x.
- Deduction: frames never expose enough knowledge for x to be deduced.
- Indistinguishability: Attacker cannot tell x apart from any other value.
- Note: knowing a value \neq knowing where the value was applied.
$\Sigma \quad$: finite set of function symbols
$k, n, s \in$ Nam, infinite set
$x, y, z \in$ Var, infinite set
$u, v, w \in \operatorname{Nam} \cup$ Var

Definition (Term)

Given Σ, Nam and Var, the set of terms is generated by the grammar

$$
\begin{aligned}
T::= & n \\
\mid & x \\
\mid & f(T, \ldots, T),
\end{aligned}
$$

where f ranges over Σ.
Assumption: all T closed (no free x). L, M, N, U, V range over T.

Definition (Equational Theory)

An equational theory E is a set of equations $M=N . M={ }_{E} N$ when M, N are closed and $M=N \in E$.

Example (Simple equational theory)

$$
\begin{aligned}
& \Sigma=\{\text { pair }, \text { fst }, \operatorname{snd}\} \\
& E_{0}=\{\operatorname{fst}(\operatorname{pair}(x, y))=x, \operatorname{snd}(\operatorname{pair}(x, y))=y\}
\end{aligned}
$$

Definition (Frame)

A frame, denoted ϕ, φ, ψ, is of the form

$$
\varphi=\nu \tilde{n} \sigma
$$

where \tilde{n} is a finite set names, and $\sigma=\left\{M_{1} / x_{1}, \ldots, M_{1} / x_{1}\right\}$ a substitution.

$$
\operatorname{dom}(\varphi) \stackrel{\text { def }}{=}\left\{x_{1}, \ldots, x_{l}\right\} .
$$

Example (Frame in the Applied Pi calculus)

$$
\begin{array}{ll}
A & \stackrel{\text { def }}{=} \nu s(\{\operatorname{pk}(s) / y\} \mid \bar{a}\langle(M, \operatorname{sign}(M, \operatorname{sk}(s)))\rangle) \\
\varphi(A) & =\nu s\{\operatorname{pk}(s) / y\} \\
\operatorname{dom}(\varphi(A)) & =\{y\}
\end{array}
$$

Definition (Deduction, \vdash)

For a given equational theory E, we say M may be deduced from ϕ, written $\phi \vdash M$, when that fact is derivable using the axioms

$$
\begin{aligned}
& \overline{\nu \tilde{n} \sigma \vdash M} \text {, if } \exists x \in \operatorname{dom}(\sigma)[x \sigma=M] \quad \overline{\nu \tilde{n} \sigma \vdash s} \text {, if } s \notin \tilde{n} \\
& \frac{\phi \vdash M_{1} \cdots \phi \vdash M_{l}}{\phi \vdash f\left(M_{1}, \ldots, M_{l}\right)} \text {, if } f \in \Sigma \quad \frac{\phi \vdash M \quad M=E M^{\prime}}{\phi \vdash M^{\prime}}
\end{aligned}
$$

Proposition (Deduction condition)

T closed term, $\phi=\nu \tilde{n} \sigma$.

$$
\phi \vdash T \Longleftrightarrow \exists \zeta\left[\mathrm{fn}(\zeta) \cap \tilde{n}=\emptyset \wedge \zeta \sigma={ }_{E} T\right]
$$

Example (Applying the deduction condition)

$$
\phi \stackrel{\text { def }}{=} \nu k s \underbrace{\{\operatorname{enc}(s, k) / x, k / y\}}_{\sigma}
$$

Then $\phi \vdash k$ and $\phi \vdash s$ holds, since

$$
\begin{aligned}
\operatorname{dec}(x, y) \sigma & =s \\
y \sigma & =k
\end{aligned}
$$

Definition (Static Equivalence >more)

Let φ, ψ be frames. Then

$$
\begin{aligned}
\varphi \approx_{s} \psi \Longleftrightarrow & \operatorname{dom}(\varphi)=\operatorname{dom}(\psi) \\
& \wedge \forall M, N\left[\left(M==_{E} N\right) \varphi \Longleftrightarrow\left(M={ }_{E} N\right) \psi\right]
\end{aligned}
$$

Example (Static Equivalence)

$$
\begin{aligned}
& \phi_{1} \stackrel{\text { def }}{=} \nu k\{\operatorname{enc}(0, k) / x, k / y\} \\
& \phi_{2} \stackrel{\text { def }}{=} \nu k\{\operatorname{enc}(1, k) / x, k / y\}
\end{aligned}
$$

Attacker cannot use \vdash to distinguish ϕ_{1}, ϕ_{2}, as we have

$$
\phi_{1} \vdash T \Longleftrightarrow \phi_{2} \vdash T
$$

However, \approx_{s} distinguishes ϕ_{1}, ϕ_{2}.

$$
\begin{aligned}
& (\operatorname{dec}(x, y)=E 0) \phi_{1} \text { holds, } \\
& (\operatorname{dec}(x, y)=E 0) \phi_{2} \text { false, } \\
& \Longrightarrow \phi_{1} \not \ddot{z}_{s} \phi_{2},
\end{aligned}
$$

but not if we remove $\{k / y\}$.

Proposition (\vdash reduces to \approx_{s})

Let E be an equational theory over $\Sigma, \Sigma_{\beta} \stackrel{\text { def }}{=} \Sigma \uplus\{0,1$, enc, dec $\}$, $E_{\beta} \stackrel{\text { def }}{=} E \uplus\{\operatorname{dec}(\operatorname{enc}(x, y), y)=x\}, \phi=\nu \tilde{n}\left\{M_{1} / x_{1} \ldots, M_{1} / x_{l}\right\}$, and M a closed term.

$$
\begin{aligned}
\phi \vdash_{E} M \Longleftrightarrow & \nu \tilde{n}\left\{M_{1} / x_{1}, \ldots, M_{1} / x_{1}, \operatorname{enc}(0, M) / x_{l+1}\right\} \not \overbrace{s_{\beta}} \\
& \nu \tilde{n}\left\{M_{1} / x_{1}, \ldots, M_{1} / x_{1}, \operatorname{enc}(1, M) / x_{l+1}\right\}
\end{aligned}
$$

$\phi \vdash M \Longleftrightarrow$ enough information is in ϕ for attacker to tell apart

$$
\begin{aligned}
& x_{I+1_{1}}=\operatorname{enc}(0, M) \\
& x_{I+1_{2}}=\operatorname{enc}(1, M) .
\end{aligned}
$$

Proposition (\approx_{s} decidable $\nRightarrow \vdash$ decidable)

There exists an equational theory E_{3} such that $\approx_{S_{E_{3}}}$ is undecidable, while $\vdash_{E_{3}}$ is decidable.

Proof idea > more

Engineer a problem which abuses the exhaustiveness of the check for static equivalence. Authors: Let $\mathcal{M}\left(M_{1}, M_{2}\right)$ simulate TMs M_{1}, M_{2} on turn on input w as determined by a choice string $s \subseteq\{1,2\}^{*} . M_{1}, M_{2}$ share δ, Q, and tape. Problem: check whether

$$
\begin{aligned}
& \mathcal{M}\left(M_{1}, M_{2}\right), w \rightarrow^{s_{1}}, \mathcal{M}\left(M_{1}, M_{2}\right), w \rightarrow^{s_{2}} \text { same tape } \\
& \Longleftrightarrow \mathcal{M}\left(M_{1}^{\prime}, M_{2}^{\prime}\right), w \rightarrow^{s_{1}}, \mathcal{M}\left(M_{1}^{\prime}, M_{2}^{\prime}\right), w \rightarrow^{s_{2}} \text { same tape }
\end{aligned}
$$

Corollary (Relation between \vdash and \approx_{s})

Let E be some equational theory.

- $\approx_{S_{E}}$ decidable $\Longrightarrow \vdash_{E}$ decidable.
- $\approx_{s_{E}}$ decidable $\nLeftarrow \vdash_{E}$ decidable.

Thus, $\vdash \leq_{m} \approx_{s}$, while $\approx_{s} \not \mathbb{Z}_{m} \vdash$.

Proposition (E decidable $\nRightarrow \vdash$ decidable)

There exists a decidable equational theory E_{2} such that $\vdash_{E_{2}}$ is undecidable.

Proof idea > more

Encode PCP as a deduction problem in an equational theory which models dominos.

We need a concrete class of decidable equational theories to establish our main result.

Definition (Convergent Subterm Theory \rightarrow more)

A finite set E of equations on form $M=N$, where N is a subterm of M, and where $r(E)$, the set of all (left-to-right) rewrites on the form $M \rightarrow N$, converges.

Notation:

$$
\begin{array}{ll}
U \rightarrow V \Leftarrow & U, V \text { closed } \wedge \\
& U \text { reduces to } V \text { in one step } w \text {. rules in } \mathrm{r}(E) \\
U \downarrow & \\
U={ }_{E} V & \text { normalform of } U \text { (fully reduced) } \\
U & U \downarrow=V \downarrow
\end{array}
$$

Example (Convergent Subterm Theories)

The equational theory

$$
E_{0} \stackrel{\text { def }}{=}\{\operatorname{fst}(\operatorname{pair}(x, y))=x, \operatorname{snd}(\operatorname{pair}(x, y))=y\},
$$

is convergent. For instance,

$$
\begin{aligned}
\operatorname{fst}(\operatorname{pair}(\operatorname{snd}(\operatorname{pair}(0,1))), 1) & \rightarrow \operatorname{snd}(\operatorname{pair}(0,1)) \\
& \rightarrow 1
\end{aligned}
$$

Theorem (Polynomial Time Decidability)

For any frames ϕ, ϕ^{\prime}, and any closed term M, it holds that $\phi \vdash M$ and $\phi \approx_{s} \phi^{\prime}$ are polynomial-time decidable in $|\phi|,\left|\phi^{\prime}\right|$, and $|M|$, for any convergent subterm theory.

The remainder of this presentation gives a hint as of how to compute $\phi \vdash M$ and $\phi \approx_{s} \phi^{\prime}$, and the time complexity involved.

Note: Size of $T:|u|=1,\left|f\left(T_{1}, \ldots, T_{l}\right)\right|=1+\sum_{i=1}^{l}\left|T_{i}\right|$.

Definition (Subterms and Saturation (informal) •more)

Let $\phi=\nu \tilde{n}\left\{M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right\}$ be a frame, and $\operatorname{st}(\phi)$ the set of subterms of the M_{i} s. The saturation $\operatorname{sat}(\phi)$ of ϕ is the minimal set s.t. it contains
(1) What is directly "leaked" to the environment, that is, M_{1}, \ldots, M_{k},
(2) What you can "see" inside all $N_{i} \in \operatorname{sat}(\phi)$, and
(3) What you cannot "see" inside M_{1}, \ldots, M_{k}, but can reconstruct from some elements $N_{i} \in \operatorname{sat}(\phi)$.

Note: $\operatorname{sat}(\phi) \subseteq \operatorname{st}(\phi)$. That is, $\operatorname{sat}(\phi)$ is all information in ϕ that an attacker can learn.

Example (Computing the Saturation)

Let

$$
\left.\begin{array}{l}
\Sigma \quad=\{\text { pair,fst, snd, enc, dec, } 0,1\} \\
\mathrm{r}(E)=\left\{\begin{array}{l}
\mathrm{fst}(\operatorname{pair}(x, y)) \rightarrow x \\
\operatorname{snd}(\operatorname{pair}(x, y)) \rightarrow y \\
\operatorname{dec}(\operatorname{enc}(x, y), y) \rightarrow x
\end{array}\right\} \\
c_{E}=\max _{1 \leq i \leq k}\left\{\left|M_{i}\right|, \operatorname{ar}(\Sigma)+1\right\}=5 \\
\phi \quad=\nu s\left\{\operatorname{enc}(\operatorname{pair}(1,1), s) / x_{1}, s / x_{2}\right\}
\end{array}\right\} \begin{aligned}
& \operatorname{st}(\phi)=\{\operatorname{enc}(\operatorname{pair}(1,1), s), s\} \\
& \operatorname{sat}(\phi)=\underbrace{\{\operatorname{enc}(\operatorname{pair}(1,1), s), s\}}_{p t .1} \cup \underbrace{\{\operatorname{pair}(1,1), 1\}}_{p t .2 *} \cup \underbrace{\emptyset}_{p t .3} . \\
& =\operatorname{st}(\phi)
\end{aligned}
$$

*: $C_{1}\left[y_{1}, y_{2}\right]=\operatorname{dec}\left(y_{1}, y_{2}\right) ;\left|C_{1}\right| \leq c_{E}$

Example (continued)

Now let

$$
\phi^{\prime}=\nu s\left\{\operatorname{enc}(\operatorname{pair}(0,1), s) / x_{1}, 0 / x_{2}, 1 / x_{3}\right\}
$$

Here, pt. 3 will let the attacker learn pair $(0,1)$, eventhough the attacker cannot see the content of the encrypted message.

Time complexity of computing $\operatorname{sat}(\phi)$:

- $\operatorname{Max}|\phi|$ saturation steps, as $\operatorname{sat}(\phi) \subseteq \operatorname{st}(\phi)$.
- Each step:
- All $C\left[M_{1}, \ldots, M_{k}\right]$, where $|C| \leq c_{E}$ computed for all M_{i} 's in $\operatorname{sat}(\phi)$. Max $\mathcal{O}\left(|\phi|^{C_{E}+1}\right)$ computations.
- All $f\left(M_{1}, \ldots, M_{k}\right)$, where $f\left(M_{1}, \ldots, M_{k}\right) \in \operatorname{st}(\phi)$. Max $|\Sigma||\phi|^{\operatorname{ar}(\Sigma)}$ terms $\left(\mathcal{O}\left(|\phi|^{\operatorname{ar}(\Sigma)}\right)\right)$
- $|\phi| \mathcal{O}\left(|\phi|^{\max \left(\operatorname{ar}(\Sigma), c_{E}+1\right)}\right)=\mathcal{O}\left(|\phi|^{c_{E}+2}\right)$, by def. of c_{E}. polynomial.

Proposition (Decidability of \vdash (informal) \quad more $)$

$\phi \vdash M \Longleftrightarrow$ attacker can, by use of his knowledge sat (ϕ) and contexts, construct $M \downarrow$, without using secrets unknown to him (ñ)

Proposition (Decidability of \approx_{s} (informal) $>$ more)

$\phi \approx_{s} \phi^{\prime} \Longleftrightarrow \phi$ and ϕ^{\prime} satisfy each other's equalities, $\operatorname{Eq}(\phi)$ and $\mathrm{Eq}\left(\phi^{\prime}\right)$ (up to c_{E} bound).

Time complexity of computing $\phi \vdash M$:

- Reducing M to normal form: polynomial.
- Computing sat (ϕ) : polynomial.
- Checking existence of a context C for which $M \downarrow==C\left[M_{1}, \ldots, M_{k}\right]: \mathrm{O}\left(|M \| \phi|^{2}\right)$, polynomial.

Time complexity of computing $\phi \approx_{s} \phi^{\prime}$:

- Compute $\operatorname{sat}(\phi), \operatorname{sat}\left(\phi^{\prime}\right)$: polynomial.
- Max. $\mathcal{O}\left(\left(|\phi|^{C_{E}}\right)^{2}\right)$ equalities in $\mathrm{Eq}(\phi)$. polynomial.
- For all C_{1}, C_{2} s.t. $\left|C_{1}\right|,\left|C_{2}\right| \leq c_{E}$, and for all $M_{i}, M_{i}^{\prime} \in \operatorname{sat}(\phi)$, check equalities
- $\left(C_{1}\left[\zeta_{M_{1}}, \ldots, \zeta_{M_{k}}\right]=E C_{2}\left[\zeta_{M_{1}}, \ldots, \zeta_{M_{k}}\right]\right) \phi$, and
- $\left(C_{1}\left[\zeta_{M_{1}}, \ldots, \zeta_{M_{k}}\right]={ }_{E} C_{2}\left[\zeta_{M_{1}}, \ldots, \zeta_{M_{k}}\right]\right) \phi^{\prime}$.
- Elements being compared are DAGs of polynomial size. Time per comparison: polynomial.
- Comparing a polynomial number of elements a polynomial number of times, each comparison taking polynomial time: polynomial.

Highlights:

- Deduction can be performed in terms of static equivalence.
- Illustrates the power of static equivalence.
- Checking static equivalence can be done in polynomial time.
- Static equivalence of Applied Pi processes integrated into analysis tools, for reasoning about security protocols

Concern:

- The article is excellent... until you reach page 7 .
- The $2+$ page introduction could be made more brief to improve the mediation of the key result.
- The use of DAGs in the decidability proof of static equivalence.

The end.

The remaining slides are supplementary slides.

Definition (Term equality \rightarrow back)

Let $\varphi=\nu \tilde{n} \sigma$ be a frame, and M, N be terms.

$$
\begin{aligned}
\left(M=_{E} N\right) \varphi \Longleftrightarrow & M \sigma=E N \sigma \\
& \wedge \tilde{n} \cap(\operatorname{fn}(M) \cup \mathrm{fn}(N))=\emptyset .
\end{aligned}
$$

Proof of " \approx_{s} decidable $\nRightarrow \vdash$ decidable" \rightarrow back .

$T=$ term; sequence of choices
$\phi=\mathcal{M}\left(M_{1}, M_{2}\right)$
$\phi^{\prime}=\mathcal{M}\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$
$T \phi=$ Machine tape + \#choices made
$\phi \not \approx s \phi^{\prime}$ undecidable. Finding the T_{1}, T_{2} s.t. $\left(T_{1}=E T_{2}\right) \phi$ and $\left(T_{1} \neq E \quad T_{2}\right) \phi^{\prime}$ may take forever. Example: feed " a " to the TM $M_{1}=M_{2}=$ start $\rightarrow q_{1} a \mapsto q_{1}, L$.
$\phi \vdash T$ decidable. Since \#choices is known, proving or disproving $\exists T\left[\left(T \phi={ }_{E} U\right)\right]$ is easy; T must have same \#choices as U. No exhaustion.

Proof of " E decidable $\nRightarrow \vdash$ decidable" $>$ back .

Let

$$
E_{2}=\left\{\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot z \\
{\left[x_{1}, y_{1}\right] \cdot\left[x_{2}, y_{2}\right] } & =\left[x_{1} \cdot x_{2}, y_{1} \cdot y_{2}\right] \\
f([x \cdot y, x \cdot y]) & =f([x, x])
\end{aligned}\right\} .
$$

Map PCP input $\left\{\left(u_{i}, v_{i}\right) \mid u_{i}, v_{i} \in A^{*}\right\}$ to $\sigma=\left\{\left[u_{i}, v_{i}\right] / x_{i}\right\}$. Now, the PCP has a match

$$
\exists a \in A\left[\nu A \sigma \vdash_{E_{2}} f([a, a])\right] .
$$

Example PCP instances to experiment on are on the following slide.

Example (Simple PCP examples)

The PCP instance

$$
P=\{(a, b),(b, c),(c, a)\}
$$

has no match, while

$$
P^{\prime}=\{(a, b),(b, c),(c, a),(a, a a),(a a, a)\}
$$

does.

```
back
```


Definition (Convergent Subterm Theory >back)

Let

$$
E \stackrel{\text { def }}{=} \bigcup_{i=1}^{n}\left\{M_{i}=M_{i}\right\} ; \operatorname{fn}\left(M_{i}\right)=\operatorname{fn}\left(N_{i}\right)=\emptyset .
$$

E is a Convergent Subterm Theory if

- $\mathrm{r}(E) \stackrel{\text { def }}{=} \bigcup_{i=1}^{n}\left\{M_{i} \rightarrow N_{i}\right\}$ convergent (rewrite rules),
- each N_{i} is a proper subterm of M_{i} or a constant.

Definition (Subterms and Saturation >back)

Let $\phi=\nu \tilde{n}\left\{M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right\}$ be a frame, and $\operatorname{st}(\phi)=\left\{M \mid M\right.$ is a subterm of a $\left.M_{i}\right\}$. The saturation $\operatorname{sat}(\phi)$ of ϕ is the minimal set s.t.
(1) $\forall 1 \leq i \leq k\left[M_{i} \in \operatorname{sat}(\phi)\right]$
(2) $\left\{\begin{array}{l}M_{1}, \ldots, M_{k} \in \operatorname{sat}(\phi) \\ \wedge C\left[M_{1}, \ldots, M_{k}\right] \rightarrow M \\ \wedge|C| \leq c_{E} \\ \wedge \operatorname{fn}(C) \cap \tilde{n}=\emptyset \\ \wedge M \in \operatorname{st}(\phi)\end{array}\right\} \Longrightarrow M \in \operatorname{sat}(\phi)$
(3) $\left\{\begin{array}{l}M_{1}, \ldots, M_{k} \in \operatorname{sat}(\phi) \\ \wedge f\left(M_{1}, \ldots, M_{k}\right) \in \operatorname{st}(\phi)\end{array}\right\} \Longrightarrow f\left(M_{1}, \ldots, M_{k}\right) \in \operatorname{sat}(\phi)$

Proposition (Decidability of $\vdash \quad>$ back $)$
 Let $\phi=\nu \tilde{n} \sigma, M$ be closed. $\phi \vdash M \Longleftrightarrow$ there exists C and $M_{1}, \ldots, M_{k} \in \operatorname{sat}(\phi)$ s.t. $\operatorname{fn}(C) \cap \tilde{n}=\emptyset$ and $M \downarrow==C\left[M_{1}, \ldots, M_{k}\right]$ (syntactic equiv.).

Proposition (Decidability of $\approx_{s} \quad$ back $)$

$$
\forall \phi, \phi^{\prime}\left[\phi \approx_{s} \phi^{\prime} \Longleftrightarrow \phi \models \operatorname{Eq}\left(\phi^{\prime}\right) \wedge \phi^{\prime} \models \mathrm{Eq}(\phi)\right]
$$

