
Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Applied π Calculus

Paper presentation, by
Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

October 4, 2007

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Paradigmic purity in calculi is a formally appealing feature.
Problems rarely fit perfectly into a single paradigm.
Solution: adjust the calculus to our needs.

Sπ calculus.

Adjusting a calculus takes time: examine the impact of our
modifications, etc.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Wouldn’t it be nice to have a calculus which is particularly easy to
tailor to our needs?

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

1 Introduction
π calculus
Applied π calculus

2 Syntax
Terms, Primitive- and Extended Processes
Sort System

3 Applying the Applied π Calculus
General Strategy
Example
Strengths

4 Semantics and Equivalences
Structural Equivalence and Internal Reduction
Observational- and Static Equivalence
Bisimilarity

5 Highlights
Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

The authors:

Martín Abadi, Cédric Fournet. “Mobile Values, New Names, and
Secure Communication”. Proceedings of the 28th ACM Symposium
on Principles of Programming Languages, January 2001.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

π calculus

The π calculus:
A process calculus.
Developed by Robin Milner (amongst others).
Extends CCS with name-passing.

P

Q

R
a

b
P

Q

R
a

b

b

P

Q

R
a

b

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

π calculus

π calculus syntax:
P ::= x(y).P

| x〈y〉. P
| P | P
| P + P
| (νx)P
| !P
| 0

Example (Coffee-delivery system)

CS def
= (νn)c〈n〉.n.p.CS

CM def
= c(s).s.CM

DCS def
= (νc)(CS | · · · | CS |!CM)

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Applied π calculus

The Applied π calculus extends the π calculus with:
value-passing
primitive functions
equations among terms
conditionals

CCS π Applied π
name-passing value-passing

functions
eqn. theory
conditionals

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Applied π calculus

Abstractions easily expressed in the Applied π calculus:
let P in Q
pair(x,y), and thereby lists and other datastructures
nonces, hashing functions, enc / dec functions, etc.

This also brings the π calculus a large step closer to more practical
applicability.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Terms, Primitive- and Extended Processes

Applied π calculus Syntax:

a, b, c ∈ Nam,
x , y , z ∈ Var,
u, v ,w ∈ Nam ∪ Var,
f , g , h ∈ Σ

A ::= P
| A|A
| νa.A
| νx .A
| {M/x}

M ::= a
| x
| f (M1, . . . ,Mk)

P ::= u(x).P
| u〈x〉.P
| P|P
| νa.P
| !P
| 0
| if M = N then P else P

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Terms, Primitive- and Extended Processes

Example (Gambling away)

ACC def
= o(r). if gt(−r , b) = true

then o〈0〉.ACC
else o〈−r〉.ACC{sum(b,r)/b}

PLR def
= o〈−10〉.o(c). if c = 10

then d〈c〉.d(c ′).o〈c ′〉.PLR
DLR def

= d(v).g〈v〉.g(w).d〈w〉.DLR
CH def

= g(v).g〈x〉.CH
HSE def

= νg .(DLR | CH{0/x} | CH{5/x} | CH{20/x})
GBL def

= νd .
((
νo.
(
PLR | ACC{100/b}

))
| HSE

)
Note (proven later): if x 6∈ fv(M), then

A{M/x} ≡ νx . ({M/x} | A) ≡ let x = M in A

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Sort System

Example (Something is amiss)

SQ def
= a(x).a〈square(x)〉.SQ

A def
= a〈y〉.a(z).z

Individually, these processes are syntactically valid, but upon
interaction, SQ | A, a strange thing happens.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Sort System

The Applied π calculus relies on a Milner-like sort system.
Integer

Key

Data

channel〈τ〉, where τ is a sort.
. . .

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Sort System

Sort system – General idea:

T = set of sorts
Γ : Nam ∪ Var −→ T

Define:
a well-behaved process, wbp
a sound system of type rules

You now have a type system for inferring whether a process is
well-behaved:

=ξ,Σ, Γ ` A : wbp

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Sort System

Example (Something is amiss, revisited)

SQ def
= a(x).a〈square(x)〉.SQ

A def
= a〈y〉.a(z).z

Let

Γ =

{
a : channel〈Integer〉, x : Integer,
z : channel〈〉, y : Integer

}
However, since Γ(z) = channel〈〉, Γ(a) = channel〈Integer〉 and
z is bound to an input from a, it follows that

=ξ,Σ, Γ 6` SQ | A : wbp

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

General Strategy

Your task is to:
Register all functions you wish to use in signature Σ,
Develop a suitable sort system w. type environment Γ

Provide an equational theory =ξ (an equiv. rel. on terms).

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Example

Example (Pair)

Σ = {pair, fst, snd}

fst(pair(x , y)) =ξ x ,
snd(pair(x , y)) =ξ y .

pair(M,N) is abreviated by (M,N). Whenever pairs are used from
now on, we assume these facilities to be present in Σ,=ξ.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Example

Example (Asymmetric Encryption)

Keys for encryption and decryption differ.

Σ = {enc, dec, sk, pk}

dec(enc(x , pk(y)), sk(y)) =ξ x

A process which shares its public key and decrypts a received
message by use of its secret key can now be written as follows:

νs.(a〈pk(s)〉 | b(x).c〈dec(x , sk(s))〉)

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Example

Example (Public-key digital signatures)

Σ = {check , sign, sk , pk}
ok ∈ T

check(x , sign(x , sk(y)), pk(y)) =ξ ok

A filter which drops forged messages can now be written as follows:(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Strengths

The strength in the Applied π calculus lies in
Value-passing
The signature Σ,
The equational theory =ξ,
The active substitution {M/x}.

Other interesting concepts yet discussed:
Context C [_],
Frame ϕ,
Static- and Observational Equivalence, ≈s and ≈
Bisimilarity ≈l

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Structural Equivalence and Internal Reduction

Definition (Closed Extended Process)

A closed ⇐= all x ∈ Var in A are:
bound (by a restriction), or
defined by an active substitution ({M/x}) in A.

Recall the public-key digital signature example:

A def
=

(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉

A is closed, since x , s ∈ bv(A), and y is defined by an active
substitution.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Structural Equivalence and Internal Reduction

Definition (Context)

C [_] is an A or P with a “hole”. C [_] closes A ⇐= C [A] is closed.

Example (Context and Closure)

C [_] = νa.νb.[– the hole –]

A = a〈b〉.b.0 | a(c).c .0
C [A] = νa.νb.(a〈b〉.b.0 | a(c).c .0)

fn(C [A]) ∪ fv(C [A]) = ∅

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Structural Equivalence and Internal Reduction

Definition (Structural Equivalence)

≡ is the smallest equivalence relation on A’s that is:
Closed by α-conversion on a’s and x ’s
Closed by application of C [_],

such that:

PAR-0 A ≡ A | 0
PAR-A A | (B | C) ≡ (A | B) | C
PAR-C A | B ≡ B | A
REPL !P ≡ P |!P
NEW-0 νn.0 ≡ 0
NEW-C νu.νv .A ≡ νv .νu.A
NEW-PAR A | νu.B ≡ νu.(A | B), if u 6∈ fv(A) ∪ fn(A)

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Structural Equivalence and Internal Reduction

ALIAS νx .{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x}, if Σ ` M = N

Example (Let)

For x 6∈ fv(M),

A{M/x} ≡ A{M/x} | 0 by PAR-0
≡ 0 | A{M/x} by PAR-C
≡ (νx .{M/x}) | A{M/x} by ALIAS
≡ νx .({M/x} | A{M/x}) by NEW-PAR
≡ νx .({M/x} | A) by SUBST
≡ let x = M in A

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Structural Equivalence and Internal Reduction

Definition (Internal Reduction)

→ is the smallest relation on A’s that is:
Closed by ≡,
Closed by application of C [_],

such that:

COMM a〈x〉.P | a(x).Q → P | Q
THEN if M = N then P else Q → P
ELSE if M = N then P else Q → Q, if Σ 6` M = N

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Observational- and Static Equivalence

Definition (Frame)

ϕ is an A which P ’s have been replaced by 0s. dom(ϕ) is the set of
names that ϕ exports.

ϕ(A) = ñ.σ
dom(ϕ(A)) = dom(A) = {x ∈ Var | x ∈ fn(A) ∧ x subst. in A}

A

x
y
z

Thus, ϕ(A) denotes “what information A leaks to the world and
where to”, while dom(A) denotes “where A leaks information to”.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Observational- and Static Equivalence

Example

A def
=

(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(s).if chk(fst(x), snd(x), y) = ok then b〈fst(x)〉

ϕ(A) = νs.{pk(s)/y}
dom(A) = {y}

A

y

pk(s)

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Observational- and Static Equivalence

Definition (Observational Equivalence)

≈ is the largest binary symmetric relation R where A,B are closed,
dom(A) = dom(B) and s.t.

1 A ⇓ a =⇒ B ⇓ a
2 A→∗ A′ =⇒ ∃B ′ [B →∗ B ′ ∧ A′RB ′]
3 ∀C [_];C closes A,B [C [A]RC [B]]

Note: A ⇓ a if A→∗ C [a〈M〉.P] for some context C [_] which nay
binds a.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Observational- and Static Equivalence

Definition (Term equality in a frame)

M, N equal in ϕ, (M = N)ϕ, ⇐=

ϕ ≡ νñ.σ,
Mσ = Nσ, and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅

Definition (Static Equivalence)

≈s : let ϕ, ψ be closed.
ϕ ≈s ψ ⇐= dom(ϕ) = dom(ψ)∧

∀M,N [(M = N)ϕ⇔ (M = N)ψ]

A ≈s B ⇐= ϕA ≈s ϕ(B)

Note: ≈=≈s on frames, ≈⊂≈s otherwise. That is, ≈=⇒≈s .

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Bisimilarity

By expanding ≡ and →, we can obtain a Labelled Operational
Semantics. For the one given in the article, the following holds:

Definition (Labeled Bisimilarity)

≈l is the largest binary symmetric relation R satisfying:

ARB =⇒
A ≈s B∧
(A→ A′ =⇒ ∃B ′ [B →∗ B ′ ∧ A′RB ′])∧(

(A α→ A′ ∧ fv(α) ⊆ dom(A) ∧ bn(α) ∩ fn(B) = ∅)
=⇒ ∃B ′[B →∗ α→→∗ B ′ ∧ A′RB ′]

)

Theorem (Observational Equivalence = Labeled Bisimilarity)
≈=≈l .

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

Introduction Syntax Applying the Applied π Calculus Semantics and Equivalences Highlights

Only concurrency-specific actions are modelled using
traditional π calculus abstractions.
A very general calculus; easy to extend with desired
abstractions (Σ,=ξ,T, Γ)
Frames capture exactly which information is leaked from a
process to the environment
A neat framework for proving Observational Equivalence is
provided.

Willard Thór Rafnsson Department of Computer Science, Aalborg university, Denmark

Applied π Calculus

	Introduction
	 calculus
	Applied calculus

	Syntax
	Terms, Primitive- and Extended Processes
	Sort System

	Applying the Applied Calculus
	General Strategy
	Example
	Strengths

	Semantics and Equivalences
	Structural Equivalence and Internal Reduction
	Observational- and Static Equivalence
	Bisimilarity

	Highlights

