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Paradigmic purity in calculi is a formally appealing feature.
Problems rarely fit perfectly into a single paradigm.
Solution: adjust the calculus to our needs.

Sπ calculus.

Adjusting a calculus takes time: examine the impact of our
modifications, etc.
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Wouldn’t it be nice to have a calculus which is particularly easy to
tailor to our needs?
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The authors:

Martín Abadi, Cédric Fournet. “Mobile Values, New Names, and
Secure Communication”. Proceedings of the 28th ACM Symposium
on Principles of Programming Languages, January 2001.
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π calculus

The π calculus:
A process calculus.
Developed by Robin Milner (amongst others).
Extends CCS with name-passing.
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π calculus

π calculus syntax:
P ::= x(y).P

| x〈y〉. P
| P | P
| P + P
| (νx)P
| !P
| 0

Example (Coffee-delivery system)

CS def
= (νn)c〈n〉.n.p.CS

CM def
= c(s).s.CM

DCS def
= (νc)(CS | · · · | CS |!CM)
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Applied π calculus

The Applied π calculus extends the π calculus with:
value-passing
primitive functions
equations among terms
conditionals

CCS π Applied π
name-passing value-passing

functions
eqn. theory
conditionals
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Applied π calculus

Abstractions easily expressed in the Applied π calculus:
let P in Q
pair(x,y), and thereby lists and other datastructures
nonces, hashing functions, enc / dec functions, etc.

This also brings the π calculus a large step closer to more practical
applicability.
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Terms, Primitive- and Extended Processes

Applied π calculus Syntax:

a, b, c ∈ Nam,
x , y , z ∈ Var,
u, v ,w ∈ Nam ∪ Var,
f , g , h ∈ Σ

A ::= P
| A|A
| νa.A
| νx .A
| {M/x}

M ::= a
| x
| f (M1, . . . ,Mk)

P ::= u(x).P
| u〈x〉.P
| P|P
| νa.P
| !P
| 0
| if M = N then P else P
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Terms, Primitive- and Extended Processes

Example (Gambling away)

ACC def
= o(r). if gt(−r , b) = true

then o〈0〉.ACC
else o〈−r〉.ACC{sum(b,r)/b}

PLR def
= o〈−10〉.o(c). if c = 10

then d〈c〉.d(c ′).o〈c ′〉.PLR
DLR def

= d(v).g〈v〉.g(w).d〈w〉.DLR
CH def

= g(v).g〈x〉.CH
HSE def

= νg .(DLR | CH{0/x} | CH{5/x} | CH{20/x})
GBL def

= νd .
((
νo.
(
PLR | ACC{100/b}

))
| HSE

)
Note (proven later): if x 6∈ fv(M), then

A{M/x} ≡ νx . ({M/x} | A) ≡ let x = M in A
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Sort System

Example (Something is amiss)

SQ def
= a(x).a〈square(x)〉.SQ

A def
= a〈y〉.a(z).z

Individually, these processes are syntactically valid, but upon
interaction, SQ | A, a strange thing happens.
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Sort System

The Applied π calculus relies on a Milner-like sort system.
Integer

Key

Data

channel〈τ〉, where τ is a sort.
. . .
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Sort System

Sort system – General idea:

T = set of sorts
Γ : Nam ∪ Var −→ T

Define:
a well-behaved process, wbp
a sound system of type rules

You now have a type system for inferring whether a process is
well-behaved:

=ξ,Σ, Γ ` A : wbp
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Sort System

Example (Something is amiss, revisited)

SQ def
= a(x).a〈square(x)〉.SQ

A def
= a〈y〉.a(z).z

Let

Γ =

{
a : channel〈Integer〉, x : Integer,
z : channel〈〉, y : Integer

}
However, since Γ(z) = channel〈〉, Γ(a) = channel〈Integer〉 and
z is bound to an input from a, it follows that

=ξ,Σ, Γ 6` SQ | A : wbp
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General Strategy

Your task is to:
Register all functions you wish to use in signature Σ,
Develop a suitable sort system w. type environment Γ

Provide an equational theory =ξ (an equiv. rel. on terms).
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Example

Example (Pair)

Σ = {pair, fst, snd}

fst(pair(x , y)) =ξ x ,
snd(pair(x , y)) =ξ y .

pair(M,N) is abreviated by (M,N). Whenever pairs are used from
now on, we assume these facilities to be present in Σ,=ξ.
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Example

Example (Asymmetric Encryption)

Keys for encryption and decryption differ.

Σ = {enc, dec, sk, pk}

dec(enc(x , pk(y)), sk(y)) =ξ x

A process which shares its public key and decrypts a received
message by use of its secret key can now be written as follows:

νs.(a〈pk(s)〉 | b(x).c〈dec(x , sk(s))〉)
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Example

Example (Public-key digital signatures)

Σ = {check , sign, sk , pk}
ok ∈ T

check(x , sign(x , sk(y)), pk(y)) =ξ ok

A filter which drops forged messages can now be written as follows:(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉
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Strengths

The strength in the Applied π calculus lies in
Value-passing
The signature Σ,
The equational theory =ξ,
The active substitution {M/x}.

Other interesting concepts yet discussed:
Context C [_],
Frame ϕ,
Static- and Observational Equivalence, ≈s and ≈
Bisimilarity ≈l
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Structural Equivalence and Internal Reduction

Definition (Closed Extended Process)

A closed ⇐= all x ∈ Var in A are:
bound (by a restriction), or
defined by an active substitution ({M/x}) in A.

Recall the public-key digital signature example:

A def
=

(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉

A is closed, since x , s ∈ bv(A), and y is defined by an active
substitution.
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Structural Equivalence and Internal Reduction

Definition (Context)

C [_] is an A or P with a “hole”. C [_] closes A ⇐= C [A] is closed.

Example (Context and Closure)

C [_] = νa.νb.[– the hole –]

A = a〈b〉.b.0 | a(c).c .0
C [A] = νa.νb.(a〈b〉.b.0 | a(c).c .0)

fn(C [A]) ∪ fv(C [A]) = ∅
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Structural Equivalence and Internal Reduction

Definition (Structural Equivalence)

≡ is the smallest equivalence relation on A’s that is:
Closed by α-conversion on a’s and x ’s
Closed by application of C [_],

such that:

PAR-0 A ≡ A | 0
PAR-A A | (B | C ) ≡ (A | B) | C
PAR-C A | B ≡ B | A
REPL !P ≡ P |!P
NEW-0 νn.0 ≡ 0
NEW-C νu.νv .A ≡ νv .νu.A
NEW-PAR A | νu.B ≡ νu.(A | B), if u 6∈ fv(A) ∪ fn(A)
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Structural Equivalence and Internal Reduction

ALIAS νx .{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x}, if Σ ` M = N

Example (Let)

For x 6∈ fv(M),

A{M/x} ≡ A{M/x} | 0 by PAR-0
≡ 0 | A{M/x} by PAR-C
≡ (νx .{M/x}) | A{M/x} by ALIAS
≡ νx .({M/x} | A{M/x}) by NEW-PAR
≡ νx .({M/x} | A) by SUBST
≡ let x = M in A
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Structural Equivalence and Internal Reduction

Definition (Internal Reduction)

→ is the smallest relation on A’s that is:
Closed by ≡,
Closed by application of C [_],

such that:

COMM a〈x〉.P | a(x).Q → P | Q
THEN if M = N then P else Q → P
ELSE if M = N then P else Q → Q, if Σ 6` M = N
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Observational- and Static Equivalence

Definition (Frame)

ϕ is an A which P ’s have been replaced by 0s. dom(ϕ) is the set of
names that ϕ exports.

ϕ(A) = ñ.σ
dom(ϕ(A)) = dom(A) = {x ∈ Var | x ∈ fn(A) ∧ x subst. in A}

A

x
y
z

Thus, ϕ(A) denotes “what information A leaks to the world and
where to”, while dom(A) denotes “where A leaks information to”.
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Observational- and Static Equivalence

Example

A def
=

(
νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉

)
| a(s).if chk(fst(x), snd(x), y) = ok then b〈fst(x)〉

ϕ(A) = νs.{pk(s)/y}
dom(A) = {y}

A

y

pk(s)
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Observational- and Static Equivalence

Definition (Observational Equivalence)

≈ is the largest binary symmetric relation R where A,B are closed,
dom(A) = dom(B) and s.t.

1 A ⇓ a =⇒ B ⇓ a
2 A→∗ A′ =⇒ ∃B ′ [B →∗ B ′ ∧ A′RB ′]
3 ∀C [_];C closes A,B [C [A]RC [B]]

Note: A ⇓ a if A→∗ C [a〈M〉.P] for some context C [_] which nay
binds a.
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Observational- and Static Equivalence

Definition (Term equality in a frame)

M, N equal in ϕ, (M = N)ϕ, ⇐=

ϕ ≡ νñ.σ,
Mσ = Nσ, and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅

Definition (Static Equivalence)

≈s : let ϕ, ψ be closed.
ϕ ≈s ψ ⇐= dom(ϕ) = dom(ψ)∧

∀M,N [(M = N)ϕ⇔ (M = N)ψ]

A ≈s B ⇐= ϕA ≈s ϕ(B)

Note: ≈=≈s on frames, ≈⊂≈s otherwise. That is, ≈=⇒≈s .
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Bisimilarity

By expanding ≡ and →, we can obtain a Labelled Operational
Semantics. For the one given in the article, the following holds:

Definition (Labeled Bisimilarity)

≈l is the largest binary symmetric relation R satisfying:

ARB =⇒
A ≈s B∧
(A→ A′ =⇒ ∃B ′ [B →∗ B ′ ∧ A′RB ′])∧(

(A α→ A′ ∧ fv(α) ⊆ dom(A) ∧ bn(α) ∩ fn(B) = ∅)
=⇒ ∃B ′[B →∗ α→→∗ B ′ ∧ A′RB ′]

)


Theorem (Observational Equivalence = Labeled Bisimilarity)
≈=≈l .
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Only concurrency-specific actions are modelled using
traditional π calculus abstractions.
A very general calculus; easy to extend with desired
abstractions (Σ,=ξ,T, Γ)
Frames capture exactly which information is leaked from a
process to the environment
A neat framework for proving Observational Equivalence is
provided.
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