	Applying the Applied

Semantics and Equivalences

Highlights

Applied π Calculus

Paper presentation, by Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

October 4, 2007

Willard Thór Rafnsson Applied π Calculus Department of Computer Science, Aalborg university, Denmark

	Applying the Applied π Calculus $\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$	Semantics and Equivalences	Highlights

- Paradigmic purity in calculi is a formally appealing feature.
- Problems rarely fit perfectly into a single paradigm.
- Solution: adjust the calculus to our needs.
 - $S\pi$ calculus.
- Adjusting a calculus takes time: examine the impact of our modifications, etc.

	Applying the Applied π Calculus	Semantics and Equivalences	Highlights

Wouldn't it be nice to have a calculus which is particularly easy to tailor to our needs?

イロト イクト イヨト イヨト ヨーのへの ment of Computer Science, Aalborg university, Depmark

Willard Thór Rafnsson Applied π Calculus Department of Computer Science, Aalborg university, Denmark

Syntax	Applying the Applied π Calculus	Semantics and Equivalences	Highlights

- π calculus
- Applied π calculus
- 2 Syntax
 - Terms, Primitive- and Extended Processes
 - Sort System
- **3** Applying the Applied π Calculus
 - General Strategy
 - Example
 - Strengths
- 4 Semantics and Equivalences
 - Structural Equivalence and Internal Reduction
 - Observational- and Static Equivalence
 - Bisimilarity

Syntax	Applying the Applied π Calculus	Semantics and Equivalences	Highlight

The authors:

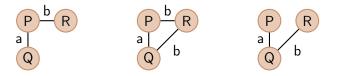
Martín Abadi, Cédric Fournet. *"Mobile Values, New Names, and Secure Communication"*. Proceedings of the 28th ACM Symposium on Principles of Programming Languages, January 2001.

Willard Thór Rafnsson Applied π Calculus ৰ াচ ৰ টা দ ব টা চ ব টা চ ব টা চ ব টা চ তাও Department of Computer Science, Aalborg university, Denmark

Introduction ●○ ○○	Applying the Applied π Calculus $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Semantics and Equivalences	Highlights
π calculus			

The π calculus:

- A process calculus.
- Developed by Robin Milner (amongst others).
- Extends CCS with name-passing.



Willard Thór Rafnsson

Introduction ○● ○○	Applying the Applied π Calculus $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Semantics and Equivalences	Highlights
π calculus			

π calculus syntax:

$$P ::= x(y).P$$

$$| \overline{x}\langle y \rangle. P$$

$$| P | P$$

$$| P + P$$

$$| (\nu x)P$$

$$| !P$$

$$| 0$$

I

Example (Coffee-delivery system)

$$CS \stackrel{\text{def}}{=} (\nu n)\overline{c}\langle n\rangle.n.\overline{p}.CS$$

$$CM \stackrel{\text{def}}{=} c(s).\overline{s}.CM$$

$$DCS \stackrel{\text{def}}{=} (\nu c)(CS | \cdots | CS | !CM)$$

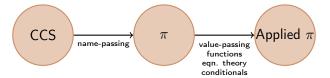
Willard Thór Rafnsson

ৰ াচ ৰ টা চ ৰ টা চ ৰ টা চ ব টা চ ব টা চ ব টা চ ব টা ত ৭ ৫ Department of Computer Science, Aalborg university, Denmark

Introduction		Applying the Applied π Calculus	Semantics and Equivalences	Highlights
•0				
Applied π calcul	us			

The Applied π calculus extends the π calculus with:

- value-passing
- primitive functions
- equations among terms
- conditionals



Willard Thór Rafnsson

Introduction		Applying the Applied π Calculus	Semantics and Equivalences	Highlights
00				
Applied π calcul	us			

Abstractions easily expressed in the Applied π calculus:

- let P in Q
- pair(x,y), and thereby lists and other datastructures
- nonces, hashing functions, enc / dec functions, etc.

This also brings the π calculus a large step closer to more practical applicability.

Syntax	Applying the Applied π Calculus	Semantics and Equivalences	Highlights
• 0 0000			

Terms, Primitive- and Extended Processes

Applied π calculus Syntax:

$$\begin{array}{rcl} a,b,c & \in & \mathsf{Nam}, \\ x,y,z & \in & \mathsf{Var}, \\ u,v,w & \in & \mathsf{Nam} \cup \mathsf{Var}, \\ f,g,h & \in & \Sigma \end{array}$$

Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

イロト イポト イヨト イヨト 二日

Syntax	Applying the Applied π Calculus	Semantics and Equivalences	Highlights
00			

Terms, Primitive- and Extended Processes

Example (Gambling away)

ACC	$\stackrel{def}{=}$	$o(r). \text{if } gt(-r,b) = true \\ \text{then } \overline{o}(0).ACC$
		else $\overline{o}\langle -r \rangle.ACC\{^{sum(b,r)}/_b\}$
PLR	$\stackrel{def}{=}$	$\overline{o}\langle -10 angle.o(c).$ if $c=10$
		then $\overline{d}\langle c angle.d(c').\overline{o}\langle c' angle.PLR$
DLR	$\stackrel{def}{=}$	$d(v).\overline{g}\langle v \rangle.g(w).\overline{d}\langle w \rangle.DLR$
СН	$\stackrel{def}{=}$	$g(v).\overline{g}\langle x\rangle.CH$
HSE	$\stackrel{def}{=}$	$\nu g.(DLR \mid CH\{^{0}/_{x}\} \mid CH\{^{5}/_{x}\} \mid CH\{^{20}/_{x}\})$
GBL	$\stackrel{def}{=}$	$ u d.\left(\left(u o.\left(PLR \mid ACC\{^{100}/_b\}\right)\right) \mid HSE\right)$

Note (proven later): if $x \notin fv(M)$, then

$$A\{M/_x\} \equiv \nu x. (\{M/_x\} \mid A) \equiv \text{let } x = M \text{ in } A$$

	Syntax ○○ ●○○○	Applying the Applied π Calculus 0000	Semantics and Equivalences	Highlights
Sort System				

Example (Something is amiss)

Individually, these processes are syntactically valid, but upon interaction, $SQ \mid A$, a strange thing happens.

Willard Thór Rafnsson Applied π Calculus Department of Computer Science, Aalborg university, Denmark

イロト イポト イヨト イヨト

	Syntax ○○ ○●○○	Applying the Applied π Calculus 0000	Semantics and Equivalences	Highlights
Sort System				

The Applied π calculus relies on a Milner-like *sort system*.

- Integer
- Key
- Data
- channel $\langle \tau \rangle$, where τ is a sort.
- . . .

ৰ াচ ব টা দ ব বি Department of Computer Science, Aalborg university, Denmark

Willard Thór Rafnsson Applied π Calculus

	Syntax ○○ ○○●○	Applying the Applied π Calculus $\overset{\circ}{\underset{0}{000}}$	Semantics and Equivalences	Highlights
Sort System				

Sort system – General idea:

$$\begin{array}{rcl} \mathbf{T} &=& \text{set of sorts} \\ \boldsymbol{\Gamma} &:& \mathbf{Nam} \cup \mathbf{Var} \longrightarrow \mathbf{T} \end{array}$$

Define:

- a well-behaved process, wbp
- a sound system of type rules

You now have a type system for inferring whether a process is well-behaved:

$$=_{\xi}, \Sigma, \Gamma \vdash A : wbp$$

ৰ াচ ৰ টা দ ব টা দ ব টা দ ব টা দ ব টা দ প্ৰ Department of Computer Science, Aalborg university, Denmark

	Syntax ○○ ○○○●	Applying the Applied π Calculus $\overset{ ext{O}}{\overset{ ext{O}}{ ext{O$	Semantics and Equivalences	Highlights
Sort System				

Example (Something is amiss, revisited)

$$SQ \stackrel{\text{def}}{=} a(x).\overline{a}\langle \text{square}(x) \rangle.SQ$$
$$A \stackrel{\text{def}}{=} \overline{a}\langle y \rangle.a(z).\overline{z}$$

Let

$$\Gamma = \left\{ \begin{array}{ll} a: \texttt{channel} \langle \texttt{Integer} \rangle, & x: \texttt{Integer}, \\ z: \texttt{channel} \langle \rangle, & y: \texttt{Integer} \end{array} \right\}$$

However, since $\Gamma(z) = \text{channel}\langle\rangle$, $\Gamma(a) = \text{channel}\langle\text{Integer}\rangle$ and z is bound to an input from a, it follows that

$$=_{\xi}, \Sigma, \Gamma \not\vdash SQ \mid A : wbp$$

Department of Computer Science, Aalborg university, Denmark

Willard Thór Rafnsson

	Applying the Applied π Calculus \circ	Semantics and Equivalences	Highlights
General Strategy			

Your task is to:

- Register all functions you wish to use in signature Σ ,
- Develop a suitable sort system w. type environment $\boldsymbol{\Gamma}$
- Provide an equational theory $=_{\xi}$ (an equiv. rel. on terms).

	Applying the Applied π Calculus ● ● ○ ○	Semantics and Equivalences	Highlights
Example			

Example (Pair) $\Sigma = \{\text{pair}, \text{fst}, \text{snd}\}$ $fst(\text{pair}(x, y)) =_{\xi} x,$ $snd(\text{pair}(x, y)) =_{\xi} y.$

pair(M, N) is abreviated by (M, N). Whenever pairs are used from now on, we assume these facilities to be present in $\Sigma, =_{\xi}$.

Willard Thór Rafnsson Applied π Calculus Department of Computer Science, Aalborg university, Denmark

	Applying the Applied π Calculus ° ●●○ ○	Semantics and Equivalences	Highlights
Example			

Example (Asymmetric Encryption)

Keys for encryption and decryption differ.

 $\Sigma = \{\mathsf{enc}, \mathsf{dec}, \, \mathsf{sk}, \, \mathsf{pk}\}$

 $dec(enc(x, pk(y)), sk(y)) =_{\xi} x$

A process which shares its public key and decrypts a received message by use of its secret key can now be written as follows:

 $\nu s.(\overline{a}\langle \mathsf{pk}(s) \rangle \mid b(x).\overline{c}\langle \mathsf{dec}(x,\mathsf{sk}(s)) \rangle)$

Willard Thór Rafnsson Applied π Calculus Department of Computer Science, Aalborg university, Denmark

< ロ > < 同 > < 回 > < 回 >

	Applying the Applied π Calculus ○○● ○○●	Semantics and Equivalences	Highlights
Example			

Example (Public-key digital signatures)

$$\Sigma = \{check, sign, sk, pk\}$$

bk $\in \mathbf{T}$

$$check(x, sign(x, sk(y)), pk(y)) =_{\xi} ok$$

A filter which drops forged messages can now be written as follows:

$$\begin{array}{l} \left(\nu s.\{ {}^{\mathsf{pk}(s)}/y\} \mid \overline{a}\langle (M, \mathsf{sign}(M, \mathsf{sk}(s))) \rangle \right) \\ a(x). \texttt{if } \mathsf{check}(\mathsf{fst}(x), \mathsf{snd}(x), y) = \mathsf{ok} \ \texttt{then} \ \overline{b}\langle \mathsf{fst}(x) \rangle \end{array}$$

Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

(ロ) (四) (三) (三)

	Applying the Applied π Calculus $\circ \circ \circ$	Semantics and Equivalences	Highlights
Strengths			

The strength in the Applied π calculus lies in

- Value-passing
- The signature Σ,
- The equational theory $=_{\xi}$,
- The active substitution ${M/x}$.

Other interesting concepts yet discussed:

- Context C[_],
- Frame φ ,
- \bullet Static- and Observational Equivalence, \approx_{s} and \approx
- Bisimilarity \approx_I

	Applying the Applied π Calculus	Semantics and Equivalences	Highlights
		• 0000 0000 0	

Structural Equivalence and Internal Reduction

Definition (Closed Extended Process)

A closed \Leftarrow all $x \in$ Var in A are:

- bound (by a restriction), or
- defined by an active substitution $({^M/_x})$ in A.

Recall the public-key digital signature example:

$$\begin{array}{rcl} A & \stackrel{\text{def}}{=} & \left(\nu s. \{ {}^{\mathsf{pk}(s)}/y \} \mid \overline{a} \langle (M, \mathsf{sign}(M, \mathsf{sk}(s))) \rangle \right) \\ & \mid & a(x). \texttt{if check}(\mathsf{fst}(x), \mathsf{snd}(x), y) = \texttt{ok then } \overline{b} \langle \mathsf{fst}(x) \rangle \end{array}$$

A is closed, since $x, s \in bv(A)$, and y is defined by an active substitution.

イロト イポト イヨト イヨト

Applying the Applied π Calculus

Semantics and Equivalences

Highlights

Structural Equivalence and Internal Reduction

Definition (Context)

 $C[_]$ is an A or P with a "hole". $C[_]$ closes $A \iff C[A]$ is closed.

Example (Context and Closure)

$$C[_] = \nu a.\nu b.[-\text{ the hole }-]$$

$$A = \overline{a}\langle b \rangle.b.0 \mid a(c).\overline{c}.0$$

$$C[A] = \nu a.\nu b.(\overline{a}\langle b \rangle.b.0 \mid a(c).\overline{c}.0)$$

$$fn(C[A]) \cup fv(C[A]) = \emptyset$$

Department of Computer Science, Aalborg university, Denmark

イロト イロト イヨト イヨト

э

Willard Thór Rafnsson

Applying the Applied π Calcu

Semantics and Equivalences

Highlights

Structural Equivalence and Internal Reduction

Definition (Structural Equivalence)

 \equiv is the smallest equivalence relation on A's that is:

- Closed by α -conversion on *a*'s and *x*'s
- Closed by application of $C[_]$,

such that:

PAR-0	A	$\equiv A \mid 0$
PAR-A	$A \mid (B \mid C)$	$\equiv (A \mid B) \mid C$
PAR-C	$A \mid B$	$\equiv B \mid A$
REPL	! <i>P</i>	$\equiv P \mid ! P$
NEW-0	ν n .0	$\equiv 0$
NEW-C	vu.vv.A	$\equiv \nu v. \nu u. A$
NEW-PAR	A νu.Β	$\equiv \nu u.(A \mid B), \text{ if } u \notin fv(A) \cup fn(A)$

Willard Thór Rafnsson

Semantics and Equivalences 00000

Structural Equivalence and Internal Reduction

ALIAS
$$\nu x. \{{}^{M}/_{x}\} \equiv 0$$

SUBST $\{{}^{M}/_{x}\} \mid A \equiv \{{}^{M}/_{x}\} \mid A\{{}^{M}/_{x}\}$
REWRITE $\{{}^{M}/_{x}\} \equiv \{{}^{N}/_{x}\}, \text{ if } \Sigma \vdash M = N$

Example (Let) For $x \notin fv(M)$,

Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

(日) (四) (王) (王) (王)

æ

Structural Equivalence and Internal Reduction

Definition (Internal Reduction)

- \rightarrow is the smallest relation on A's that is:
 - Closed by \equiv ,
 - Closed by application of C[_],

such that:

Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

イロト 不得下 イヨト イヨト 二日

	Applying the Applied π Calculus	Semantics and Equivalences	Highlights
		00000	
		0	
<u></u>			

Observational- and Static Equivalence

Definition (Frame)

 φ is an A which P's have been replaced by 0s. $\mathrm{dom}(\varphi)$ is the set of names that φ exports.

 $\begin{array}{lll} \varphi(A) & = & \tilde{n}.\sigma \\ \operatorname{dom}(\varphi(A)) = \operatorname{dom}(A) & = & \{x \in \operatorname{Var} \mid x \in \operatorname{fn}(A) \land x \text{ subst. in } A\} \end{array}$

Thus, $\varphi(A)$ denotes "what information A leaks to the world and where to", while dom(A) denotes "where A leaks information to".

Willard Thór Rafnsson

Department of Computer Science, Aalborg university, Denmark

		Applying the Applied π Calculus $\overset{\circ}{\underset{0}{000}}$	Semantics and Equivalences ○○○○○ ○●○○ ○	Highlights	
Observational- and Static Equivalence					

Example

Department of Computer Science, Aalborg university, Denmark

Willard Thór Rafnsson

		Applying the Applied π Calculus	Semantics and Equivalences ○○○○○ ○○●○	Highlights
Observational- a	nd Static Equi	0 valence		

Definition (Observational Equivalence)

 \approx is the largest binary symmetric relation \mathcal{R} where A, B are closed, dom(A) = dom(B) and s.t.

$$\mathbf{0} \ A \Downarrow a \Longrightarrow B \Downarrow a$$

Note: $A \Downarrow a$ if $A \rightarrow^* C[\overline{a}\langle M \rangle.P]$ for some context $C[_]$ which nay binds *a*.

イロト イポト イヨト イヨト

	Syntax	Applying the Applied π Calculus	Semantics and Equivalences	Highlights	
			0000		
Observational and Static Equivalence					

Definition (Term equality in a frame)

M, N equal in φ , $(M = N)\varphi$, \Leftarrow

- $\varphi \equiv \nu \tilde{n}.\sigma$,
- $M\sigma = N\sigma$, and

•
$$\{\tilde{n}\} \cap (fn(M) \cup fn(N)) = \emptyset$$

Definition (Static Equivalence)

$$\approx_{s}: \text{ let } \varphi, \psi \text{ be closed.}$$

$$\varphi \approx_{s} \psi \xleftarrow{} \quad \text{dom}(\varphi) = \text{dom}(\psi) \land$$

$$\forall M, N [(M = N)\varphi \Leftrightarrow (M = N)\psi]$$

$$\bullet A \approx_{s} B \xleftarrow{} \varphi A \approx_{s} \varphi(B)$$

Note: $\approx = \approx_s$ on frames, $\approx \subset \approx_s$ otherwise. That is, $\approx \Longrightarrow \approx_s$.

	Applying the Applied π Calculus $\circ \circ $	Semantics and Equivalences	Highlights
Bisimilarity			

By expanding \equiv and \rightarrow , we can obtain a *Labelled Operational Semantics.* For the one given in the article, the following holds:

Definition (Labeled Bisimilarity)

 \approx_{I} is the largest binary symmetric relation \mathcal{R} satisfying:

 $A\mathcal{R}B \Longrightarrow$

$$\left(\begin{array}{c}A \approx_{\mathfrak{s}} B \land \\ (A \to A' \Longrightarrow \exists B' [B \to^* B' \land A' \mathcal{R} B']) \land \\ \left(\begin{array}{c}(A \xrightarrow{\alpha} A' \land fv(\alpha) \subseteq dom(A) \land bn(\alpha) \cap fn(B) = \emptyset) \\ \Longrightarrow \exists B' [B \to^* \xrightarrow{\alpha} \to^* B' \land A' \mathcal{R} B']\end{array}\right)\end{array}\right)$$

Theorem (Observational Equivalence = Labeled Bisimilarity)

 $\approx = \approx_I$.

Willard Thór Rafnsson Applied π Calculus ৰ াচ ৰ টা দ ব টা দ ব টা দ ব টা দ ব টা দ প্ৰ Department of Computer Science, Aalborg university, Denmark

	Applying the Applied π Calculus 000 000	Semantics and Equivalences	Highlights

- Only concurrency-specific actions are modelled using traditional π calculus abstractions.
- A very general calculus; easy to extend with desired abstractions ($\Sigma, =_{\xi}, T, \Gamma$)
- Frames capture exactly which information is leaked from a process to the environment
- A neat framework for proving Observational Equivalence is provided.