
Polynomial Time Algorithms for Testing ProbabilisticBisimulation and SimulationChristel BaierFakult�at f�ur Mathematik & InformatikUniversit�at Mannheim, 68131 Mannheim, Germanybaier@pi1.informatik.uni-mannheim.deAbstract. Various models and equivalence relations or preorders forprobabilistic processes are proposed in the literature. This paper dealswith a model based on labelled transition systems extended to the prob-abalistic setting and gives an O(n2 �m) algorithm for testing probabilisticbisimulation and an O(n5 �m2) algorithm for testing probabilistic simu-lation where n is the number of states and m the number of transitionsin the underlying probabilistic transition systems.1 IntroductionTransition systems have proved to be very useful for modelling concurrent pro-cesses. A variety of widely accepted equivalence relations and preorders for suchsystems support the use of transition systems for the design and veri�cation ofconcurrent systems. In this context, testing equivalences and preorders becomeimportant and have been studied e.g. in [3, 4, 8, 11, 17]. For instance, (strong)bisimulation can be decided in time O(m � logn) [22], weak bisimulation in timeO(n3) [3, 17] and strong and weak simulation in timeO(n4 �m) [4] where n is thenumber of states and m the number of transitions of the underlying transitionsystem.In recent years, many researchers have focussed on reasoning about proba-bilistic distributed transition systems, see e.g. [15, 18, 23, 25, 28, 29, 30]. A lot ofwork has been done to extend those models and methods which have been suc-cessful for the non-probabilistic case to probabilistic systems. In the literaturea variety of models for probabilistic processes has been proposed, most of thembased on transition systems. Two kinds of models can be distinguished: on theone hand, models that replace the concept of non-determinism by probabilisticchoice, e.g. [5, 13, 18, 26, 28], on the other hand, models which distinguish be-tween non-deterministic and probabilistic choice, e.g. [6, 12, 16, 25, 27, 30]. Aspointed out in [27], the distinction between non-determinism and probabilisticchoice is essential for concurrent probabilistic systems since some states of aconcurrent system are inherently non-deterministic.Several kinds of equivalences and preorders for probabilistic processes areproposed: [5, 16, 30, 28] consider testing preorders for probabilistic processes.Probabilistic bisimulation for processes whose behaviour are described by "de-terminsitic" probabilistic transition systems are introduced in [18]. [25] extends



probabilistic bisimulation to non-deterministic probabilistic transition systemsand de�nes a notion of probabilistic simulation which re�nes Milners notion ofa simulation for non-probabilistic transition systems [21]. [15] de�nes an alter-native notion of a simulation which relates a process given by a probabilistictransition system and a speci�cation which is given by a "generalized" proba-bilistic transition system.Various authors presented model-checking-algorithms for the veri�cation ofprobabilistic processes e.g. [1, 6, 13, 14, 19, 23, 24, 27]. But { as far as theauthor knows { algorithms for testing probabilistic (bi-)simulation are missinguntil now. In this paper we present algorithms for testing probabilistic simulationand bisimulation in the sense of [18, 25]. The main idea of testing simulation isto reduce the question of whether a state s of a probabilistic transition systemsimulates a state s0 to a maximum ow problem in a suitable network. Usingthe O(n3) algorithm of Malhotra et al [20] to determine the maximum owwe get an O(n5 � m2) algorithm for testing probabilistic simulation where n isthe number of states and m the number of transitions. The idea for testingbisimulation is similar to the non-probabilistic case [17, 22]: the algorithm fortesting probabilistic bisimulation is based on re�nement steps which split a givenpartition of states into a �ner one. The resulting time complexity of our algorithmis O(n2 �m).The remainder of the paper is organized as follows: Section 2 introducesthe notions of a probabilistic transition system, probabilistic bisimulation andsimulation. Section 3 presents the algorithm for testing probabilistic simulation,section 4 the algorithm for deciding probabilistic bisimulation. Section 5 containssome concluding remarks.2 Probabilistic transition systemsIn this section we present the notions of probabilistic transition systems, bisim-ulation and simulation. Our model of probabilistic transition systems is closelyrelated to those of [16, 30], to the "simple probabilistic automata" of [25] and"concurrent Markov chains" considered e.g. in [6, 12, 27].A distribution on a �nite set S is a function � : S ! [0; 1] such thatPs2S �(s) = 1. We extend a distribution � to a function which assigns toeach subset U of S the probability �(U) = Ps2U �(s). In what follows, wesuppose Act to be a nonempty and �nite set of actions. A probabilistic tran-sition system is a pair S = (S;!) where S is a �nite set of states and ! a�nite transition relation, i.e. ! is a �nite subset of S �Act� D(S) where D(S)denotes the set of distributions on S. We write s �! � instead of (s; �; �) 2!.Informally, the outgoing transitions s �! � represent the non-deterministic al-ternatives in the state s. It is convenient to suppose that a scheduler resolvesthe non-deterministic choices. A transition s �! � asserts that in state s theaction � can be performed and with probability �(t) the state t is reached af-terwards, i.e. every transition represents a probabilistic choice. (Finite-state)probabilistic processes can be described by a probabilistic transition system and



an initial state (or alternatively a distribution on the possible initial states). Inwhat follows a transition system means a probabilistic transition system. By anon-probabilistic transition system we mean a transition system where for alltransitions s �!�: there is a state t with �(t) = 1. Following [18, 25] we de�ne(probabilistic) bisimulation and simulation:De�nition 1. Let (S;!) be a transition system. A bisimulation on S is anequivalence relation R on S such that for all (s; s0) 2 R: If s �!� then there is atransition s0 �!�0 with �(A) = �0(A) for all A 2 S=R. Here S=R denotes the setof equivalence classes w.r.t. R. Two states s1 and s2 are called bisimilar (denotedby s1 � s2) i� there exists a bisimulation which contains (s1; s2).An alternative description of bisimulation is based on weight functions for dis-tributions [15]:De�nition 2. Let S be a �nite set, R � S � S and �, �0 2 D(S). A weightfunction for (�; �0) w.r.t. R is a function � : S � S ! [0; 1] which satis�es:1. For all s, s0 2 S: Ps02S �(s; s0) = �(s); Ps2S �(s; s0) = �0(s0)2. If �(s; s0) > 0 then (s; s0) 2 R.Let (S;!) be a transition system and R an equivalence relation on S. ThenR is a bisimulation if and only if for all (s; s0) 2 R: Whenever (s; s0) 2 R ands �!� then there exists a transition s0 �!�0 and a weight function for (�; �0) w.r.t.R. Intuitively, the weight function � shows how to split the probabilities �(s)and �0(s0), s, s0 2 S, so that the relation R is preserved: we "combine" the�(s; s0)-part of s and s0. As in the non-probabilistic case, simulation is de�nedas "uni-directional bisimulation": in the above characterization of bisimulationwe drop the requirement that R is an equivalence relation.De�nition 3. Let (S;!) be a transition system. A simulation for (S;!) is asubset R of S � S such that for all (s; s0) 2 R: Whenever s �! � then thereexists a transition s0 �! �0 and a weight function � for (�; �0) w.r.t. R. We say simplements s0 (denoted by s v s0) i� there exists a simulation which contains(s; s0).In the non-probabilistic case this notion of a simulation agrees with Milnersnotion of a simulation [21]. This is because the only weight function for (�; �0)where �, �0 are distributions with �(s) = �0(s0) = 1 is �(u; u0) = 0 if (u; u0) 6=(s; s0) and �(s; s0) = 1. Hence if (S;!) is a non-probabilistic transition systemand R � S � S then R is a simulation in the sense of De�nition 3 if and only ifR is a simulation in the sense of Milner. It is clear that v is a preorder whosekernel �sim = v \ v�1 is coarser than bisimulation equivalence, i.e. s � s0implies s �sim s0. As in the non-probabilistic case, �sim does not coincide withbisimulation.Example 4. Let (S;!) be the transition system where S = fs0; : : : ; s5g and



s0 �!�, s5 �!�0, s2 �!�, s3 �!�, s3 !�, s4 �!�.Here �(s1) = 1, �(s1) = �(s2) = �(s3) = 1=3 and �0(s1) = 1=4, �0(s3) = 17=24and �0(s4) = 1=24. Thens1 v s2 v s3; s1 v s4 v s0 v s5:The weight function � for (�; �0) w.r.t. v is given by: �(s1; s1) = 1=4, �(s1; s3) =�(s1; s4) = 1=24, �(s2; s3) = �(s3; s3) = 1=3. 2The result of Milner [21] that in every (image-)�nite non-probabilistic transitionsystem bisimulation can be approximated by "�nitary bisimulation" carries overto the probabilistic case. If (S;!) is a transition system then we de�ne induc-tively equivalence relations �n on S: �0 = S � S and s �n+1 s0 if and onlyif: Whenever s �!� then there is a transition s0 �!�0 with �(A) = �0(A) for allA 2 S= �n and vice versa. Similarly, we de�ne "�nitary simulation": s v0 s0 forall states s, s0 and s vn+1 s0 i� whenever s �! � then there exists a transitions0 �! �0 and a weight function � for (�; �0) w.r.t. vn. As shown in [2]:Lemma 5. Let (S;!) be transition systems and s, s0 2 S. Then(a) s v s0 if and only if s vn s0 for all n � 0.(b) s � s0 if and only if s �n s0 for all n � 0.3 Testing simulationWe present an O(n5 �m2) algorithm for testing simulation where n is the numberof states and m the number of transitions in the underlying transition system.The results of this section yield also an O(n5 �m2) algorithm for testing bisim-ulation. In section 4 we improve the costs and give an O(n2 � m) algorithmfor testing bisimulation. Lemma 6 shows that for a (�nite) transition systemsthere is a natural number N which is polynomial in the size of the underlyingtransition system such that v = vN . Our algorithm successively computes therelations v0, v1,: : :, vN . We show that the relation vj+1 can be derived fromvj by solving maximum ow problems in suitable networks.Lemma 6. Let (S;!) be a transition system, n the number of states in S andN = n2. Then � = �N and v = vN .Proof. We only show v = vN . We have v0 � v1 � : : : and s v s0 i� s vj s0for all j (Lemma 5). Since v0 = S � S contains N elements there exists j with0 � j � N and vj+1=vj . Then vj=vi for all i � j and hence v = vj = vN .2Lemma 6 tells us that in order to compute the simulation preorder v for �nitetransition systems one has to compute the relation vn2 . We do this by suc-cessively computing the relations vj , j = 0; 1; : : : ; N . In order to compute the



relation vj+1 (where vj is already computed) we need an algorithm which testswhether or not a weight function for given distributions w.r.t. vj exists. Wepresent a polynomial time algorithm which tests whether a weight function fordistributions �, �0 w.r.t. a given relation R exists. The idea of the algorithm isto reduce the problem of �nding a weight function to a maximum ow problemin networks. Algorithms to compute the maximum ow are given in [7, 10, 20].For further details about maximum ow problems see e.g. [9].A network is a tuple N = (N;E;?;>; c) where (N;E) is a �nite directedgraph { whereN denotes the set of nodes,E � N�N the set of edges { with twospeci�ed nodes ? (the source) and > (the sink) and a capacity c, i.e. a functionc which assigns to each edge (v;w) 2 E a non-negative number c(v;w). A owfunction f is a function which assigns to edge e a real number f(e) such that1. For all edges e: 0 � f(e) � c(e)2. Let in(v) be the set of incoming edges to node v and out(v) the set ofoutgoing edges from node v. Then for each node v 2 N n f?;>g:Xe2in(v) f(e) = Xe2out(v) f(e)The ow F(f) of f is given byF(f) = Xe2out(?) f(e) � Xe2in(?) f(e):The maximum ow in N is the supremum over the ows F(f) where f is a owfunction in N .Let S be a �nite sets, R a subset of S � S and let �, �0 2 D(S). Let S0 = ft0 :t 2 Sg where t0 are pairwise distinct "new" states (i.e. t0 =2 S). We choose newelements ? and > not contained in S [S0, ? 6= >. We associate with (�; �0) thefollowing network N (�; �0; R): The nodes are the elements of S and S0 and ?(the source) and > (the sink), i.e. N = f?;>g [ S [ S0. The edges areE = f(s; t0) : (s; t) 2 Rg [ f (?; s) : s 2 S g [ f (t0;>) : t 2 S g:The capacities c(e) 2 [0; 1] are given by: c(?; s) = �(s), c(t0;>) = �0(t) andc(s; t0) = 1.Lemma 7. The following are equivalent:(i) There exists a weight function � for (�; �0) w.r.t. R.(ii) The maximum ow in N (�; �0; R) is 1.Proof. (i) =) (ii): For each ow function f in N (�; �0; R):F(f) = Xs2S f(?; s) � Xs2S c(?; s) = Xs2S �(s) = 1:Let � be a weight function for (�; �0) w.r.t. R. Then we de�ne a ow function fas follows: f(?; s) = �(s), f(t0;>) = �0(t), f(s; t0) = �(s; t). Then F(f) = 1.



Hence the maximum ow of N (�; �0; R) is 1.(ii) =) (i): Let f be a ow function with F(f) = 1. Since f(?; s) � c(?; s) =�(s) and since Xs2S f(?; s) = F(f) = 1 = Xs2S �(s)we get f(?; s) = �(s) for all s 2 S. Similarly, we get f(t0;>) = �0(t) for allt 2 S. Let �(s; t) = f(s; t0) for all (s; t) 2 R and �(s; t) = 0 if (s; t) =2 R. ThenXt2S �(s; t) = Xt2S f(s; t0) = f(?; s) = �(s)and similarly Ps2S �(s; t) = �0(t). Hence � is a weight function for (�; �0)w.r.t. R. 2With Lemma 7 we get an algorithm which tests whether a weight function fordistributions �, �0 w.r.t. a relation R exists: We apply an algorithm for �ndingthe maximum ow F in N (�; �0; R). The maximum ow in N (�; �0; R) can becomputed e.g. with the O(n3) algorithm of Malhotra et al [20] where n is thecardinality of S.Algorithm 1.Input: a �nite set S, distributions �, �0 2 D(S) and R � S � SOutput: a weight function � for (�; �0) w.r.t. R if there exists one, "No" oth-erwise.Method: Compute the maximum ow F of the network N (�; �0; R) and a owfunction f with F(f) = F . If F < 1 then answer "No" else answer "Yes" andreturn �(s; t) = �0 : if (s; t) 2 S � S nRf(s; t0) : if (s; t) 2 R.Lemma 6 and Algorithm 1 yield an algorithm for testing simulation:Algorithm 2. for testing probabilistic simulationInput: a transition system (S;!)Output: the simulation preorder R = f(s; t) 2 S � S : s v t gMethod: Let N = n2 where n is the number of states of S and let R0 = S�S.For j = 1; : : : ; N do:begin Rj := Rj�1For all (s; t) 2 Rj�1 dobegin For all transitions s �! � do:If there does not exist a transition t �! �0such that Algorithm 1 yields a weight functionfor (�; �0) w.r.t. Rj�1 then Rj := Rj n f(s; t)g.endendReturn R := RN .



It is clear that Rj = vj and hence R = vN = v. The time complexity ofthe algorithm is O(n5 � m2) where m is the number of transitions and n thenumber of states. Algorithm 2 can be implemented in space O(n2 +m) becausethe maximum ow problem (and hence Algorithm 1) can be solved in spaceO(n +m) and the representation of the sets Rj needs O(n2) space. Similar toAlgorithm 2, an O(n5 �m2) algorithm for testing bisimulation can be given. Inthe next section we improve the time complexity giving an O(n2 �m) algorithm.4 Testing bisimulationFollowing the idea of [17] which gives an O(n � m) algorithm for testing (non-probabilistic) bisimulation we present a method for deciding probabilistic bisim-ulation that works with re�nement steps of partitions on the states. Given atransition system (S;!) we start with the trivial partition X0 = fSg. Thenwe successively re�ne the partition Xk by substituting B 2 Xk by the set ofequivalence classes w.r.t. the relation s � s0 i�1. Whenever s �! � then there exists a transition s0 �! �0 with �(B) = �0(B)for all B 2 Xk.2. Whenever s0 �! �0 then there exists a transition s �! � with �(B) = �0(B)for all B 2 Xk.At most after n re�nement steps the partition Xk cannot be re�ned. Then Xkis the set of bisimulation equivalence classes.De�nition 8. A partition of a transition system (S;!) is a set X consistingof pairwise disjoint subsets B of S with SB2X B = S and such that for allB 2 X and s 2 B: the bisimulation equivalence class [s] of s is contained in B.In what follows, we shortly write �(X) to denote the vector (�(B))B2X . If s 2 Sthen we de�ne X(s) = f (�; �(X)) : s �! � g. Each partition X is associatedwith an equivalence relation �X on S: s �X s0 i� X(s) = X(s0). Having apartition X we split the elements of X into the equivalence classes w.r.t. �X :We de�ne J (X) = [B2X B= �X :Lemma 9. Let (S;!) be a transition system and X a partition.(a) S= � is a partition with J (S= �) = S= �.(b) J (X) is a partition.(c) If J (X) = X then X = S= �.Proof. (a) is clear. Let X be a partition of (S;!). It is clear that the setsB 2 J (X) are pairwise disjoint and that the union of them is S. Each B 2 X canbe written as disjoint union of bisimulation equivalence classes. This is because



s 2 B implies [s] � B. Hence whenever �, �0 are distributions with �(A) = �0(A)for all A 2 S= � then�(B) = XA2B=� �(A) = XA2B=� �0(A) = �0(B)for all B 2 X. Hence s � s0 implies s �X s0. Therefore: If C 2 J (B),s 2 C then C is the equivalence class of s w.r.t. �X and hence contains [s].We conclude that J (X) is a partition of (S;!). If J (X) = X then �X is abisimulation. Hence s �X s0 implies s � s0. Therefore s �X s0 i� s � s0and hence J (X) = S= �. 2Lemma 10. Let (S;!) be a transition system with n states and m transitionsand let X be a partition of (S;!). Then J (X) can be computed in time O(n �m)and space O(n �m).Proof. For �xed B 2 X and � 2 Act let LB;� be the set of all pairs (p; L) whereL is a nonempty subset of B and p = (pC)C2X a real vector such that s 2 L ifand only if there exists a transition s �! � with �(X) = p. Let LB be the set ofall pairs (�;L) where � 2 Act and (p; L) 2 LB;� for some p. Then s �X s0 ifand only if: Whenever (�;L) 2 LB then s 2 L i� s0 2 L.The idea of computing B= �X is to calculate �rst the sets LB;�, � 2 Act, andthen to derive the equivalence classes of B w.r.t. �X .Computation of LB;�. For each � 2 Act and B 2 X we construct a tree TB;�by successively inserting nodes and edges. The edges of TB;� are labelled byreal numbers p 2 [0; 1]. Each leaf v has depth l and is labelled by an element(p(v); L(v)) 2 LB;�.Let X = fB1; : : : ; Blg. We start with TB;� to be a tree of depth 0, i.e. a treeconsisting of its root. Then for each transition s �! � where s 2 B we traversethe tree starting at the root. Reaching a node v of depth k we do:{ If k < l and there is an outgoing edge from v leading to the node w labelledby �(Bk+1) then we pass the edge v ! w and continue to travel throughTB;� with node w.{ If k < l and there is no outgoing edge from v labelled by �(Bk+1) then weinsert a new node w and an edge from v to w labelled by �(Bk+1). In thecase k + 1 < l we continue to travel through TB;� with node w. If k + 1 = lthen w is a leaf and we de�ne L(w) = fsg and p(w) = �(X).{ If v is a leaf of depth l then we insert s into the set L(v).It is easy to see that the leaves of TB;� represent the elements of LB;�. HenceLB is the set of all pairs (�;L(v)) where v is a leaf in TB;�.



Complexity. First we observe that the tuples �(X) (where � ranges over alldistributions s.t. s �!� is a transition) can be computed in O(n � m) time: Foreach distribution � we set aB = 0 for all B 2 X. Then for all states s 2 S:If s 2 B then we replace aB by aB + �(s). Finally �(X) = (aB)B2X . Therepresentation of the tuples �(X) needs O(n �m) space.The construction of TB;� needsO(mB;� �l) steps wheremB;� is the number oftransitions s �! �, s 2 B. Since PB P� mB;� = m and since the cardinalityl of X is bounded by n we get: Ranging over all B 2 X and � 2 Act theconstruction of all trees TB;�, B 2 X, � 2 Act, takes O(n �m) steps. The set ofpaths from the root to a leaf in TB;� is bounded by mB;�. Since l is the depthof the leaves TB;� has at most mB;� � l+1 nodes. Hence, all trees TB;� togetherhave O(m �n) nodes and O(m) leaves. The representation of the sets L(v) needsO(jBj) space (where v is a leaf of a tree TB;�). Since jBj � n the representationof all trees TB;� together needs O(n �m) space.Computation of B= �X . We construct a binary tree TB by successively insertingnodes and edges. Each leaf v has depth r and is labelled by a subset C(v) of B.Let (�i; Li), i = 1; : : : ; r, be an enumeration of the elements of LB . (Note that�i = �j , i 6= j is possible.) We start with a tree of depth 0, a tree consisting ofits root. For each s 2 B we traverse the tree in the following way: If we havereached a node v of depth k � 1, k � r then:{ If v has a left son w and s 2 Lk then we go to w.{ If v does not have a left son and s 2 Lk then we create a new left son w ofv and go to w. If k = r � 1 then we set C(w) = fsg.{ If v has a right son w and s =2 Lk then we go to w.{ If v does not have a right son and s =2 Lk then we create a new right son wof v and go to w. If k = r � 1 then we set C(w) = fsg.If we have reached a node v of depth r then we insert s into the set C(v) ofstates associated with v.Then we have: If v is a leaf and v0; v1; : : : ; vr = v the unique path from theroot v0 to v then C(v) = L01 \ L02 \ : : : \ L0r where L0i = Li if vi is the left sonof vi�1 and L0i = B n Li if vi is the right son of vi�1. Let pi = p(v) where v isthe leaf in TB;�i with (�i; Li) = (�;L(v)). Then for all s 2 B: s 2 C(v) if andonly if X(s) = f (�i;pi) : Li = L0i g. Hence, if s, s0 2 B then s �X s0 if andonly if s, s0 2 C(v) for some leaf v in TB . We conclude:B= �X = f C(v) : v is a leaf in TB gComplexity. The computation of TB needs O(jBj � r) steps. It is clear that thecardinality r of LB is bounded by m. Hence we have the time complexity O(jBj �m) for the construction of TB . Each leaf in TB has depth r � m. Since the leavesof TB correspond to the equivalence classes w.r.t. �X TB has at most jBj leaves.Since TB is binary it has at most jBj � r + 1 nodes. Hence, all trees TB , B 2 X,have O(n � m) nodes. Ranging over all v, the sets C(v) can be represented inspace O(n). Hence we get the time complexity O(n �m) for computing the treesTB , B 2 X and the space complexity O(n �m) for their representation. 2



Algorithm 3. for testing probabilistic bisimulationInput: a transition system (S;!)Output: the set R = S= � of bisimulation equivalence classesMethod: Let X := fSg.Repeat Y := X; X := J (X);until Y = X;Return R := X.It is clear that the algorithm returns a partition R with J (R) = R. By Lemma 9:R is the set of bisimulation equivalence classes. If the loop is performed n timesthen X consists of n one-element sets and hence J (X) = X. Hence the loop isperformed at most n times. By Lemma 10 the time complexity is O(n2 �m), thespace complexity O(n �m).Example 11. Let (S;!) be given by: S = fs1; s2; s; t; ug ands1 �!�, s2 �!�, s1 �!�1, s2 �!�2, s �!�, t �!�where �(u) = 1, �1(s1) = �1(s2) = �1(t) = �1(u) = 1=4 and �2(s1) = 1=2,�2(t) = �2(u) = 1=4. Initially we deal with the partition fSg and computeJ (fSg) with the help of Lemma 10: The trees TS;� and TS;� consist of a singleedge labelled by 1. Their leaves vS;� and vS;� are labelled by (1; fs1; s2; sg) and(1; fTg) respectively. This yields LS = f(�; fs1; s2; sg); (�; ftg)g and the treeTS uu uv1 v2 v3���� HHHj@@R @@R��	where C(v1) = fs1; s2; sg, C(v2) = ftg and C(v3) = fug. Hence J (fSg) =fB1; B2; B3g where Bi = C(vi). Next we compute J (fB1; B2; B3g). Since B2and B3 consist of a single element we only have to consider B1. The tree TB1;�can be depict as follows:t 012 tt tt v1v214 140 1��HH ��*HHj -- --where L(v1) = fs1; s2g and L(v2) = fs1; s2; sg. This yields the tree TB1 :uu uv1 v2���� HHHj��	 ��	where C(v1) = fs1; s2g, C(v2) = fsg. We obtain the partition X which consistsof fs1; s2g, fsg, ftg and fug. The next step yields J (X) = X and hence X =S= �. 2



5 Concluding remarksWe gave an algorithm for testing probabilistic bisimulation in time O(n2 �m).Compared with the non-probabilistic case where the best known algorithm fordeciding bisimilarity has the time complexity O(m � logn) [22] the cost of ouralgorithm seem to be acceptable. It is an open problem whether the time com-plexity of our algorithm can be improved in a similar way as the O(m � log n)algorithm of [22] improves the O(n �m) algorithm of [17]. The algorithm which isimplemented in the Concurrency Workbench [4] tests non-probabilistic simula-tion in time O(n4 �m). It works similar to the bisimulation equivalence algorithmof [17]. It is an open question whether our O(n5 � m2) result can be improvedby a partioning technique. Our methods applied to "deterministic" probabilis-tic transition systems yield time complexity O(n7) for deciding simulation andtime complexity O(n3) for deciding bisimulation. (In "deterministic" transitionsystems, for every state s and action � there is at most one outgoing transitionlabelled by �. Hence, for �xed action set, the total number m of transitions isO(n).)In this paper we only considered strong (bi-)simulation which does not ab-stract from internal actions. It would be interesting if the algorithms presentedhere can be modi�ed to check weak (bi-)simulation.References1. R. Alur, C. Courcoubetis, D. Dill: Verifying Automata Speci�cations of Probabilis-tic Real-Time Systems, Proc. REXWorkshop, Mook, The Netherlands, Real-Time:Theory in Practice, J.W. de Bakker, C. Huizing, W.P. de Roever, C. Rozenberg(eds.), Lecture Notes in Computer Science 600, pp 27-44, 1991.2. C. Baier, M. Kwiatkowska: Domain Equations for Probabilistic Processes, submit-ted for publication.3. T. Bolognesi, S. Smolka: Fundamental Results for the Veri�cation of ObservationalEquivalence: a Survey, Protocol Speci�cation, Testing and Veri�cation, ElsevierScience Publishers, IFIP, pp 165-179, 1987.4. R. Cleaveland, J. Parrow, B. Ste�en: A Semantics-Based Veri�cation Tool for Fi-nite State Systems, Protocol Speci�cation, Testing and Veri�cation IX, ElsevierScience Publishers, IFIP, pp 287-302, 1990.5. R. Cleaveland, S. Smolka, A. Zwarico: Testing Preorders for Probabilistic Pro-cesses, Proc. ICALP 1992, Lecture Notes in Computer Science 623, Springer-Verlag, pp 708-719, 1992.6. C. Courcoubetis, M. Yannakakis: Verifying Temporal Properties of Finite-StateProbabilistic Programs, Proc. 29th Annual Symp. on Foundations of ComputerScience, pp 338-345, 1988.7. E. Dinic: Algorithm for Solution of a Problem of Maximal Flow in a Network withPower Estimation, Soviet. Math. Dokl., Vol. 11, pp 1277-1280, 1970.8. R. Enders, T. Filkorn, D. Taubner: Generating BDDs �r Symbolic Model checkingin CCS, Distributed Computing, Vol. 6, pp 155-164, 1993.9. S. Even: Graph Algorithms, Computer Science Press, 1979.10. L. Ford, D. Fulkerson: Flows in Networks, Princeton University Press, 1962.



11. J. Groote, F. Vaandrager: An E�cient Algorithm for Branching Bisimulation andStuttering Equivalence, Proc. 17th International Colloqium Warwick, Automata,Languages and Programming, Lecture Notes in Computer Science 443, pp 626-638,1990.12. H. Hansson: Time and Probability in Formal Design of Distributed Systems,Ph.D.Thesis, Uppsala University, 1994.13. H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Probability, FormalAspects of Computing, Vol. 6, pp 512-535, 1994.14. S. Hart, M. Sharir: Probabilistic temporal logic for �nite and bounded models,Proc. 16th ACM Symposium on Theory of Computing, pp 1-13, 1984.15. B. Jonsson, K.G. Larsen: Speci�cation and Re�nement of Probabilistic Processes,Proc. 6th IEEE Symp. on Logic in Computer Science, 1991.16. B. Jonsson, W. Yi: Compositional Testing Preorders for Probabilistic Processes,Proc. 10th IEEE Symp. on Logic in Computer Science, pp 431-443, 1995.17. P. Kannelakis, S. Smolka: CCS Expressions, Finite State Processes and Three Prob-lems of Equivalence, Proc. 2nd ACM Symposium on the Pronciples of DistributedComputing, pp 228-240, 1983.18. K. Larsen, A. Skou: Bisimulation through Probabilistic Testing, Information andComputation, Vol. 94, pp 1-28, 1991.19. D. Lehmann, S. Shelah: Reasoning with Time and Chance, Information and Con-trol, Vol. 53, pp 165-198, 1982.20. V. Malhotra, M. Pramodh Kumar, S. Maheshwari: An O(jV 3j) Algorithm for Find-ing Maximum Flows in Networks, Computer Science Program, Indian Institute ofTechnology, Kanpur 208016, 1978.21. R. Milner: Communication and Concurrency, Prentice Hall, 1989.22. R. Paige, R. Tarjan: Three Partition Re�nement Algorithms, SIAM Journal ofComputing, Vol. 16, No. 6, pp 973-989, 1987.23. A. Pnueli, L. Zuck: Veri�cation of Multiprocess ProbabilisticProtocols, DistributedComputing, Vol. 1, No. 1, pp 53-72, 1986.24. A. Pnueli, L. Zuck: Probabilistic Veri�cation, Information and Computation, Vol.103, pp 1-29, 1993.25. R. Segala, N. Lynch: Probabilistic Simulations for Probabilistic Processes, Proc.CONCUR 94, Theories of Concurrency: Uni�cation and Extension, Lecture Notesin Computer Science 836, Springer-Verlag, pp 492-493, 1994.26. R. van Glabbeek, S. Smolka, B. Ste�en, C. Tofts: Reactive, Generative, and Strat-i�ed Models for Probabilistic Processes, Proc. 5th IEEE Symposium on Logic inComputer Science, pp 130-141, 1990.27. M. Vardi: Automatic Veri�cation of Probabilistic Concurrent Finite-State Pro-grams, Proc. 26th Symp. on Foundations of Computer Science, pp 327-338, 1985.28. S. Yuen, R. Cleaveland, Z. Dayar, S. Smolka: Fully Abstract Characterizations ofTesting Preorders for Probabilistic Processes, Probabilistic Simulations for Prob-abilistic Processes, Proc. CONCUR 94, Theories of Concurrency: Uni�cation andExtension, Lecture Notes in Computer Science 836, Springer-Verlag, pp 497-512,1994.29. W. Yi: Algebraic Reasoning for Real-Time Probabilistic Processes with UncertainInformation, Formal Techniques in Real Time and Fault Tolerant Systems, LectureNotes in Computer Science 863, Springer-Verlag, pp 680-693, 1994.30. W. Yi, K. Larsen: Testing Probabilistic and Nondeterminsitic Processes, Protocol,Speci�cation, Testing and Veri�cation XII, Elsevier Science Publishers, IFIP, pp47-61, 1992.



This article was processed using the LaTEX macro package with LLNCS style


