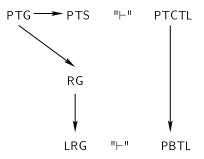
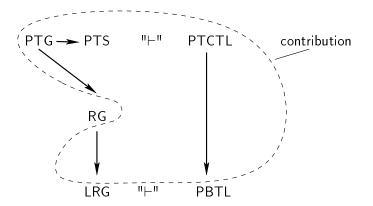
Automatic Verification of Real-time Systems with Discrete Probability Distributions Talk by Robert Jørgensgaard Olesen


Marta Kwiatkowska Gethin Norman Roberto Segala Jeremy Sproston

Oktober 2, 2007


э

・ 戸 ト ・ ヨ ト ・ ヨ ト

The overall idea

PTCTL can be model-checked on PTGs

Agenda

Probabilistic Timed Graphs (PTG)

- Definition
- Example
- Semantics
- 2 Computation Tree Logic
 - Probabilistic Timed Computation Tree Logic (PTCTL)
 - Probabilistic Branching Time Logic (PBTL)
- Regions 3
 - Example
 - Region Graph
 - Labelled Region Graph
 - PBTL derived from PTCTL

4 Contribution

• PTCTL can be model-checked on PTGs

э

- Definition
- Example
- Semantics
- 2 Computation Tree Logic
 - Probabilistic Timed Computation Tree Logic (PTCTL)
 - Probabilistic Branching Time Logic (PBTL)

3 Regions

- Example
- Region Graph
- Labelled Region Graph
- PBTL derived from PTCTL

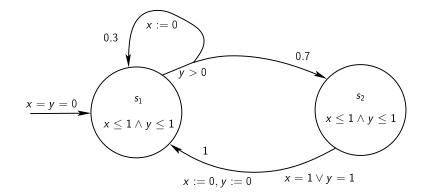
4 Contribution

• PTCTL can be model-checked on PTGs

Definition Example Semantics

Probabilistic Timed Graphs

Definition


A probabilistic timed graph is a tuple

- $\mathcal{G} = (\mathcal{S}, L, s_{\mathsf{init}}, \mathcal{X}, \mathsf{inv}, \mathsf{prob}, \langle au_s
 angle_{s \in S})$, where
 - ${\mathcal S}$ is a finite set of nodes,
 - $L: \mathcal{S} \to 2^{AP}$ are the atomic propositions being true in each s,
 - s_{init} is the start node,
 - \mathcal{X} is a finite set of clocks,
 - inv : $\mathcal{S} \to AF_{\mathcal{X}}$ are the invariant of each s
 - prob : S → P(µ(S × 2^X)) are the probabilistic transitions for each s, and
 - $au_s: prob(s)
 ightarrow AF_{\mathcal{X}}$ is a guard to each $p \in prob(s)$, for each s.

<ロ> (四) (四) (三) (三) (三) (三)

Definition Example Semantics

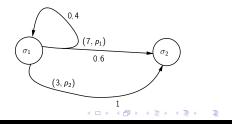
Probabilistic Timed Graph Example

Definition Example Semantics

Semantics

- The semantics of probabilistic timed graphs are defined in terms of probabilistic timed structures.
- The logic PTCTL is a logic for such structures

Definition Example Semantics


Probabilistic Timed Structure

Definition

A probabilistic timed structure \mathcal{M} is a triple (Σ , Tr, End) where

- Σ is a set of states.
- Tr is a function on Σ that returns a set of pairs (t, p) where t is a delay and p is a discrete probability distribution on Σ .
- *End* is a set of states where time is allowed to increase without bound.

$$Tr(\sigma_1) = \{(7, p_1), (3, p_2)\}$$

Definition Example Semantics

Semantics of PTG in terms of PTS

Definition

Let $G = (S, L, s_{init}, \mathcal{X}, inv, prob, \langle \tau_s \rangle_{s \in S})$ be a probabilistic timed graph.

- A state of G is a tuple ⟨s, v⟩, where s ∈ S and v ∈ Γ(X) s.t.
 v satisfies inv(s).
- The probabilistic timed structure of G is defined as $\mathcal{M}^{G} = (\Sigma^{G}, Tr^{G}, End^{G})$ where
 - Σ^G is the set of states of G.
 - $(t,p) \in Tr(\langle s,v \rangle)$ exactly when $\exists p_s \in \text{prob}(s)$ s.t.:
 - v + t satisfies inv(s).
 - v+t' satisfies $au_s(p_s)$ for all $0 \leq t' \leq t$.
 - $p(\langle s', v' \rangle) = \sum_{C \subseteq \mathcal{X} \land (v+t)[C \mapsto 0] = v'} p_s(s', C) \text{ for all } \langle s', v' \rangle.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

• $End^G = \{ \langle s, v \rangle \mid \forall t \ge 0 \text{ we have } v + t \text{ satisfies } inv(s) \}.$

э

Probabilistic Timed Computation Tree Logic (PTCTL) Probabilistic Branching Time Logic (PBTL)

- Probabilistic Timed Graphs (PTG)
 - Definition
 - Example
 - Semantics
- 2 Computation Tree Logic
 - Probabilistic Timed Computation Tree Logic (PTCTL)
 - Probabilistic Branching Time Logic (PBTL)

3 Regions

- Example
- Region Graph
- Labelled Region Graph
- PBTL derived from PTCTL

4 Contribution

• PTCTL can be model-checked on PTGs

11

Probabilistic Timed Computation Tree Logic (PTCTL) Probabilistic Branching Time Logic (PBTL)

(ロ) (個) (E) (E) (E)

Recall (slide is skipped at first)

Definition

A probabilistic timed graph is a tuple

- $\mathcal{G} = (\mathcal{S}, L, s_{\mathsf{init}}, \mathcal{X}, \mathsf{inv}, \mathsf{prob}, \langle \tau_s \rangle_{s \in S})$, where
 - ${\mathcal S}$ is a finite set of nodes,
 - $L: \mathcal{S} \to 2^{AP}$ are the atomic propositions being true in each s,
 - s_{init} is the start node,
 - ${\mathcal X}$ is a finite set of clocks,
 - inv : $\mathcal{S} \to AF_{\mathcal{X}}$ are the invariant of each s
 - prob : S → P(µ(S × 2^X)) are the probabilistic transitions for each s, and
 - $au_s: prob(s)
 ightarrow AF_{\mathcal{X}}$ is a guard to each $p \in prob(s)$, for each s.

Probabilistic Timed Computation Tree Logic (PTCTL) Probabilistic Branching Time Logic (PBTL)

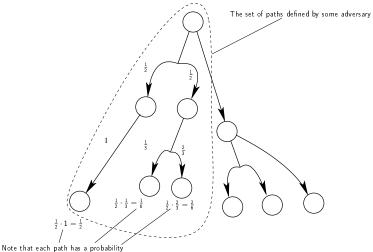
Probabilistic Timed Computation Tree Logic

Definition

Let C be a set of clocks. A set of atomic formulae AF_C is defined inductively by the syntax:

$$\varphi ::= \mathsf{c} \leq \mathsf{k} \mid \mathsf{k} \leq \mathsf{c} \mid \neg \varphi \mid \varphi \lor \varphi$$

Definition


The syntax of PTCTL is defined as follows:

$$\phi ::= \texttt{true} \mid a \mid \varphi \mid \phi \land \phi \mid \neg \phi \mid z.\phi \mid [\phi \exists \mathcal{U} \phi]_{\Box \lambda} \mid [\phi \forall \mathcal{U} \phi]_{\Box \lambda},$$

where $a \in AP$, $\varphi \in AF_{\mathcal{X} \cup \mathcal{Z}}$, $z \in \mathcal{Z}$, $\lambda \in [0, 1]$, and $\supseteq \in \{\geq, >\}$.

Probabilistic Timed Computation Tree Logic (PTCTL)

Example Adversary

Probabilistic Timed Computation Tree Logic (PTCTL) Probabilistic Branching Time Logic (PBTL)

Probabilistic Branching Time Logic

Definition

The syntax of PBTL is defined as follows:

$$\Phi ::= \texttt{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid z.\Phi \mid [\Phi \exists \mathcal{U} \Phi]_{\neg \lambda} \mid [\Phi \forall \mathcal{U} \Phi]_{\neg \lambda},$$

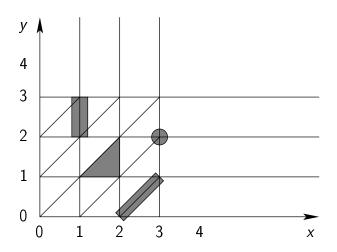
where $a \in AP^*$, $z \in \mathcal{Z}$, $\lambda \in [0, 1]$, and $\exists \in \{\geq, >\}$.

 $AP^* = AF_{\phi} \cup AP$ where AF_{ϕ} is the set of atomic formulae in ϕ .

Probabilistic Timed Graphs (PTG) Computation Tree Logic Regions Graph Contribution PBTL derived from PTC

- Probabilistic Timed Graphs (PTG)
 - Definition
 - Example
 - Semantics
- 2 Computation Tree Logic
 - Probabilistic Timed Computation Tree Logic (PTCTL)
 - Probabilistic Branching Time Logic (PBTL)
- 3 Regions
 - Example
 - Region Graph
 - Labelled Region Graph
 - PBTL derived from PTCTL

Contribution


• PTCTL can be model-checked on PTGs

æ

< □ > < □ > < □ > < □ > < □ > < □ >

Example Region Graph Labelled Region Graph PBTL derived from PTCTI

Example of Regions

Example **Region Graph** Labelled Region Graph PBTL derived from PTCTL

Region Graph

Definition (simplified)

Let G be a probabilistic timed graph and ϕ a PTCTL formula. The region graph $R(G, \phi)$ is a triple (V^* , Steps^{*}, End^{*}) where

- V^* is the set of augmented regions on the form $\langle s, [v, \mathcal{E}] \rangle$.
- Steps^{*}: V^{*} → P(µ(V^{*})) is a set of probabilistic transitions where time may pass with probability 1, and the state may change with probability

$$p_{\mathsf{succ}}^{s,\alpha}(\langle s',\beta\rangle) = \sum_{\substack{C\subseteq \mathcal{X}\wedge\\[C\mapsto 0]lpha=eta}} p_s(s',C)$$

• $End^* \subseteq V^*$ is the set of end regions.

3

Example Region Graph Labelled Region Graph PBTL derived from PTCTL

Labelled Region Graph

Recall that $G = (S, L, s_{\text{init}}, \mathcal{X}, \text{inv}, \text{prob}, \langle \tau_s \rangle_{s \in S})$ where especially $L : S \to 2^{AP}$ are the atomic propositions being true in each s,

Definition

For a region graph $R(G, \phi)$ we define its associated labelled region graph by $(R(G, \phi), L^*)$, where $L^* : V^* \to 2^{AP^*}$ is defined as

 $L^*(\langle s, [v, \mathcal{E}] \rangle) = \{ a \in L(s) \} \cap \{ a_{\varphi} \mid [v, \mathcal{E}] \text{ satisfies } \varphi, \varphi \in AF_{\phi} \}$

Example Region Graph Labelled Region Graph PBTL derived from PTCTL

PBTL derived from PTCTL

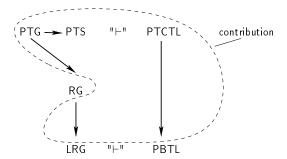
PTCTL	PBTL
Subformula of ϕ	Subformula of Φ
true	true
а	а
arphi	a_{arphi}
$\phi_1 \lor \phi_2$	$\begin{smallmatrix} a_\varphi \\ \Phi_1 \lor \Phi_2 \end{smallmatrix}$
$\neg \phi$	$\neg \Phi$
$[\phi_1 \exists \mathcal{U} \phi_2]_{\Box \lambda}$	$[\Phi_1 \exists \mathcal{U} \Phi_2]_{\Box \lambda}$
$[\phi_1 orall \mathcal{U} \phi_2]_{\sqsubseteq \lambda}$	$[\Phi_1 orall \mathcal{U} \Phi_2]_{\sqsubseteq \lambda}$

Recall

 $L^*(\langle s, [v, \mathcal{E}] \rangle) = \{ a \in L(s) \} \cup \{ a_{\varphi} \mid [v, \mathcal{E}] \text{ satisfies } \varphi, \varphi \in AF_{\phi} \}$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


- Probabilistic Timed Graphs (PTG)
 - Definition
 - Example
 - Semantics
- 2 Computation Tree Logic
 - Probabilistic Timed Computation Tree Logic (PTCTL)
 - Probabilistic Branching Time Logic (PBTL)
- 3 Regions
 - Example
 - Region Graph
 - Labelled Region Graph
 - PBTL derived from PTCTL

4 Contribution

• PTCTL can be model-checked on PTGs

PTCTL can be model-checked on PTGs

PTCTL can be model-checked on PTGs

PTCTL can be model-checked on PTGs

... THE END