
Regular Model Checking Made Simple

and Efficient�

Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson��, and Julien d’Orso� � �

Department of Computer Systems
P.O. Box 337, S-751 05 Uppsala, Sweden

{parosh,bengt,marcusn,juldor}@docs.uu.se

Abstract. We present a new technique for computing the transitive clo-
sure of a regular relation characterized by a finite-state transducer. The
construction starts from the original transducer, and repeatedly adds
new transitions which are compositions of currently existing transitions.
Furthermore, we define an equivalence relation which we use to merge
states of the transducer during the construction. The equivalence relation
can be determined by a simple local check, since it is syntactically char-
acterized in terms of “columns” that label constructed states. This makes
our algorithm both simpler to present and more efficient to implement,
compared to existing approaches. We have implemented a prototype and
carried out verification of a number of parameterized protocols.

1 Introduction

Regular model checking has been proposed as a uniform paradigm for algorithmic
verification of several classes of infinite-state systems; in particular parameterized
systems [KMM+97, ABJN99, BJNT00, PS00]. Such systems arise naturally in
many applications. For instance, the specification of a protocol may be parame-
terized by the number of components which may participate in a given session of
the protocol. In such a case, it is interesting to verify the correctness of the pro-
tocol, regardless of the number of participants in a particular session. The idea of
regular model checking is to perform symbolic reachability analysis, using words
over a finite alphabet to represent states, and using finite-state transducers to
describe transitions between states. Such an approach has been advocated by,
e.g., Kesten et al. [KMM+97], Boigelot and Wolper [WB98], and implemented,
e.g., in the Mona [HJJ+96], MoSel [KMMG97], or LASH [BFL] packages.

A generic task in most symbolic model checking paradigms is to compute a
representation for the transitive closure of the transition relation. Such a char-
acterization can then be used to compute the set of reachable states (e.g. for

� This work was supported in part by the European Commission (FET project
ADVANCE, contract No IST-1999-29082).

�� This author is supported in part by Vetenskapsr̊adet, the Swedish Research Council
(http://www.vr.se/).

� � � This author is supported in part by ARTES, the Swedish network for real-time
research (http://www.artes.uu.se/).

L. Brim et al. (Eds.): CONCUR 2002, LNCS 2421, pp. 116–131, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Regular Model Checking Made Simple and Efficient 117

verifying safety properties), or to find loops when verifying liveness proper-
ties [BJNT00, PS00].

A central problem in regular model checking is that the standard iteration-
based methods for computing transitive closures, which are used for finite-state
systems (e.g., [BCMD92]), are guaranteed to terminate only if there is a bound
on the distance (in number of transitions) from the initial configurations to any
reachable configuration. In general, a parameterized or infinite-state system does
not have such a bound. For instance, consider a transition of a parameterized sys-
tem in which a process passes a token to its neighbour. The transitive closure of
such a transition relation will be to pass the token to any other process through
an arbitrary sequence of neighbours, for which the number of transitions is un-
bounded. Therefore, an important challenge in the design of algorithms for com-
puting transitive closures, is to invent techniques in order to enhance the perfor-
mances of iteration-based methods. One such a technique is that of accelerations:
try to calculate the effect of arbitrarily long sequences of transitions. Although
such an effect is in general not computable, accelerations have successfully been
applied for several classes of parameterized and infinite-state systems, e.g., sys-
tems with unbounded FIFO channels [BG96, BGWW97, BH97, ABJ98], systems
with stacks [BEM97, Cau92, FWW97, ES01] systems with counters [BW94,
CJ98], and several classes of parameterized systems [ABJN99, PS00].

In our work [JN00], we gave an explicit representation of a finite-state trans-
ducer accepting the transitive closure, for the case that the transition relation
satisfies a condition of bounded local depth. A related automata-based construc-
tion was presented in [BJNT00]. Both these works employ a direct construction
of some form of “column transducer”, whose states are sequences (columns) of
states of the original transducer.

In this paper, we present a technique for computing transitive closures, which
is more light-weight than our previous automata-based solutions. The tech-
nique uses post-image computation augmented with identification of “equiva-
lent” states. Roughly, the construction of transitive closure proceeds by starting
from the original transducer, then repeatedly adding new transitions by simple
matching of already constructed transitions. During the construction, equivalent
states are merged, using an equivalence relation which preserves the set of traces
of the transducer. More precisely, our equivalence relation is the combination of
a forward simulation and a backward simulation relation. This makes sure that
no prefix/suffix combinations are added to the set of traces. The technique repre-
sents a substantial simplification over the previous approaches [JN00, BJNT00],
where several layers of automata-theoretic constructions were used. An impor-
tant property of the equivalence relation is that it can be syntactically char-
acterized in terms of “columns” that label constructed states, and therefore it
can be determined by a simple local check. This allows for a much more ef-
ficient implementation of the algorithm. In fact, a first implementation of the
new, simplified, technique improves the running times of examples by up to a
factor of ten. At the same time, the technique does not substantially sacrifice

118 Parosh Aziz Abdulla et al.

completeness. Completeness results, similar to those in [JN00, BJNT00] can be
proven.

Related Work Previous work on the general aspects of regular model checking,
and on analyzing classes of systems, e.g., pushdown systems, parameterized sys-
tems, systems with FIFO channels, or with counters, has already been mentioned
earlier in this introduction.

In [BJNT00], we present a technique for computing the transitive closure
of a regular transducer. The technique relies on several potentially expensive
operations on automata such as checking language equivalence, computing post-
images of regular sets, and saturating regular sets with respect to members of
the alphabet. These operations are not needed in the present algorithm, leading
to a much more efficient implementation (see Section 5).

Dams et al. [DLS01] present a related approach, which differs from ours in
the way states are merged. Dams et al. use an extensional equivalence, which
is computed by a global analysis of the current approximation of the transitive
closure. It appears that this calculation is very expensive, and the paper does not
report successful application of the techniques to examples of similar complexity
as the more complex examples in Section 5. In contrast, we base the equivalence
on a relation defined in terms of the “columns” that label constructed states,
which can be determined by a simple local check. The technique in our proof of
Theorem 2 is inspired by the proof technique of their paper.

Caucal [Cau00] presents a class of rewriting systems, called right-overlapping
systems (and symmetrically also left-overlapping systems) for which the transi-
tive closure can be computed as a transducer. A simple instance is the token-
passing example mentioned at the beginning of this introduction. Our algorithm
is guaranteed to terminate on all overlapping rewriting systems.

Touili [Tou01] presents a technique for computing transitive closures of reg-
ular transducers based on widening, and shows that the method is sufficiently
powerful to simulate earlier constructions described in [ABJN99] and [BMT01].
However, these are substantially weaker than the automata-based techniques.
Another approach, based on second order monadic logic [PS00], covers some
commonly occurring patterns of successive transduction.

Outline In the next section, we present a simple example which we will use to
illustrate our algorithm. In Section 3 we describe the algorithm for computing
transitive closures. In Section 4, we show soundness and completeness of the
algorithm and present sufficient conditions for termination. Section 5 contains a
description of an implementation of the algorithm and the result of applying it
to a number of mutual exclusion protocols. Concluding remarks and directions
for future research are given in Section 6.

2 An Example

In this section, we present informally, through a simple example, an algorithm
which computes R+, for a regular relation R. It computes successively larger

Regular Model Checking Made Simple and Efficient 119

under-approximations of R+, starting from R. The algorithm consists of repeat-
edly performing a small basic step which combines two matching transitions of
the current approximation. It also uses an equivalence relation on states, for
on-the-fly identification of newly produced states.

Preliminaries Let Σ be a finite alphabet of symbols. Let R be a regular relation
on Σ, represented by a deterministic finite-state transducer T = 〈Q, q0,−→, F 〉
where Q is the set of states, q0 is the initial state, −→: (Q× (Σ×Σ)) �→ Q is the

transition function, and F ⊆ Q is the set of accepting states. We use q1
(a,b)−→ q2 to

denote that −→ (q1, (a, b)) = q2. We use a similar notation also for other types
of transition relations introduced later in the paper.

Our goal is to construct a transducer that recognizes the relation R+, where
R+ = ∪i>0 Ri.

Starting from T , we can in a straight-forward way construct a transducer
for R+ whose states, called columns, are sequences of states in Q, where runs
of transitions between columns of length i accept pairs of words in Ri. More
precisely, define the column transducer for T as the tuple T+ = 〈Q+, q+

0 ,=⇒,
F+〉 where
– Q+ is the set of non-empty sequences of states of T ,
– q+

0 is the set of non-empty sequences of the initial state of T ,
– =⇒: (Q+×(Σ×Σ)) �→ 2Q+

is defined as follows: for any columns q1q2 · · · qm

and r1r2 · · · rm, and pair (a, a′), we have q1q2 · · · qm
(a,a′)
=⇒ r1r2 · · · rm iff there

are a0, a1, . . . , am with a = a0 and a′ = am such that qi
(ai−1,ai)−→ ri for

1 ≤ i ≤ m,
– F+ is the set of non-empty sequences of accepting states of T .

Note that although T is deterministic, T + needs not be. It is easy to see that
T + accepts exactly the relation R+: runs of transitions from qi

0 to columns in F i

accept transductions in Ri. The problem is that T + has infinitely many states.
We will use x, y, etc. to denote columns in Q+ and regular expressions nota-

tion for representing sets. In this paper, we present a procedure for incrementally
generating a transducer which accepts the same relation as T+. The procedure
starts from T ; by successively adding transitions of T+ we compute a sequence
of successively larger (in terms of sets of accepted pairs of words) transduc-
ers, all of which under-approximate R+. Each new approximation is generated
through performing a basic step. The step constructs transitions by combining
already constructed transitions. Furthermore, all the time during this procedure,
“equivalent” columns will be merged, in order to hopefully arrive at a finite-state
result.

Example As a running example, consider the transducer below over the alpha-
bet {⊥, a, b}. It relates a word of the form ⊥iab⊥j with ⊥i+1ab⊥j−1, moving
the sequence ab one step to the right. This could be a computation step in a
token-passing algorithm.

120 Parosh Aziz Abdulla et al.

❄✛
✚

✘
✙qL

✻

✛

✚

✘

✙
(⊥,⊥) ✲(a,⊥)✛

✚
✘
✙q1 ✲(b, a)

✛
✚

✘
✙q2 ✲(⊥, b)

✛
✚

✘
✙

✗
✖

✔
✕qR

❄
✘

✙

✛

✚
(⊥,⊥)

Our algorithm identifies pairs of transitions (of the automaton) and combines
them in the following way. When we have a transition from x to x′ on (a, b),
and a transition from y to y′ on (b, c) we add the transition xy to x′y′ on
(a, c). Furthermore, we define an equivalence relation which enables us to merge
columns in the following way. A state in Q is left-copying if all words in its prefix
consist of pairs of identical symbols. A state inQ is right-copying if all words in its
suffixes consist of pairs of identical symbols. In the above example, the states qL

and qR are left- and right-copying, respectively. Now, two columns are equivalent
if they can be made equal by ignoring repetitions of identical neighbours which
are either left- or right-copying. For instance the columns qLqLxqR and qLxqRqR

are equivalent. Applying this to our example, we get the following transitions.

– qL
(a,⊥)
=⇒ q1 and qL

(⊥,⊥)
=⇒ qL give us qLqL

(a,⊥)
=⇒ q1qL. We merge qLqL and qL

(both their prefix is (⊥,⊥)∗).
– q1

(b,a)
=⇒ q2 and qL

(a,⊥)
=⇒ q1 give us q1qL

(b,⊥)
=⇒ q2q1.

– q2
(⊥,b)
=⇒ qR and q1

(b,a)
=⇒ q2 give us q2q1

(⊥,a)
=⇒ qRq2.

– qR
(⊥,⊥)
=⇒ qR and q2

(⊥,b)
=⇒ qR give us qRq2

(⊥,b)
=⇒ qRqR. We merge qRqR and qR

(both their suffix is (⊥,⊥)∗).
The new transducer (equivalent to running one step of our algorithm) thus

becomes:

❄✛
✚

✘
✙qL

✻

✛

✚

✘

✙
(⊥,⊥) ✲(a,⊥)✛

✚
✘
✙q1 ✲(b, a)

✛
✚

✘
✙q2 ✲(⊥, b)

✛
✚

✘
✙

✗
✖

✔
✕qR

❄
✘

✙

✛

✚
(⊥,⊥)

❆
❆(a,⊥)
✛
✚

✘
✙q1qL ✲(b,⊥)✛

✚
✘
✙q2q1 ✲(⊥, a)

✛
✚

✘
✙qRq2 ✁
✁
✁✕

(⊥, b)

3 Algorithm

In this section, we will formally present our algorithm. The main idea behind
the algorithm is to define an equivalence relation on the set Q+ of columns of
T+, which is used to merge columns during the computation of R+. Correctness
of the algorithm will crucially depend on the property that merging equivalent
columns does not change the relation accepted by T+; this will be proven in
Section 4.

Regular Model Checking Made Simple and Efficient 121

Consider first the set Q of states of the transducer T . The set of left-copying

states in Q is the largest subset of Q such that whenever q
(a,a′)
=⇒ q′ and q′ ∈ Q,

then a = a′ and q ∈ Q. Analogously, the set of right-copying states in Q is the

largest subset of Q such that whenever q
(a,a′)
=⇒ q′ and q ∈ Q, then a = a′ and

q′ ∈ Q. In other words, prefixes of left-copying states only copy input symbols
to output symbols, and similarly for suffixes of right-copying states.

Let us now define �. The equivalence classes of � will be sets denoted by
regular expressions of form e1e2 · · · en where each ei is one of the following:

1. q+
L , for some left-copying state qL,

2. q+
R , for some right-copying state qR,

3. q, for some state q which is neither left-copying nor right-copying,

and where two consecutive ei can be identical only if they are neither left-copying
nor right-copying. For a column x, let [x]� denote the equivalence class for x.
We will use X , Y , etc. to denote equivalence classes of columns.

Define the operator � as the natural concatenation operator on equivalence
classes:

[x]� � [y]� = [x · y]�
where · denotes concatenation of columns. It is easy to check that this operation
is well-defined. If equivalence classes are represented by their defining regular
expressions, this means that e1 · · · en � f1 · · · fm is e1 · · · en f1 · · · fm, except
when en and f1 are both q+ for some left- or right-copying state q, in which case
it is e1 · · · en f2 · · · fm.

Having defined an equivalence relation� on Q+, we define the quotient trans-
ducer T� as T� = 〈Q+/ �, {q0}+,=⇒�, F+/ �〉 where
– Q+/ � is the set of equivalence classes of columns,
– q+

0 is the initial equivalence class (this will indeed be one equivalence class
of �),

– =⇒�: ((Q+/ �) × (Σ × Σ)) �→ 2(Q+/�) is defined in the natural way as
follows. For any columns x, x′ and symbols a, a′:

x
(a,a′)
=⇒ x′ ⇒ [x]�

(a,a′)
=⇒� [x′]�

– F+/ � is the partitioning of F+ with respect to � (this will be well-defined
since, as we shall see later, F+ is a union of equivalence classes).

Our proposed algorithm now builds a sequence T̃0, T̃1, T̃2, · · · of transducers.
The states of each T̃i is Q+/ �, and its transition relation will be a subset of
=⇒�. The procedure incrementally adds transitions in =⇒� between equivalence
classes, and therefore the relations accepted by T̃0, T̃1, · · · will be successively
larger subsets of the relation accepted by T�.

Based on these ideas, here is the algorithm for computing a transducer for
the transitive closure.

122 Parosh Aziz Abdulla et al.

– The initial transducer T̃0 is obtained from T by taking all transitions in −→
and replacing all left- or right-copying states q by q+.

– In each step of the procedure, =⇒i+1 is obtained from =⇒i by adding tran-

sitions of form X � X ′(a,c)
=⇒i+1Y � Y ′ such that X

(a,b)
=⇒iY and X ′(b,c)=⇒0Y

′.
– The algorithm terminates when the relation R+ is accepted by T̃i. This can
be tested by checking if the language of T̃i ◦ R is included in T̃i.

Example (ctd.) Continuing our example from Section 2, we arrive at the below
transducer after adding some more transitions. At this point, the termination
test succeeds, implying that the below transducer indeed accepts the transitive
closure of the original relation.

❄✛
✚

✘
✙

q+
L

✻

✛

✚

✘

✙
(⊥,⊥) ✲(a,⊥)✛

✚
✘
✙q1 ✲(b, a)

✛
✚

✘
✙q2 ✲(⊥, b)

✛
✚

✘
✙

✗
✖

✔
✕q+

R

❄
✘

✙

✛

✚
(⊥,⊥)

❆
❆(a,⊥)
✛
✚

✘
✙

q1q
+
L ✲(b,⊥)✛

✚
✘
✙q2q1 ✲(⊥, a)

✛
✚

✘
✙

q+
Rq2 ✁

✁
✁✕

(⊥, b)

❆
❆(b,⊥)
✛
✚

✘
✙

q2q1q
+
L ✲(⊥,⊥)✛

✚
✘
✙

q+
Rq2q1 ✁

✁
✁✕

(⊥, a)

❆
❆(⊥,⊥)
✛
✚

✘
✙

q+
Rq2q1q

+
L ✁

✁
✁✕

(⊥,⊥)✛

✚ ✙
✛
✚

✘
✙

(⊥,⊥)

4 Correctness

In this section we show correctness (soundness and completeness) of our con-
struction. We do this in two steps. First, we prove (Corollary 1) that T� is
equivalent to T+ in the sense that both transducers accept the same relation on
words. Then, we relate the transducer generated by the algorithm in Section 3
to T� proving its soundness (Theorem 3) and completeness (Theorem 4).

We also present sufficient conditions for termination of the algorithm, which
implies that our approach is sufficiently general to cover several classes of systems
considered in earlier works.

Before doing this, we need a technical result saying that, since T is determin-
istic, we can ignore columns containing distinct consecutive left-copying states.

Lemma 1. Any column x which contains two distinct consecutive left-copying
states, i.e., is of form x = x1 · q1 · q2 ·x2 where q1 and q2 are distinct left-copying
states, is unreachable in T+.

Regular Model Checking Made Simple and Efficient 123

Proof. Follows directly from the fact that T is deterministic, and that the set of
initial states of T + is q+

0 .

Lemma 2. The relation accepted by T + remains the same if we remove all
columns that contain two distinct consecutive left-copying states. Analogously,
the relation accepted by T� remains the same if we remove all equivalence classes
that contain two distinct consecutive left-copying states.

Proof. Follows directly from Lemma 1, and the observation that if some column
in an equivalence class contains two distinct consecutive left-copying states, then
all columns in this equivalence class will also do so.

In the rest of this paper, we will thus assume that all columns with two distinct
consecutive left-copying states are removed from T+ and T�.

Equivalence of T� and T + The crucial part in proving the equivalence
of T� and T + (Corollary 1) is to show (Theorem 1) that the equivalence relation
� contains a forward simulation and a backward simulation relation with certain
properties.

A relation ≤F on the set Q+ of columns is a forward simulation if whenever

x ≤F y and x
(a,b)
=⇒ x′ for columns x, y, x′, and symbols a, b, there is a column y′

such that y
(a,b)
=⇒ y′ and x′ ≤F y′. Analogously, a relation≤B on the set of columns

is a backward simulation if whenever x ≤B y and x′ (a,b)
=⇒ x for columns x, y, x′,

and symbols a, b, there is a column y′ such that y′ (a,b)
=⇒ y and x′ ≤B y′.

Theorem 1. There is a forward simulation ≤F and a backward simulation ≤B

with ≤F⊆� and ≤B⊆� such that for all columns x and y with x � y, there is
some column z such that x ≤F z and y ≤B z.

Proof. We must define the forward simulation ≤F and the backward simulation
≤B on columns. Let x and y be two equivalent columns. Then they must be of
form x = e1e2 · · · en and y = f1f2 · · · fn, where for each k, we have either ek =
fk = q for some state q, or that ek = qi and fk = qj for some left- or right-
copying state q. Furthermore, no consecutive ek (or fk) contain the same left-
or right-copying state. Define

– e1e2 · · · en ≤F f1f2 · · · fn iff in addition ek = fk whenever ek = qi for some
left-copying state q,

– e1e2 · · · en ≤B f1f2 · · · fn iff in addition ek = fk whenever ek = qi for some
right-copying state q.

Intuitively, ≤F ignores the number of repetitions of consecutive right-copying
states, and ≤B ignores the number of repetitions of consecutive left-copying
states. We must prove that ≤F is a forward simulation, and that ≤B is a back-
ward simulation. Let x = e1e2 · · · en and y = f1f2 · · · fn be as above.

124 Parosh Aziz Abdulla et al.

≤F : Assume x ≤F y. If x
(a,b)
=⇒ x′, then x′ is of form x′ = e′1e

′
2 · · · e′n. We can

choose y′ as f ′
1f

′
2 · · · f ′

n, where f ′
k = e′k, except when ek is of the form qi for

a right-copying state q. However, in this case, since T is deterministic, e′k
will be of form q′i for a right-copying state q′, whence we can choose f ′

k as
q′j .

≤B: Assume x ≤B y. If x′ (a,b)
=⇒ x, then x′ is of form x′ = e′1e

′
2 · · · e′n. We can

choose y′ as f ′
1f

′
2 · · · f ′

n, where f ′
k = e′k, except when ek is of the form qi

for a left-copying state q. However, in this case, by Lemma 2, e′k will be of
form q′i for a left-copying state q′, whence we can choose f ′

k as q′j .

For each pair x = e1e2 · · · en and y = f1f2 · · · fn of equivalent columns, we
can now find a z with x ≤F z and y ≤B z by taking z as g1g2 · · · gn, where gk is

– ek if ek = fk,
– gk = ek whenever ek = qi for some left-copying state q,
– gk = fk whenever ek = qi for some right-copying state q.

We are now ready to prove the main theorem of this section, namely that
the set of traces of T� is included in the set of traces of T +.

Theorem 2. T� and T + have the same set of traces.

Proof. Notice that since T� is a collapsed version of T +, it will obviously have
more traces. We just need to show the inclusion in the other direction.

We will show that for each sequence of transitions of T�

X0
(a1,b1)
=⇒� X1

(a2,b2)=⇒� · · · (an−1,bn−1)=⇒� Xn−1
(an,bn)
=⇒� Xn

there is a corresponding sequence of transitions of T+.

x0
(a1,b1)=⇒ x1

(a2,b2)=⇒ · · · (an−1,bn−1)=⇒ xn−1
(an,bn)
=⇒ xn

where xi ∈ Xi for i = 0, . . . , n. We show this by induction on the length n of the
sequence.

• Base case: The empty trace is trivially in both T� and T +.
• Inductive case: Assume that the property is true for n. Let w = w1 ·
(an+1, bn+1) be a trace of length n + 1. Then w1 is a trace of length n,
and by the induction hypothesis, there exists a trace of T+ for w1 as in the
display above. Let w be accepted by the sequence of transitions

X0
(a1,b1)=⇒� · · · (an,bn)

=⇒� Xn
(an+1,bn+1)=⇒� Xn+1

meaning that there are yn ∈ Xn and yn+1 ∈ Xn+1 such that yn
(an+1,bn+1)=⇒

yn+1. Since xn ∈ Xn we have xn � yn, and hence there is a zn such that
xn ≤B zn and yn ≤F zn. From yn ≤F zn we infer that there is a zn+1 ∈ Xn+1

such that
zn

(an+1,bn+1)=⇒ zn+1

Regular Model Checking Made Simple and Efficient 125

From xn ≤B zn we infer that there is a sequence

z0
(a1,b1)
=⇒ · · · (an,bn)

=⇒ zn

such that xi ≤B zi for i = 0, . . . , n, implying that zi ∈ Xi for i = 0, . . . , n.
We can thus conclude that the sequence

z0
(a1,b1)=⇒ · · · (an,bn)

=⇒ zn
(an+1,bn+1)=⇒ zn+1

satisfies the conditions for the inductive step.

From this theorem, we can deduce that T� and T + accept the same relation.

Corollary 1. T� and T + accept the same relation.

Proof. We notice that the union of the sets attached to each final state of T�
is the set of final columns of T + (they form a partition of it w.r.t �). Thus we
can conclude that any trace that is an accepting run in one automaton is also
an accepting run in the other automaton.

Soundness and Completeness We are now ready to prove the soundness
and completeness of the algorithm. For soundness, we show that the transition
relation obtained in each step of the algorithm is contained in =⇒�.

Theorem 3. For every k, =⇒k ⊆=⇒�.

Proof. For k = 0, let X, Y be two equivalence classes such that X
(a,a′)
=⇒ 0Y for

some pair (a, a′). Since =⇒0 is obtained from T by substituting each state with
its equivalence-class, we must have that X = [q]� and Y = [q′]� for some states

q, q′ such that q
(a,a′)−→ q′. Thus X

(a,a′)
=⇒� Y .

Now take k > 0 and assume that for all k′ < k we have =⇒k′ ⊆=⇒�. Let

X, X ′, Y, Y ′ be equivalence classes such that X
(a,b)
=⇒k−1Y and X ′(b,c)=⇒0Y

′. Then

we have to show that X �X ′ (a,c)
=⇒� Y �Y ′. By induction, we have that X

(a,b)
=⇒� Y

and X ′ (b,c)
=⇒� Y ′. Then we must have x

(a,b)
=⇒ y and x′ (b,c)

=⇒ y′ for some x, x′, y, y′

where [x]� = X , [x′]� = X ′, [y]� = Y and [y′]� = Y ′. We get x·x′ (a,c)
=⇒ y ·y′, and

thus by definition of concatenation of equivalence classes, X � X ′ (a,c)
=⇒� Y � Y ′.

The following completeness theorem states that any pair in the transitive
closure will eventually be generated by the algorithm.

Theorem 4. Let (w, w′) be a word in R+. Then there is some k such that T̃k

accepts (w, w′).

126 Parosh Aziz Abdulla et al.

Proof. Let x1, x2, · · · , xn be a run of T + accepting (w, w′). This run can be
organized as columns of the following matrix:

q1
1

(a0
1,a1

1)−−−−−−−−−−→ q1
2

(a0
2,a1

2)−−−−−−−−−−→ · · · q1
n−1

(a0
n−1,a1

n−1)−−−−−−−−−−→ q1
n

q2
1

(a1
1,a2

1)−−−−−−−−−−→ q2
2

(a1
2,a2

2)−−−−−−−−−−→ · · · q2
n−1

(a1
n−1,a2

n−1)−−−−−−−−−−→ q2
n

...

qm
1

(am−1
1 ,am

1)

−−−−−−−−−−→ qm
2

(am−1
2 ,am

2)

−−−−−−−−−−→ · · · qm
n−1

(am−1
n−1 ,am

n−1)−−−−−−−−−−→ qm
n

where for all i with 1 ≤ i < n and all j with 1 ≤ j ≤ m we have that

qj
i

(aj−1
i ,aj

i)−→ qj
i+1. Note that we have w = a0

1 . . . a0
n−1, w′ = am

1 . . . am
n−1, and for

each i, xi = q1
i . . . qm

i .
We now prove by induction on the number of rows of this matrix that the

pair (w, w′) is eventually accepted by the transducer built by the algorithm.

By the definition of =⇒0 we get that [q
j
i]�

(aj−1
i ,aj

i)=⇒ 0[q
j
i+1]� , for all i with 1 ≤

i < n and all j with 1 ≤ j ≤ m. Taking j = 1, we get that [q1
1]�, [q1

2]�, . . . , [q1
n]�

is a run of T̃0 accepting (a0
1, a

1
1) · (a0

2, a
1
2) . . . (a

0
n−1, a

1
n−1).

Now suppose that in some step i in the algorithm, for some k we have built
the transition relation =⇒i such that X1, X2, . . . , Xn is a run of T̃i accepting
(a0

1, a
k
1) · (a0

2, a
k
2) · · · (a0

n−1, a
k
n−1). Then since [qk+1

1]�, [qk+1
2]�, . . . , [qk+1

n]� is a
run of T̃0 accepting (ak

1 , ak+1
1) · (ak

2 , ak+1
2) · · · (ak

n−1, a
k+1
n−1), transitions will be in

=⇒i+1 such that X1 � [qk+1
1]�, X2 � [qk+1

2]� . . .Xn � [qk+1
n]� is a run of T̃i+1

accepting (a0
1, a

k+1
1) · (a0

2, a
k+1
2) · · · (a0

n−1, a
k+1
n−1).

Termination The termination of our method is dependent on the number of
different equivalence classes of the form e1e2 · · · en which might be generated
during construction of the transitive closure. This number in turn depends on
two parameters:

1. the number of non-copying states in columns, and
2. the number of alternations of copying states in columns.

Therefore a bound on these two parameters is a sufficient condition for termina-
tion.

In [JN00], we introduced a class of systems which satisfied the bounded local
depth property. Roughly speaking, this property means that there is a bound on
the number of times each position in a word is rewritten when applying the trans-
ducer to the word an arbitrary number of times. For example, a system passing
a token to the right has local depth 2, since each position can be rewritten at
most twice; once when passing the token, and once when receiving it. In [JN00],
we also assumed that there could only be at most one left-copying state and one
right-copying state. For this class of systems, it can be shown that for each pair
of words in the transitive closure, there is a run of the column transducer having

Regular Model Checking Made Simple and Efficient 127

at most two alternations of the left-copying state and the right-copying state.
Thus, our construction will also terminate under the condition of bounded local
depth.

Caucal [Cau00] presents a construction of a transducer for the transitive
closure of rewriting relations which are called right-overlapping (or symmetrically
left-overlapping). Roughly, this means that each rewritings must occur at the
same position or further to the right than the previous. We can adapt these
definitions to our framework. Space does not permit a thorough development,
but the transducer in Section 2 defines a right-overlapping relation. We can show
that our algorithm is able to compute the transitive closure of such relations.

5 Implementation

We have implemented the technique presented in this paper and run it on a num-
ber of mutual exclusion and termination detection protocols. We have compared
the performance of the algorithm with our earlier work [BJNT00].

The technique in [BJNT00] is based on applying subset construction to the
column transducer and on-the-fly identification of equivalent (w.r.t. suffixes)
states. The subset construction technique represents sets of states (columns) by
finite-state automata and involves several operations on regular sets, such as

– computing post-images of sets of columns represented by finite-state au-
tomata,

– saturating generated sets of columns, a technique for detecting equivalent
sets by adding columns to them, and

– testing saturated sets for equality against all previous sets.

All the above operations can potentially be expensive. In contrast, our new
algorithm represents the equivalence classes as vectors of states. The concatena-
tion operator is a variant of concatenation of vectors, and equivalence checking
of vectors is fast and can be hashed effectively.

We have implemented an obvious optimization to our new method to avoid
generating useless states, namely, in each step, we only merge transitions where

X
(a,b)
=⇒ X ′ and Y

(b,c)
=⇒ Y ′ only if all X, X ′, Y, Y ′ are both reachable and pro-

ductive in the transducer obtained in the previous step. Using this technique,
we substantially reduce the number of generated useless states. It should be
mentioned that it is not clear whether all operations in the subset construction
method are implemented in the most efficient way, since there are many ways to
represent automata. Nevertheless, the initial experiments indicate that the new
method runs several times faster.

We have measured the BDD node usage and execution times for comput-
ing transitive closures of relations used in the mutual exclusion algorithm of
Szymanski and the mutual exclusion algorithm of Dijkstra. The results follow
the same pattern for all relations. In Fig. 1, the execution time for relations
from the algorithms are shown. In Fig. 2, the number of BDD nodes used over
time for the computation of the transitive closure for one relation is shown, the

128 Parosh Aziz Abdulla et al.

old
new

ti
m
e
(m
s)

35000

30000

25000

20000

15000

10000

5000

0

Fig. 1. Execution times for transitive closures of relations. Each relation is a
statement in the algorithm of Szymanski or Dijkstra

other relations follow a similar pattern. Note that the instrumentation for this
measurement adds to the execution time by a factor up to two.

For all relations, the new algorithm performs better than the old one. How-
ever, the difference in BDD node usage is the most dramatic. For the old algo-
rithm, each peak corresponds to finding post-images and then adding them to
the current automaton. Each BDD peak for the new method corresponds to a
semantic check to see if we have computed the transitive closure. The dramatic
usage of BDD nodes for the old method can be explained by the many compli-
cated automata operations described earlier. The new method is simpler, it just
combines and adds transitions, giving a low BDD node usage.

We expect to be able to improve the new method further by considering
different ways of scheduling the matching operations. Also, it may be possible
to find ways to remember already tried combinations to avoid repeated work.

old
new

time (ms)

N
u
m
b
er
o
f
B
D
D
n
o
d
es

6000050000400003000020000100000

200000
180000
160000
140000
120000
100000
80000
60000

40000
20000
0

Fig. 2. Typical BDD node usage for transitive closures of relations, in this case
a statement in Dijkstra’s Algorithm

Regular Model Checking Made Simple and Efficient 129

6 Conclusions and Future Research

We have presented a new technique for performing regular model checking. More
precisely, given a finite-state transducer, our algorithm generates a new trans-
ducer corresponding to the transitive closure of the original one. The algorithm
involves two ingredients, namely a matching operation which combines existing
transitions to add new ones, and an equivalence relation which enables us to
merge states. An important property of the equivalence relation is that it is
syntactically characterized and hence possible to decide locally.

A crucial aspect in the application of the algorithm is the order in which the
matching operation is performed on transitions. By defining appropriate match-
ing strategies, we believe that our algorithm can be made both to uniformly sim-
ulate existing algorithms for parameterized protocols [JN00, BJNT00], rewriting
systems [Cau00], push-down systems [BEM97, Cau92, FWW97], etc, and to pro-
duce more efficient versions of these algorithms. Furthermore, we think that the
generality of construction will enable us to extend the algorithm to other classes
of relations than those on words, e.g., relations on trees and graphs. This would
allow us to verify systems with dynamic behaviours such as data security proto-
cols, mobile protocols, etc.

References

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly
analysis of systems with unbounded, lossy fifo channels. In Proc. CAV
’98, volume 1427 of LNCS, pages 305–318, 1998. 117

[ABJN99] Parosh Aziz Abdulla, Ahmed Bouajjani, Bengt Jonsson, and Marcus
Nilsson. Handling global conditions in parameterized system verification.
In Proc. CAV ’99, volume 1633 of LNCS, pages 134–145, 1999. 116, 117,
118

[BCMD92] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Symbolic
model checking: 1020 states and beyond. Information and Computation,
98:142–170, 1992. 117

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Push-
down Automata: Application to Model Checking. In Proc. CONCUR’97.
LNCS 1243, 1997. 117, 129

[BFL] B. Boigelot, J.-M. François, and L. Latour. The Liége automata-based
symbolic handler (lash). Available at
http://www.montefiore.ulg.ac.be/~boigelot/ research/lash/. 116

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Alur and Henzinger,
editors, Proc. CAV ’96, volume 1102 of LNCS, pages 1–12. Springer Ver-
lag, 1996. 117

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Proc. of the Fourth International Static Analysis Symposium,
LNCS. Springer Verlag, 1997. 117

[BH97] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. In Proc. ICALP

130 Parosh Aziz Abdulla et al.

’97, 24th International Colloquium on Automata, Lnaguages, and Pro-
gramming, volume 1256 of LNCS, 1997. 117

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In Emerson and Sistla, editors, Proc. CAV ’00, volume 1855 of
LNCS, pages 403–418, 2000. 116, 117, 118, 127, 129

[BMT01] A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and
algorithmic verification. In Proc. LICS’ 01 17th IEEE Int. Symp. on
Logic in Computer Science. IEEE, 2001. 118

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Proc. CAV ’94, volume 818 of LNCS, pages 55–67. Springer Verlag, 1994.
117

[Cau92] Didier Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61–86, Nov. 1992. 117, 129

[Cau00] Didier Caucal. On word rewriting systems having a rational derivation.
In FOSSACS 2000, volume 1784 of LNCS, pages 48–62, April 2000. 118,
127, 129

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis
and presburger arithmetic. In CAV’98. LNCS 1427, 1998. 117

[DLS01] D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. CAV ’01, volume
2102 of LNCS, 2001. 118

[ES01] J. Esparza and S. Schwoon. A bdd-based model checker for recursive
programs. In Proc. CAV ’01, volume 2102 of LNCS, pages 324–336,
2001. 117

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems (extended abstract). In Proc. Infin-
ity’97, Electronic Notes in Theoretical Computer Science, Bologna, 1997.
117, 129

[HJJ+96] J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in prac-
tice. In Proc. TACAS ’95, volume 1019 of LNCS, 1996. 116

[JN00] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular rela-
tions for verifying infinite-state systems. In S. Graf and M. Schwartzbach,
editors, Proc. TACAS ’00, volume 1785 of LNCS, 2000. 117, 118, 126,
129

[KMM+97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. In O. Grumberg, editor,
Proc. CAV ’97, volume 1254, pages 424–435, Haifa, Israel, 1997. Springer
Verlag. 116

[KMMG97] P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: A flexible
toolset for monadic second–order logic. In Proc. TACAS ’97, volume 1217
of LNCS, pages 183–202, Heidelberg, Germany, March 1997. Springer
Verlag. 116

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In Proc. CAV ’00, volume 1855 of LNCS, pages 328–343,
2000. 116, 117, 118

[Tou01] T. Touili. Regular Model Checking using Widening Techniques. Elec-
tronic Notes in Theoretical Computer Science, 50(4), 2001. Proc. Work-
shop on Verification of Parametrized Systems (VEPAS’01), Crete, July,
2001. 118

Regular Model Checking Made Simple and Efficient 131

[WB98] Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but
regular state spaces. In Proc. CAV ’98, volume 1427 of LNCS, pages
88–97, Vancouver, July 1998. Springer Verlag. 116

	Regular Model Checking Made Simple and Efficient
	Introduction
	An Example
	Algorithm
	Correctness
	Implementation
	Conclusions and Future Research

