Abstract Regular Model Checking by Ahmed Bouajjani, Peter Habermehl and Tomáš Vojnar

presented by Joakim Byg

Introduction

- Problem
 - Reachability
 - Safety
 - Liveness
 - UPPAAL
 - State Space Space explosion
- Abstract/Over Approximate

Motivation

- Regular Model Checking (RMC) is Turing Complete
 - even though:

A set of initial strings, I, is regular and a given Transducer, T, is a (nondeterministic) Finite Automaton, the computation of $T^*(I)$ is not necessary regular! Where $T^*(I)$ means that T is used none or several times on I

Example

 Let *I* be described by the regular expression: #0-*#1-*#, and Let Σ_T = {#,0,1,-} and *Q*,q₀,*F* and δ(⊆*Q*×Σ_{Tε}×Σ_{Tε}×Q) of *T* is defined as the graph implies:

 Now *T*(I)* actually describes the language: #0ⁿ#1ⁿ#, which is context free (not regular)

Agenda

- Concerning Abstractions
- How to Abstract
- Experiments
- Conclusion

Concerning Abstractions

State Space Reduction

Turing Completeness

- Problem:
 - Infinitely many reachable states (variables)
 - State Space Explosion
- Methods of Reduction of States
 - length preserving of strings
 - Over Approximation

Turing Completeness

- Problem:
 - Infinitely many reachable states (variables)
 - State Space Explosion
- Methods of Reduction of States
 - length preserving of strings
 - Over Approximation

We want an over approximation of *T*(I)* with less states.

If the over approximation result in a positive result with respect to $\alpha(T)^*(I) \cap L(B) = \emptyset$,

 $T^*(I) \cap L(B) = \emptyset$ also holds.

 Let M_∑ denote all FA over the finite alphabet, ∑, and Let A_∑ be a FA, st. A_∑⊆ M_∑, then α is a function:
α: M_∑→A_∑, st. ∀M∈M_∑: L(M)⊆L(α(M)) which is finitary ⇔ A_∑ is finite.

- Now we use this idea on transducers
 - Let τ_s denote the smallest deterministic automaton of $\tau(L(M))$ and $\tau_a(M) = \alpha(\tau_s(M))$
 - Because α is finitary, we will when computing $\tau_{a}(M)$ iteratively reach a situation: $\tau_{a}^{k+1}(M) = \tau_{a}^{k}(M)$

• What does this imply, with respect to $L(\tau^{k}(M))$?

- Now we use this idea on transducers
 - Let τ_s denote the smallest deterministic automaton of $\tau(L(M))$ and $\tau_a(M) = \alpha(\tau_s(M))$
 - Because α is finitary, we will when computing $\tau_{a}(M)$ iteratively reach a situation: $\tau_{a}^{k+1}(M) = \tau_{a}^{k}(M)$
 - What does this imply, with respect to $L(\tau_a^{k}(M))$? $\tau^{*}(L(M)) \subseteq L(\tau_a^{k}(M))$

• What if $\tau^*(I) \cap L(B) = \emptyset$ suddenly is false?

- Then **Refining** is necessary.
 - Maybe we will have to refine back to the initial transducer.
 - This way we will get a "maybe" answer from the computation.

How to Abstract

Collapsing of States

Two Ways of Collapsing

- Predicate Languages
- Bounded Length Behaviours

Predicate Languages

Define: Backwards Language, L[←], is the set of words that can be reached from some state, q, of a FA, M, to q₀ of M:

 $L^{\leftarrow}(M,q) = \{w|q_0 \to w q\}$

- Define: Forward Predicate Language, F_{φ} , is the language of a given predicate automaton, $^{\circ}$.
- Define: Backwards Predicate Language, B_{∞} , is the backwards language of a predicate automaton, \mathcal{O} .

Predicate Languages

- Define: Two states, q_x, q_z , of FA are stateequivalent, when the intersection of their predicate languages is nonempty: $L_{\infty}(M, q_x) \cap L_{\infty}(M, q_z) = S$, where S is nonempty
- Example:

Predicate Languages

- Define: Two states, q_x, q_z , of FA are stateequivalent, when the intersection of their predicate languages is nonempty: $L_{\infty}(M, q_x) \cap L_{\infty}(M, q_z) = S$, where S is nonempty
- Example:

- Think of Predicate Languages, but words must have a certain length!
- Example: Length ≤1

- Think of Predicate Languages, but words must have a certain length!
- Example: Length ≤1

- Think of Predicate Languages, but words must have a certain length!
- Example: Length ≥2

- Think of Predicate Languages, but words must have a certain length!
- Example: Length ≥2

Experiments

- Examples of application:
 - Alternating Bit Protocol
 - Petri Nets (Systems with unbounded counters)
 - Dynamic Linked Data Structures

Dynamic Linked Data Structures

- Reversing a linear list
- String encoding of memory and pointers

Result

- Quite Fast verifications at max 22 sec on low end PC (1,7GHz P4)!
- 5 Gossiping Girls 20min on a 2,0GHz P Core Duo in UPPAAL

Summery

- What is an Abstraction/Over Approximation
 - Computable when α is finitary
 - Sneaking Bad Configurations
- How is it done
 - Predicate Language
 - Bounded Length Behaviour
- Quite Effective

Last Words

- Future work
 - Will some classes of problems be guaranteed to terminate?
 - Lower Bound in Bounded Length Behaviour equivalence :)
- My opinion
 - Promising