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Introduction

● Problem
– Reachability

● Safety
● Liveness
● UPPAAL

– State Space Space explosion

● Abstract/Over Approximate



  

Motivation

● Regular Model Checking (RMC) is Turing 
Complete
– even though:

A set of initial strings, I, is regular and a given Transducer, T, is a 
(nondeterministic) Finite Automaton, the computation of  T*(I) is 
not necessary regular! Where T*(I) means that T is used none or several 
times on I



  

Example

● Let I be described by the regular expression: 
#0-*#1-*# , and 

Let ⅀T= {#,0,1,-} and Q,q
0
,F and δ(⊆Qх⅀ Tεх⅀ TεхQ) of 

T is defined as the graph implies:

● Now T*(I) actually describes the language:
#0n#1n#, which is context free (not regular)
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Agenda

● Concerning Abstractions
● How to Abstract
● Experiments
● Conclusion



  

Concerning Abstractions

State Space Reduction



  

Turing Completeness

● Problem:
– Infinitely many reachable states (variables)

● State Space Explosion

● Methods of Reduction of States
– length preserving of strings
– Over Approximation
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Turing Completeness

● Problem:
– Infinitely many reachable states (variables)

● State Space Explosion

● Methods of Reduction of States
– length preserving of strings
– Over Approximation
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Over Approximating

● We want an over approximation of T*(I) with 
less states. 
If the over approximation result in a positive 
result with respect to α(T)*(I)  L(B)=Ø∩ ,
T*(I)  L(B)=Ø∩  also holds.



  

Over Approximating

● Let M⅀ denote all FA over the finite alphabet, ⅀, and 

Let A⅀ 
be a FA, st. A⅀  ⊆ M⅀, then α is a function:

α: M  ⅀→A⅀, st. M∀ ∈M⅀: L(M)⊆L(α(M))
which is finitary  ⇔ A⅀ is finite.



  

Over Approximating

● Now we use this idea on transducers

– Let τs denote the smallest deterministic automaton of τ(L(M)) and 

τα(M)= α(τs(M))

– Because α is finitary, we will when computing τα(M) iteratively 

reach a situation: τα
k+1(M) = τα

k(M)

● What does this imply, with respect to L(τα
k(M))?



  

Over Approximating

● Now we use this idea on transducers

– Let τs denote the smallest deterministic automaton of τ(L(M)) and 

τα(M)= α(τs(M))

– Because α is finitary, we will when computing τα(M) iteratively 

reach a situation: τα
k+1(M) = τα

k(M)

● What does this imply, with respect to L(τα
k(M))?

τ*(L(M))  ⊆ L(τα
k(M))



  

Over Approximating

● What if τ*(I)  L(B)=Ø∩  suddenly is false?

The Badness



  

Over Approximating

● Then Refining is necessary.
– Maybe we will have to refine back to the initial 

transducer.
– This way we will get a “maybe” answer from the 

computation.



  

How to Abstract

Collapsing of States



  

Two Ways of Collapsing

● Predicate Languages
● Bounded Length Behaviours



  

Predicate Languages

● Define: Backwards Language, L←, is the set of 
words that can be reached from some state, q, 
of a FA, M, to q

0
 of M:

L←(M, q) = {wIq0→w q}

● Define: Forward Predicate Language, FᏡ, is the 
language of a given predicate automaton, Ꮱ.

● Define: Backwards Predicate Language, BᏡ, is 
the backwards language of a predicate 
automaton, Ꮱ.



  

Predicate Languages

● Define: Two states, qx,qz, of FA are state-
equivalent, when the intersection of their 
predicate languages is nonempty:

LᏡ(M, qx)∩LᏡ(M, qz)=S, where S is nonempty

● Example:
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Predicate Languages

● Define: Two states, qx,qz, of FA are state-
equivalent, when the intersection of their 
predicate languages is nonempty:

LᏡ(M, qx)∩LᏡ(M, qz)=S, where S is nonempty

● Example:
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Bounded Length Behaviours

● Think of Predicate Languages, but words must 
have a certain length!

● Example:
Length ≤1
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Bounded Length Behaviours

● Think of Predicate Languages, but words must 
have a certain length!

● Example:
Length ≤1
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Bounded Length Behaviours

● Think of Predicate Languages, but words must 
have a certain length!

● Example:
Length ≥2
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Bounded Length Behaviours

● Think of Predicate Languages, but words must 
have a certain length!

● Example:
Length ≥2
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Experiments

● Examples of application:
– Alternating Bit Protocol
– Petri Nets (Systems with unbounded counters)
– Dynamic Linked Data Structures



  

Dynamic Linked Data Structures

● Reversing a linear list
● String encoding of memory and pointers



  

Result

● Quite Fast verifications at max 22 sec on low 
end PC (1,7GHz P4)!

● 5 Gossiping Girls 20min on a 2,0GHz P Core 
Duo in UPPAAL



  

Summery

● What is an Abstraction/Over Approximation

– Computable when α is finitary

– Sneaking Bad Configurations

● How is it done
– Predicate Language
– Bounded Length Behaviour

● Quite Effective



  

Last Words

● Future work
– Will some classes of problems be guaranteed to 

terminate?
– Lower Bound in Bounded Length Behaviour 

equivalence :)

● My opinion
– Promising


