

Abstract Regular Model Checking
by

Ahmed Bouajjani, Peter Habermehl and
Tomáš Vojnar

presented by
Joakim Byg

Introduction

● Problem
– Reachability

● Safety
● Liveness
● UPPAAL

– State Space Space explosion

● Abstract/Over Approximate

Motivation

● Regular Model Checking (RMC) is Turing
Complete
– even though:

A set of initial strings, I, is regular and a given Transducer, T, is a
(nondeterministic) Finite Automaton, the computation of T*(I) is
not necessary regular! Where T*(I) means that T is used none or several
times on I

Example

● Let I be described by the regular expression:
#0-*#1-*# , and

Let ⅀T= {#,0,1,-} and Q,q
0
,F and δ(⊆Qх⅀ Tεх⅀ TεхQ) of

T is defined as the graph implies:

● Now T*(I) actually describes the language:
#0n#1n#, which is context free (not regular)

q
1

q
2

q
3

q
4

#/# -/0 #/# -/1 #/#

0/0 -/- 1/1 -/-

q
acc

q
0

Agenda

● Concerning Abstractions
● How to Abstract
● Experiments
● Conclusion

Concerning Abstractions

State Space Reduction

Turing Completeness

● Problem:
– Infinitely many reachable states (variables)

● State Space Explosion

● Methods of Reduction of States
– length preserving of strings
– Over Approximation

q
1

q
2

q
3

q
4

#/# -/0 #/# -/1 #/#

0/0 -/- 1/1 -/-

q
acc

q
0

Turing Completeness

● Problem:
– Infinitely many reachable states (variables)

● State Space Explosion

● Methods of Reduction of States
– length preserving of strings
– Over Approximation

q
1,2

q
3

q
4

#/#

-/0

#/# -/1 #/#

0/0 -/-
1/1 -/-

q
acc

q
0

Over Approximating

● We want an over approximation of T*(I) with
less states.
If the over approximation result in a positive
result with respect to α(T)*(I) L(B)=Ø∩ ,
T*(I) L(B)=Ø∩ also holds.

Over Approximating

● Let M⅀ denote all FA over the finite alphabet, ⅀, and

Let A⅀
be a FA, st. A⅀ ⊆ M⅀, then α is a function:

α: M ⅀→A⅀, st. M∀ ∈M⅀: L(M)⊆L(α(M))
which is finitary ⇔ A⅀ is finite.

Over Approximating

● Now we use this idea on transducers

– Let τs denote the smallest deterministic automaton of τ(L(M)) and

τα(M)= α(τs(M))

– Because α is finitary, we will when computing τα(M) iteratively

reach a situation: τα
k+1(M) = τα

k(M)

● What does this imply, with respect to L(τα
k(M))?

Over Approximating

● Now we use this idea on transducers

– Let τs denote the smallest deterministic automaton of τ(L(M)) and

τα(M)= α(τs(M))

– Because α is finitary, we will when computing τα(M) iteratively

reach a situation: τα
k+1(M) = τα

k(M)

● What does this imply, with respect to L(τα
k(M))?

τ*(L(M)) ⊆ L(τα
k(M))

Over Approximating

● What if τ*(I) L(B)=Ø∩ suddenly is false?

The Badness

Over Approximating

● Then Refining is necessary.
– Maybe we will have to refine back to the initial

transducer.
– This way we will get a “maybe” answer from the

computation.

How to Abstract

Collapsing of States

Two Ways of Collapsing

● Predicate Languages
● Bounded Length Behaviours

Predicate Languages

● Define: Backwards Language, L←, is the set of
words that can be reached from some state, q,
of a FA, M, to q

0
 of M:

L←(M, q) = {wIq0→w q}

● Define: Forward Predicate Language, FᏡ, is the
language of a given predicate automaton, Ꮱ.

● Define: Backwards Predicate Language, BᏡ, is
the backwards language of a predicate
automaton, Ꮱ.

Predicate Languages

● Define: Two states, qx,qz, of FA are state-
equivalent, when the intersection of their
predicate languages is nonempty:

LᏡ(M, qx)∩LᏡ(M, qz)=S, where S is nonempty

● Example:

q
1

q
2

q
3

q
4

#/# -/0 #/# -/1 #/#

0/0 -/- 1/1 -/-

q
acc

q
0

Predicate Languages

● Define: Two states, qx,qz, of FA are state-
equivalent, when the intersection of their
predicate languages is nonempty:

LᏡ(M, qx)∩LᏡ(M, qz)=S, where S is nonempty

● Example:

q
1

q
0,2,4

q
3

#/#

-/0 #/#
-/1

0/0 -/- 1/1

q
acc

#/#

Bounded Length Behaviours

● Think of Predicate Languages, but words must
have a certain length!

● Example:
Length ≤1

q
1

q
2

q
3

q
4

#/# -/0 #/# -/1 #/#

0/0 -/- 1/1 -/-

q
acc

q
0

Bounded Length Behaviours

● Think of Predicate Languages, but words must
have a certain length!

● Example:
Length ≤1

q
1

q
0,2,4

q
3

#/#

-/0 #/#
-/1

0/0 -/- 1/1

q
acc

#/#

Bounded Length Behaviours

● Think of Predicate Languages, but words must
have a certain length!

● Example:
Length ≥2

q
1

q
2

q
3

q
4

#/# -/0 #/# -/1 #/#

0/0 -/- 1/1 -/-

q
acc

q
0

Bounded Length Behaviours

● Think of Predicate Languages, but words must
have a certain length!

● Example:
Length ≥2

q
1

q
2,4

q
3

#/# -/0 #/#
-/1

#/#

0/0 -/- 1/1

q
acc

q
0

Experiments

● Examples of application:
– Alternating Bit Protocol
– Petri Nets (Systems with unbounded counters)
– Dynamic Linked Data Structures

Dynamic Linked Data Structures

● Reversing a linear list
● String encoding of memory and pointers

Result

● Quite Fast verifications at max 22 sec on low
end PC (1,7GHz P4)!

● 5 Gossiping Girls 20min on a 2,0GHz P Core
Duo in UPPAAL

Summery

● What is an Abstraction/Over Approximation

– Computable when α is finitary

– Sneaking Bad Configurations

● How is it done
– Predicate Language
– Bounded Length Behaviour

● Quite Effective

Last Words

● Future work
– Will some classes of problems be guaranteed to

terminate?
– Lower Bound in Bounded Length Behaviour

equivalence :)

● My opinion
– Promising

