Abstract Regular Model Checking*

Ahmed Bouajjarti, Peter Habermehland Tomas Vojnar

1 LIAFA, University Paris 7, Case 7014, 2, place Jussieu, B515Paris Cedex 05, France
e-mail:{Ahmed.Bouajjani,Peter.Habermehl }@liafa.jussieu.fr
2 FIT, Brno University of Technology, BoZetéchova 2, CZ266, Brno, Czech Republic
e-mail: vojnar@fit.vutbr.cz

Abstract. We proposeabstract regular model checkirgs a new generic tech-
nique for verification of parametric and infinite-state syss. The technique
combines the two approaches of regular model checking atifice¢ion by ab-
straction. We propose a general framework of the method dse/eeveral con-
crete ways of abstracting automata or transducers, whichsgeor modelling
systems and encoding sets of their configurations as usteguar model check-
ing. The abstraction is based on collapsing states of auéofoetransducers) and
its precision is being incrementally adjusted by analysipgrious counterexam-
ples. We illustrate the technique on verification of a widey@of systems includ-
ing a novel application of automata-based techniques tocample of systems
with dynamic linked data structures.

1 Introduction

Model checking is nowadays widely accepted as a powerfahigoe for the verifica-
tion of finite-state systems. However, many real-life systeespecially software sys-
tems, exhibit various aspects requiring one to reason dabbnite-state models (data
manipulation, dynamic creation of objects and threads).e5everal approaches ex-
tending model checking to be able to deal with them have t8ckeen proposed. One
of them isregular model checkin§2, 30, 12]—a generic, automata-based approach
allowing for a uniform modelling and verification of variokmds of infinite-state sys-
tems such as pushdown systems, (lossy) FIFO-channel syjstgatems with counters,
parameterised and dynamic networks of processes, etc.

In regular model checking, configurations of systems are@ed as words over a
finite alphabet and transitions are modelled as finite statestiucers mapping config-
urations to configurations. Finite automata can then beralfuised to represent and
manipulate (potentially infinite) sets of configurationedareachability analysis can
be performed by computing transitive closures of transdufil, 15, 3, 9] or images
of automata by iteration of transducers [12, 28]—dependimgvhether dealing with
reachability relationsor reachability setds preferred. To facilitate termination of the
computation, which is in general not guaranteed as the pnolbleing solved is unde-
cidable, various acceleration methods are usually used.

A crucial problem to be faced in regular model checking isstta¢e space explosion
in automata (transducer) representations of the sets digcwations (or reachability
relations) being examined. One of the sources of this proliderelated to the nature
of the current regular model checking techniques. Typjcaliese techniques try to

* This work was supported in part by the EU (FET project ADVANCGH-1999-29082), the
French ministry of research (ACI project Securité Infotigae), and the Czech Grant Agency
(projects GA CR 102/04/0780 and GA CR 102/03/D211).

calculate theexactreachability sets (or relations) independently of the propbeing
verified. However, it would often be enough to only computeaerapproximation of
the reachability set (or relation) sufficiently precise &uify the given property. Indeed,
this is the way large (or infinite) state spaces are beingesstully handled outside the
domain of regular model checking using the so-caliédtract-check-refinparadigm
[20, 26, 14,16] implemented, e.g., in tools for software elathecking like Slam [6],
Magic [13], or Blast [19]. All these tools use the methoga#dicate abstractionwhere

a finite set of boolean predicates is used to abstract a dersystenC into an abstract
oneA by considering equivalent the configuration€dhat satisfy the same predicates.
If a property is verified imA, it is guaranteed to hold i€ too. If a counterexample is
found in A, one can check if it is also a counterexample @rif not, this spurious
counterexample can be usedéfinethe abstraction such that the new abstract system
A’ no longer admits the spurious counterexample. In this wag,@an construct finer
and finer abstractions until a sufficient precision is ackikand the property is verified,
or a real counterexample is found.

In this work, we propose a new approach to regular model édhgdsased on the
abstract-check-refine paradigm. Instead of precise aedigle techniques, we use ab-
stract fixpoint computations in sonfi@ite domain of automata. The abstract fixpoint
computations always terminate and provide overapproximsbf the reachability sets
(relations). To achieve this, we define techniques thaegyatically map any automa-
ton M to an automatoM’ from some finite domain such thit’ recognises a superset
of the language oM. For the case that the computed overapproximation is torseoa
and a spurious counterexample is detected, we provideig#grrinciples allowing the
abstraction to be refined such that the new abstract coniputites not encounter the
same counterexample.

We propose two techniques for abstracting automata. Theyitdo account the
structure of the automata and are based on collapsing tta¢éssaccording to some
equivalence relation. The first one is inspired by prediaatgraction. However, notice
that contrary to classical predicate abstraction, we éaopredicates with states of
automata representing sets of configurations rather thémtiag configurations them-
selves. An abstraction is defined by a set of regoiadicate languagesd. We consider
a stateg of an automato to “satisfy” a predicate languad if the intersection of.p
with the languagé (M, q) accepted from the statgis not empty. Then, two states are
equivalent if they satisfy the same predicates. The secbsitlaection technique is then
based on considering two automata states equivalent if llrguages of words up to
a certain fixed lengtlare equal. For both of these two abstraction methods, wagqeov
effective refinement techniques allowing us to discardispigrcounterexamples.

We also introduce several natural alternatives to the laggicoaches based on back-
ward and/or trace languages of states of automata. For thesmpt always possible to
guarantee the exclusion of a spurious counterexamplecbota@ing to our experience,
they still provide good practical results.

All of our techniques can be applied to dealing with reaclitgtsets (obtained by
iterating length-preserving or even general transduassyell as length-preserving
reachability relations.

We have implemented the different abstraction and refinéseremas in a proto-
type tool and tested them on a number of examples of varipestyf systems including
parametric networks of processes, pushdown systems,ercamtbmata, systems with

T/T TIT

N/N N/N
S T N NN T S 8—’.

(a) Transducet (b) Bad

N T N N
—=0—>0—+0g>=0—20 —» w—\’@:’/@
@mt N ()T (L(Init))

Fig. 1. A transducer modelling a simple token passing, initial, Bad reachable configurations

queues, and—for the first time in the context of regular matiecking—an example
of dynamic linked data structures. The experiments showwathiatechniques are quite
powerful in all the considered cases and that they are cangritary—different tech-
nigues turn out to be the most successful in different séenarhe results are very
promising and compare favourably with other existing tools

Related Work. In addition to what is mentioned above, many other residiseh
been obtained for symbolic model checking of various kindisifinite state systems,
such as pushdown systems [10, 17], systems with countet8][8y queues [4, 2, 11].
These works do not consider abstraction. For parameteretgbrks of processes, sev
eral methods using abstractions have been proposed [C8dirary to our approach,
these methods do not provide the possibility of refinemetii®fbstraction. Moreover,
they are specialised for parameterised networks wheredschnique is generic.

2 Finite Automata and Transducers

We first provide a simple example that we use to demonstratevtty systems are
modelled in (abstract) regular model checking and latetltistrate the verification
techniques we propose. Then, we formalise the basic notibfigite automata and
transducers and briefly comment on their use in verificatioregular model checking.
As a running example, we consider the transducier Fig. 1. It models a simple
parameterised system implementing a token passing dlgarhe system consists of
a parametric number of processes arranged in an array. Eacéss either hag'§ or
does not havey) the token. Each process can pass the token to its thirdrregghbour.
The transducer includes the identity relation too. In thighconfigurations described
by the automatomnit, the second process has the token, and the number of precesse
is divisible by three. We want to show that it is not possibledach any configuration
where the last process has the token. This set is describixt laytomatomBad.
Formally, afinite automatoris a 5-tupleM = (Q, %, 6,qo, F) whereQ is a finite set
of states2 a finite alphabet) C Q x X x Q a set of transitiongjp € Q an initial state
andF C Q a set of final states. The transition relatiorC Q x Z* x Q of M is defined as
the smallest relation satisfying: (¥ € Q: q-< q, (2) if (q,a,q) € &, thenqg> ¢ and
(3)if g% q andq 2 ¢, theng =2 . Given a finite automatol and an equivalence
relation~ on its statesM/ ~ denotes thguotient automatodefined in the usual way.
The language recognised byfrom a statey € Q is defined by (M, q) = {w| 3d €
F:q— q}. The languagé (M) is equal toL (M, qo). A setL C =* is regular iff there
exists a finite automatow such that. = L(M). We also define the backward language

T(M,q) = {w| go = q} and the forward/backward languages of words up to a cer-
tain length:L="(M,q) = {w € L(M,q) | [w| < n} and similarly L <"(M,q). We define
the forward/backward trace languages of statéd,q) = {we Z* | Iw € Z* :ww €
L(M,q)} and simiIarIy?(M,q). Finally, we define accordingly forward/backward trace
languaged ="(M, q) and?S”(M,q) of traces up to a certain length.

Let X be a finite alphabet antt = ZU {€}. A finite transduceoverX is a 5-tuple
T=(Q,Z x Z¢,0,00,F) whereQ is a finite set of state, C Q x Z¢ x 2 x Q a set of
transitionsgp € Q an initial state andt C Q a set of final states. A finite transducer is
called alength-preserving transducéfits transitions do not contaia. The transition
relation—C Q x * x 2* x Q is defined as the smallest relation satisfying:c(ﬁi q
for everyq € Q, (2) if (g,a,b,q') € d, thenq ab, g and (3) ifq = ¢ andq ab, q’,
thenq waub, g”. Then, by abuse of notation, we identify a transduosith the relation
{(w,u) | 3q € F : go = ¢'}. For a sel. C =* and a relatiorR C £* x =*, we denote
R(L) the sef{we Z* | 3w € L: (W, w) € R}. Letid C Z* x Z* be the identity relation and
o the composition of relations. We define recursively thetiets° = id, T+ = 1ot
andt* = U ;1. Below, we supposil C T meaning that' C '+ for all i > 0.

The properties we want to check are primarily reachabilibpgrties. Given a sys-
tem with a transition relation modelled as a transdugex regular set of initial con-
figurations given by an automatdnit, and a set of “bad” configurations given by an
automatorBad, we want to check*(L(Init)) NL(Bad) = 0. We transform more com-
plicated properties into reachability by composing therapgate property automaton
with the system being checked. In this way, even livenesggties may be handled if
the transition relation is instrumented to allow for looged®ion as briefly mentioned
later. For our running example;(L(Init)) is shown in Fig. 1(d), and the property of
interest clearly holds. Notice, however, that in genardl,.(Init)) is neither guaranteed
to be regular nor computable. In the following, the verificattask is to find a regular
overapproximatioh D t*(L(Init)) such thaL. NL(Bad) = 0.

3 Abstract Regular Model Checking

In this section, we describe the general approach of albsegalar model checking

and propose a common framework for automata abstractied@as collapsing states
of the automata. This framework is then instantiated in idwencrete ways in the

following two sections. We concentrate on the use of abstegular model checking

for dealing with reachability sets. However, the techngjwe propose may be applied
to dealing with reachability relations too—though in thentaxt of length-preserving

transducers only. (Indeed, length-preserving transdumesr an alphabét can be seen

as finite-state automata overx 2.) We illustrate the applicability of the method to
dealing with reachability relations by one of the experitsgrresented in Section 6.

3.1 The Basic Framework of Automata Abstraction

Let X be a finite alphabet andls the set of all finite automata ov&r By anautomata
abstraction functior, we understand a function that maps every automist@mver>
to an automatom (M) whose language is an overapproximation of the onklpf.e.
for someAs C My, a : My — As such thatYM € Ms : L(M) C L(a(M)). We calla
finitary iff its rangeAs is finite.

L(M5)

Fig. 2. A spurious counterexample in an abstract regular fixpointmatation

Working conveniently on the level of automata, we introdtnesabstract transition
functionty for a transition relation expressed as a transduoser and an automata
abstraction functiorm as follows: For each automatdv € My, 14(M) = a(T(M))
whereT(M) is the minimal deterministic automaton ofL(M)). Now, we may itera-
tively compute the sequenc¢e, (M))i>o. Since we supposd C 1, it is clear that ifa
is finitary, there exist& > 0 such thatk*1(M) = 1K (M). The definition ofa implies
L(tk(M)) D T*(L(M)). This means that in a finite number of steps, we can compute an
overapproximation of the reachability se{L(M)).

3.2 Refining Automata Abstractions

We call an automata abstraction functwrarefinemenof a iff VM € My : L(a’(M)) C
L(a(M)). Moreover, we calb’ atrue refinemeniff it yields a smaller overapproxima-
tion in at least one case—formally, #M € M : L(a’(M)) C L(a(M)).

A need to refinex arises when a situation depicted in Fig. 2 happens. Suppese w
are checking whether no configuration from the set desciilyesbme automatoBad
is reachable from some given set of initial configurationscdibed by an automaton
Mo. We supposé& (M) NL(Bad) = 0—otherwise the property being checked is broken
already by the initial configurations. LBt§ = a(Mo) and for each > 0, M; =T(M ;)
andM? =a(M;j) =1q(M{* ;). There exiskandl (0 <k <) suchthat: (1yi:0<i<I:
L(Mi)NL(Bad) =0. (2)L(M;)NL(Bad) = L(X) # 0. (3) If we defineX; as the minimal
deterministic automaton accepting®(L(Xi;1)) NL(M&) for all i such that 0< i < I,
thenVi:k<i<|:L(X)NL(Mi)#0andL(X) NL(My) = 0 despitel(Xi) # 0. Next,
we see that eithek =0 or L(Xx_1) = 0, and it is clear that we have encountered a
spurious counterexample

Note that when nd can be found such thatM;) NL(Bad) # 0, the computation
eventually reaches a fixpoint, and the property is provedtd.fOn the other hand, if
L(Xp) NL(Mg) # 0, we have proved that the property is broken.

Thespurious counterexample may be elimindbgdefininga to a’ such that for any
automatorM whose language is disjoint with(Xy), the language of ite’-abstraction
will not intersectL(X) either. Then, the same faulty reachability computatian ¢he
same sequence M; andM?) may not be repeated because we exclude the abstraction
of My to M{. Moreover, the reachability of the bad configurations iséneyal excluded
unless there is another reason for it than overapproximatrsubsets of (Xy).

A slightly weaker way of eliminating the spurious counterexarnsplesists in refin-
ing o to o’ such that at least the language of the abstractiod,ofloes not intersect

with L(Xk). In such a case, it is not excluded that some subsktXyf) will again be
used for an overapproximation somewhere, but we still el repetition of exactly
the same faulty computation. The obtained refinement caméeser, which may lead
to more refinements and a slower computation. On the othet,itha computation
may terminate sooner due to quickly jumping to the fixpoird ase less memory due
to working with less structured sets of configurations of $histems being verified—
the abstraction is prevented from becoming unnecessaslige in this case. For the
latter reason, as illustrated later, one may sometimesessfdly use even some more
heuristic approaches that guarantee that the spuriouserexample will only eventu-
ally be excluded (i.e. after a certain number of refinementthat do not guarantee the
exclusion at all.

An obvious danger of using a heuristic approach that doegunatantee an ex-
clusion of spurious counterexamples is that the compurtatiay easily start looping.
Notice, however, that even when we refine automata abgirectuch that spurious
counterexamples are always excluded, and the computaties bt loop, we do not
guarantee that it will eventually stop—we may keep refinmg¥er. Indeed, the verifi-
cation problem we are solving is undecidable in general.

3.3 Abstracting Automata by Collapsing Their States

In the following two sections, we discuss several concrateraata abstraction func-
tions. They are based on automata state equivalence schiemakefine for each au-
tomaton fromMs an equivalence relation on its states. An automaton is themacted
by collapsing all its states related by this equivalence sWgpose such an equivalence
to reflect the fact that the future and/or history of the statebe collapsed is close
enough, and the difference may be abstracted away.

Formally, anautomata state equivalence schefhassigns an automata state equiv-
alence~}; C Q x Q'to each finite automatod = (Q,Z,8,qo, F) overZ. We define the
automata abstraction functiomz based orE such that'M € Ms : ag(M) = M/ ~5;.
We callE finitary iff ag is finitary. Werefineag by refiningE such that more states are
distinguished in at least some automata.

The automata state equivalence schemas presented beltvearal based on one
of the following two basic principles: (1) comparing stated. the intersections of
their forward/backward languages with sopredicate language&epresented by the
appropriateredicate automafeand (2) comparing states wrt. their forward/backward
behaviours up to a certabounded length

4 Automata State Equivalences Based on Predicate Languages

The two automata state equivalence schemas we introdubésisedction—, based

on forward languages of states dihg based on backward languages—are both defined
wrt. a finite set opredicate automata. They compare two states of a given automaton
according to the intersections of their forward/backwarguages with the languages
of the predicates. Below, we first introduce the basic ppiles of the schemas and then
add some implementation and optimisation notes.

4.1 TheF, Automata State Equivalence Schema

The automata state equivalence sch&maefines two states of a given automaton to be
equivalent when their languages haveosempty intersection with the same predicates

T

»<©72© W

(a) a(Init) (b)r a(lnit))

N
‘_\.,
N N N @ T
—O—»O—»O—»=0—»=0
(c) X3 =T (a(Init))NBad (d) Xp s.t.L(Xo Xl
10

3
N T 5 N 1N 4 «ﬁ;T N N
—0—+0—>0=0—=0 0= 0—0
N N
(e) Init labelled with states oky andBad (f) The final result

Fig. 3. An example using abstraction based on predicate languages

of ». Formally, for an automatoM = (Q,Z,8,qo,F), F, defines the state equivalence
as the equivalenceyf, such that/gi,qp € Q: g1 ~fy G2 = (VP e 2 : L(P)NL(M,q1) #
0= L(P)NL(M,q) # 0).

Clearly, asp is finite and there is only a finite number of subset®okpresenting
the predicates with which a given state has a honempty gttos, I, is finitary.

For our example from Fig. 1, if we take asthe automata of the languages of the
states oBad, we obtain the automaton in Fig. 3(a) as the abstractidnibfrom Fig.
1(c). This is because all states lofit except the final one become equivalent. Then,
the intersection of (a(lInit)) with the bad configurations—shown in Fig. 3(c)—is not
empty, and we have to refine the abstraction.

Thel, schema may beefined by adding new predicatiggo the current set of pred-
icates?. In particular, we can extend by automata corresponding to the languages of
all the states inXk from Fig. 2. Theorem 1 proved in the full paper shows that this
prevents abstractions of languages disjoint Witk), such as—but not only-&{My),
from intersecting with_(X). Thus, as already mentioned, a repetition of the same faulty
computation is excluded, and the set of bad configuratiofiswai be reached unless
there is another reason for this than overapproximatingibgests ot (X).

Theorem 1. Let us have any two finite automataM(QM,Z,éM,qg",FM) and X=
(Qx, Z, 6x,q(>§, Fx) and a finite set of predicate automatasuch thatvgx € Qx : 3P €
2 :L(X,a0x) =L(P). Then, if UM) NL(X) =0, L(aF, (M)) NL(X) = 0 too.

In our example, we refine the abstraction by extendingith the automata rep-
resenting the languages of the stateXgfrom Fig. 3(d). Fig. 3(e) then indicates for
each statey of Init, the predicates corresponding to the stateBad and Xy whose

languages have a non-empty intersection with the langugeTde first two states of
Init are equivalent and are collapsed to obtain the automatamfig. 3(f), which is a

fixpoint showing that the property is verified. Notice thasian overapproximation of
the set of reachable configurations from Fig. 1(d).

The price of refiningF, by adding predicates for all the statesXp may seem
prohibitive, but fortunately this is not the case in praetids described in Sect. 4.3, we
do not have to treat all the new predicates separately. Weieipe fact that they come
from one original automaton and share large parts of theicstre. In fact, we can work
just with the original automaton and each of its states magoinsidered an initial state
of some predicate. This way, adding the original automatotha only predicate and
adding predicates for all of its states becomes roughlyletiaxeover, the refinement
may be weakened by taking into account just some statésad discussed in Sect. 4.3.

4.2 TheB, Automata State Equivalence Schema

TheB, automata state equivalence schema is an alternatife bfsed orbackward
languages of statesther than forward. For an automatdn= (Q, X, d,qo, F), it defines
the state equivalence as the equivaleRg such that/qi, g € Q: o1 = e < (VP €
— —

?:L(P)N'L (M,q1) #0< L(P)N L (M,q) #0).

Clearly,B, isfinitary for the same reason &3 . It may also beefinedby extending
¢ by automata corresponding to the languages of all the statgsfrom Fig. 2. As
stated in Theorem 2, the effect is the same a¥far

Theorem 2. Let us have any two finite automataM(QM,Z,éM,qg",FM) and X=
(Qx,Z, 6x,q(>§, Fx) and a finite set of predicate automatasuch thatvgx € Qx : 3P €

P T(X,qx) =L(P). Then, if UIM)NL(X) =0, L(ag, (M)) NL(X) = 0 too.

4.3 Implementing and Optimising Collapsing Based off /B,

The abstraction of an automatbhwrt. the automata state equivalence sch&nanay
be implemented by first labelling states Mf by the states of predicate automata in
? with whose languages they have a non-empty intersectiortterdcollapsing the
states oM that are labelled by the initial states of the same predicgRrovided the
sets of states of the predicate automata are disjoint.) dlbelling can be done in a
way similar to constructing a backward synchronous prodéitd with the particular
predicate automata: (5P € » Vaf € Fp VYoM € Fy: gY is labelled bygE, and (2)
VP € ? Vo, g5 € Qp VO, o € Qu: if ¢ is labelled byqgb, and there exista € =
such thag}! & o} andd} % df, thenq}' is labelled withgf. The abstraction of an
automatorM wrt. theB, schema may be implemented analogously.

If the above construction is used, it is then clear that wieéningF,/B,, we can
just addXy into # and modify the construction such that in the collapsing phag
simply take into account all the labels by states<pfand do not ignore the (anyway
constructed) labels other thag.

Moreover, we can try to optimise the refinementiaf/B, by replacingXy in 2
by its important tail/lhead partdefined wrt.My as the subautomaton o based on
the states oK that appear in at least one of the labelsMyf wrt. Fpix1/Bpuix s
respectively. As stated in Theorem 3 (proved in the full papbe effect of such a

refinement corresponds to the weaker way of refining autoaiagtraction functions
described in Section 3.2. This is due to the strong link ofitlygortant tail/head part of
Xk to My wrt. which it is computed. A repetition of the same faulty qmutation is then
excluded, but the obtained abstraction is coarser, which snmetimes speed up the
computation as we have already discussed.

Theorem 3. Let M and X be any finite automata ov®and Y= (Qy,Z, dy, qg, Fy) the

important tail/lhead part of X wrtF,/B, and M. If ' is such that/qy € Qy IP € 2’ :
—

L(Y.av)/ T (Y,av) = L(P) and M) NL(X) = 0, L(0te,, /5, (M)) NL(X) =0.

A further possible heuristic to optimise the refinemerfofB, is trying to find just
one or twokey state®f the important tail/head part o such that if their languages
are considered in addition to, L(M) will not intersectl (X).

We close the section by noting that in thtial set of predicatese of F,/B,,
we may use, e.g., the automata describing the set of bad aeetfions and/or the set of
initial configurations. Further, we may also use the domaimanges of the transducers
encoding the particular transitions in the systems beirggréned (whose union forms
the one-step transition relatiarwhich we iterate). The meaning of the latter predicates
is similar to using guards or actions of transitions in pcatk abstraction [8].

5 Automata State Equivalences Based on Finite-Length Langges

We now present the possibility of defining automata statévatpnce schemas based on
comparing automata states wrt. a certain bounded part nidnguages. It is a simple,
yet (according to our practical experience) often quitecigffit approach. As a basic
representative of this kind of schemas, we first present ersafi; based on forward
languages of words of a limited length. Then, we discussassiple alternatives.

TheFL automata state equivalence schema defines two states ofanaian to
be equal if theidanguages of words of length up to a certain boundra identical.
Formally, for an automatoll = (Q, 3, 3,0, F), F; defines the state equivalence as the
equivalence-}, such that'qs, gz € Q: g1 ~ g2 & L="(M,) = L="(M, q2).

FL is clearlyfinitary. It may berefinedby incrementally increasing the bounan
the length of the words considered. This way, as we work wiithinmal deterministic
automata, we may achieve the weaker type of refinement desldn Section 3.2. Such
an effect is achieved whenmis increased to be equal or bigger than the number of states
in Mg from Fig. 2 minus one. In a minimal deterministic automatbis guarantees that
all states are distinguishable wxtg,, andM will not be collapsed at all.

In Fig. 4, we applyFL to the example from Fig. 1. We choose- 2. In this case, the
abstraction of thénit automaton i$nit itself. Fig. 4(a) indicates the statesigfnit) that
have the same languages of words up to size 2 and are theegfgik@lent. Collapsing
them yields the automaton shown in Fig. 4(b) (after deteisation and minimisation),
which is a fixpoint. Notice that it is a different overappnmstion of the set of reachable
configurations than the one obtained udifg If we choosen = 1, we obtain a similar
result, but we need one refinement step of the above desdiibe.d

Let us, however, note that according to our practical exgpee, the increment of
n by |Qu| — 1 may often be too big. Alternatively, one may use its frattfe.g., one
half), increase by the number of states i (or its fraction), or increasejust by one.

In such cases, an immediate exclusion of the faulty run iggnatanteed, but clearly,

(@) T(Init) (b) The final result
Fig. 4. An example using abstraction based on languages of wordslepgthn (for n = 2)

such a computation will beventually excludeddecausa will sooner or later reach the
necessary value. The impact of working with abstractiofised in a coarser way is
then like in the case of using, /B, .

Regarding thenitial value of n one may use, e.g., the number of states in the
automaton describing the set of initial configurations @r ket of bad configurations,
their fraction, or again just one.

As a natural alternative to dealing with forward languagkwards of a limited
length, we may also think dfackward languages of words a limited length and for-
ward or backwardanguages of tracewith a limited length. The automata equivalence
schema®k, F!, andB/ based on them can be formally defined analogousKkto

Clearly, all these schemas dinitary. Moreover, we camefinethem in a similar
way asFs. ForF] andB], however, no guarantee of excluding a spurious counterex-
ample may be provided. Usir§, e.g., we can never distinguish the last three states
of the automaton in Fig. 4(b)—they all have the same traoguages. Thus, we cannot
remember that the token cannot get to the last process. theless, despite this, our
practical experience shows the schemas based on tracastersugcessful in practice.

6 Experiments

We have implemented the ideas proposed in the paper in aypetmol written in YAP
Prolog using the FSA library [29]. To demonstrate that azdtregular model checking
is applicable to verification of a broad variety of systems,tried to apply the tool to a
number of different verification tasks.

6.1 The Types of Systems Verified

Parameterised networks of processedNVe considered several slightly idealiseul-
tual exclusion algorithmdor an arbitrary number of processes (hamely the Bakery,
Burns, Dijkstra, and Szymanski algorithms in versions kirib [23]). In most of these
systems, particular processes are finite-state. We endobal gonfigurations of such
systems by words whose length corresponds to the numbertifipating processes,
and each letter represents the local state of some procetise kcase of the Bakery
algorithm where each process contains an unbounded tiaket \this value is not rep-
resented directly, but encoded in the ordering of the psE®m the word.

We verified the mutual exclusion property of the algoritharg] for the Bakery al-
gorithm, we verified that some process will always evenyugit to the critical section
(communal liveness) as well as that each individual proséisalways eventually get
there (individual liveness) under suitable fairness aggions. For checking liveness,

we manually composed the appropriate Biichi automata Wwélsystem being verified.
Loop detection was allowed by working with pairs of configioas consisting of a
remembered potential beginning of a loop (fixed at a certaintpf time) and the cur-
rent configuration being further modified. Checking that@pl@ closed then consisted
in checking that a pair of the same configurations was readfeedncode the pairs of
configurations using finite automata, we interleaved thairasponding letters.

Push-down SystemsWe considered a simple system recursive proceduresthe
plotter example from [17]. We verified a safety part of theyoral property of interest
describing the correct order of plotter instructions to &&ued. In this case, we use
words to encode the contents of the stack.

Systems with QueuesWe experimented with a model of the Alternating Bit Proto-
col (ABP) for which we checked correctness of the deliveryenrof the messages. A
word encoding a configuration of the protocol contained tettets representing inter-
nal states of the communicating processes. Moreover, iagoed the contents of the
two lossy communication channelgth a letter corresponding to each message. Let
us note that in this case, as well as in the above and below gaseral (non-length-
preserving) transducers were used to encode transitiahg afystems.

Petri Nets, Systems with CountersWe examined a gener&etri netwith inhibitor
arcs, which can be considered an example of a systemumitiounded countert®o.
In particular, we modelled a Readers/Writers system exdémdth a possibility of dy-
namic creation/deletion of processes, for which we verifiedual exclusion between
readers and writers and between multiple writers. We censitla correct version of the
system as well as a faulty one, in which we omitted one of thig Ret arcs. Markings
of places in the Petri net were encoded in unary and the phtigalues were put in
parallel. (Using this encoding, a marking of a net with plpandq, two tokens inp,
and four ing would be encoded agq| pg|pa.) In some other examples of systems with
counters (such as the Bakery algorithm for two processds wvibounded counters),
we also successfully used a binary encoding of the counkerél NDDs [30].

Dynamic Linked Data Structures We considered verification of grocedure for re-
versing listsshown in Fig. 5. As according to our knowledge, it is for thstfirme that
regular model checking has been applied to such a task, lebwsspend a bit more
time with this experiment.

When abstracting the memory manipulated by 4. ,._ 0;
the procedure, we focus on the cases where in the 5. \yhile (list — nexi) {
first n memory cells (we take the biggespossible) 3: y:=list — next
there are at most two linked lists linking consecu- 4. |ist — next:—= X
tive cells, the first list in a descending way and the 5. y._ list; list :=y;
second one in an ascending way. We represent con-g.
figurations of the procedure as words over the fol- 7. |ist —, next:— N
lowing alphabet: list items are represented by sym-
bolsi, left/right pointers by</>, pointer variables Fig.5. Reversing a linear list
are represented by their naméist(is shortened to
1), ando is used to represent the memory outside the list. Moreovenise symbols
iv (resp.ov) to denote that points toi (resp. outside the list). We u$¢o separate the

ascending and descending lists. Pointer variables pgitdimull are not present in the
configuration representations. A typical abstraction efrifremory may then look like
i<i<ilil >ioxwhere the first list contains three items, the second one ligto,
points to the beginning of the second lisfpoints outside the two lists, arydpoints to
null. Provided such an abstraction is used for the memoryecas (prefixed with the
current control line), it is not difficult to associate trdosers to each command of the
procedure. For example, the transducer correspondingtoaimmandiist — next:= x
at line 4 transforms a typical configurationi 4« ix | il > iy > i o to the configuration
5i < ix <il | iy > i o (the successor of the item pointed tolkg not anymore the one
pointed to byy, but the one pointed to bx). Then, the transducercorresponding to
the whole procedure is the union of the transducers of attmemands.

If the memory contents does not fit the above described foerghstract it to a sin-
gle word with the “don’t know” meaning. However, when we sfawm a configuration
likelil >i>ioorli<i<il o, the verification shows that such a situation does not
happen. Via a symmetry argument exploiting the fact thaptieeedure never refers to
concrete addresses, the results of the verification mayahsity be generalised to lists
with items stored at arbitrary memory locations.

By computing an abstraction of the reachability s&finit), we checked that the
procedure outputs a list. Moreover, by computing an ovex@pmation of the reacha-
bility relationt* of the system, we checked that the output list is a reverditmednput
one (modulo the fact that we consider a finite number of déffieitems). To speed up
the computation, the reachability relation was restrittetthe initial configurations, i.e.
to idnit o T*.

6.2 A Summary of the Results

Our method has been quite successful in all the describeatiexpnts. The best results
(corresponding to a certain automata state equivalenak usenitialisation, and the
way of refinement) for the particular examples obtained foamprototype tool were
mostly under 1 sec. on an Intel Pentium 4 processor at 1.7 Ghiz.only exceptions
were checking individual liveness in the Bakery example nehge needed about 9
sec., the Readers/Writers example where we needed aboat, G&sd the example of
reversing lists where on the level of working with the redality relation, we needed
about 22 sec. (A more detailed description of the resultsimegipund in the full paper.)
Taking into account that the tool used was an early prototypgen in Prolog, the
results are very encouraging. For example, on the same demghe Uppsala Regular
Model Checker [3] in version 0.10 took from about 8 to 11 setsowhen applied to the
Burns, Szymanski, and Dijkstra examples over whose corbfmeacoding we needed
in the most successful scenarios from 0.06 to 0.73 sec.

The results we obtained from our experiments also showedaftert from cases
where the approaches based on languages of words/tracesaumptnded length and
the ones based on intersections with predicate languaga®saghly equal, there are
really cases where either the former or the latter approaclearly faster. The latter
approach is faster, e.g., in the Dijkstra and Readers/vgréramples whereas the for-
mer, e.g., in the cases of reversing lists or checking thigishaal liveness in the Bakery
example. This experimentally justifies our interest in baftthe techniques.

Let us note that for some of the classes of systems we coesidéere exist various
special purpose verification approaches, and the apptepsgification problems are

sometimes even decidable (as, e.g., for push-down sysfidim7, 27] or lossy channel
systems [4, 2, 1]). However, we wanted to show that our ambrsageneric and can be
uniformly applied to all these systems. Moreover, in theifaf with a new version of
our tool, we would like to compare the performance of abstegular model checking
with the specialised approaches on large systems. We betiat while we can hardly
outperform these algorithms in general, in some cases térmgswith complex state
spaces, our approach could turn out to be quite competitiega@not working with the

exact representation of the state spaces, but their pallgntiuch simpler approxima-
tions in which many details not important for the propertingechecked are ignored.

7 Conclusions

We have proposed a new technique for verification of paratisettand infinite-state
systems. The technique callatstract regular model checkirmpmbines the approach
of regular model checking with the abstract-check-refimragigm. We have described
the general framework of the method as well as several ctsnst@tegies for abstract-
ing automata or transducers, which are used in the framefsorkepresenting reacha-
bility sets and relations, by collapsing their states. Asharee illustrated on a number
of experiments we did, including a novel application of an#ta-based techniques to
verification of systems with dynamic linked structures, thehnique is very broadly
applicable. Moreover, compared to the other techniquesgflar model checking, it is
also quite efficient due to working with approximations adcbability sets or relations
with precision found iteratively by eliminating spuriousniterexamples and sufficient
just to verify the property of interest.

In the future, we plan to implement the techniques we progp@seéhe paper in a
more efficient way and test them on larger examples. An istierg theoretical ques-
tion is then whether some guarantees of termination can tzénaldl at least for some
classes of systems. Further, the way of dealing with livempesperties within abstract
regular model checking can be put on a more systematic bbaigireg for a better
automation. Similarly, we would like to extend our results\erifying systems with
linear (linearisable) dynamic linked data structures asel Isow automata-based ver-
ification technigues compare with static analysis techesdike shape analysis [25].
Finally, we believe that there is a wide space for genergjithe method to working
with non-regular reachability sets and/or systems with logar (tree-like or in general
graph-like) structure of states. The latter generalisas@rimarily motivated by our in-
terest in verifying multithreaded programs with recurgivecedures and/or programs
with dynamically allocated memory structures that canmogasily linearised.

Acknowledgement.We would like to thank Andreas Podelski for fruitful discizsss.

References

1. P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic V&dation of Lossy Channel Sys-
tems: Application to the Bounded Retransmission ProtdodProc. of TACASvolume 1579
of LNCS Springer, 1999.

2. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly Asayof Systems with Unbounded,
Lossy Fifo Channels. IRroc. of CAV'98 volume 1427 oLNCS Springer, 1998.

3. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson. Aitjonic improvements in regular
model checking. IfProc. of CAV’'03 volume 2725 o NCS Springer, 2003.

»

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.
28.

29.
30.

B. Boigelot and P. Godefroid. Symbolic verification of aoemication protocols with infinite
state spaces using QDDs. Pmoc. of CAV’96 volume 1102 of. NCS Springer, 1996.

. B. Boigelot and P. Wolper. Symbolic verification with petic sets. InProc. of CAV'94

volume 818 ofLNCS pages 55-67. Springer, 1994.

. T. Ball and S. K. Rajamani. The SLAM toolkit. roc. CAV’01 LNCS. Springer, 2001.
. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Ab8th@dVS1S systems to verify

parameterized networks. Rroc. of TACASvolume 1785 oL NCS Springer, 2000.

. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abgtracof infinite state systems

compositionally and automatically. Proc. of CAV'98 LNCS. Springer, 1998.

. B. Boigelot, A. Legay, and P. Wolper. Iterating transdade the large. IrProc. CAV'03

volume 2725 oLNCS Springer, 2003.

A. Bouajjani, J. Esparza, and O. Maler. Reachabilityyaimof pushdown automata: Appli-
cation to model-checking. IRroc. of CONCUR’97LNCS. Springer, 1997.

A. Bouajjani and P. Habermehl. Symbolic Reachabilityalsis of Fifo-Channel Systems
with Nonregular Sets of ConfigurationSheoretical Computer Scienc221(1-2), 1999.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Riegunodel checking. IdProc. of
CAV’'00, volume 1855 of. NCS Springer, 2000.

S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichrand,K. Yorav. Efficient verification
of sequential and concurrent ¢ prografzmal Methods in System Desj@004. To appear.
E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Getexample-guided abstraction
refinement. IrProc. CAV’0Q volume 1855 of NCS Springer, 2000.

D. Dams, Y. Lakhnech, and M. Steffen. Iterating transdsicinProc. CAV'0], volume 2102
of LNCS Springer, 2001.

S. Das and D.L. Dill. Counter-example based predicateodery in predicate abstraction.
In Formal Methods in Computer-Aided Desj@002.

J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoociektfalgorithms for model check-
ing pushdown systems. Proc. of CAV’'0Q volume 1855 oL NCS Springer, 2000.

A. Finkel and J. Leroux. How to compose preshurger-acatbns: Applications to broad-
cast protocols. IfProc. of FST&TCS'02volume 2556 oL NCS Springer, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.v&oft verification with Blast. In
Proc. of 10th SPIN Workshopolume 2648 oL NCS Springer, 2003.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. ladmsgraction. IiProc. of POPL'02
ACM Press, 2002.

B. Jonsson and M. Nilsson. Transitive closures of regalations for verifying infinite-state
systems. IrProc. of TACAS'0pQvolume 1785 oL NCS Springer, 2000.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahgmi$olic model checking with
rich assertional languagesheoretical Computer Scienc256(1-2), 2001.

M. Nilsson. Regular Model Checking. Licentiate Theligpsala University, Sweden, 2000.
A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinigounter abstraction. IRroc. of
CAV’'02 volume 2404 ot NCS Springer, 2002.

S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shapgsiaaia 3-valued logicTOPLAS
24(3), 2002.

H. Saidi. Model checking guided abstraction and aislys Proc. of SAS’0pvolume 1824
of LNCS Springer, 2000.

Stefan SchwoonModel-Checking Pushdown Systen®hD thesis, Technische Universitat
Minchen, 2002.

T. Touili. Widening techniques for regular model checkiENTCS 50, 2001.

G. van Noord. FSAG6.2, 2004ttp://odur.let.rug.nl"vannoord/Fsa/

P. Wolper and B. Boigelot. Verifying systems with infenbiut regular state spaces Rroc.

of CAV’'98 volume 1427, 1998.

