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Abstract. The analysis of security protocols requires precise formulations of
the knowledge of protocol participants and attackers. In formal approaches, this
knowledge is often treated in terms of message deducibility and indistinguisha-
bility relations. In this paper we study the decidability of these two relations. The
messages in question may employ functions (encryption, decryption, etc.) axiom-
atized in an equational theory. Our main positive results say that, for a large and
useful class of equational theories, deducibility and indistinguishability are both
decidable in polynomial time.

1 Introduction

Understanding security protocols often requires reasoning about the knowledge of le-
gitimate protocol participants and attackers. As a simple example, let us consider a
protocol in which A sends to B a message that consists of a secret s encrypted un-
der a pre-arranged shared key k. One may argue that, after processing this message, B
knows s. More interestingly, one may also argue than an attacker with bounded com-
puting power that does not know k but eavesdrops on the communications between A
and B and sees the message does not learn s.

Accordingly, formal methods for the analysis of security protocols rely on defini-
tions of the knowledge of protocol participants and attackers. In those methods, the
knowledge of an attacker is used to determine what messages the attacker can send at
each point in time—it can send only messages it knows. Moreover, security guarantees
can be phrased in terms of the knowledge of the attacker. For example, a guarantee
might be that, at the end of a protocol run, the attacker does not know a particular key,
or that the attacker does not know whether a certain ciphertext contains the plaintext
“true” or “false”. For such applications, although the attacker is typically an active en-
tity that can learn by conducting experiments, the definition of knowledge focuses on a
particular point in a protocol execution.

Many formal definitions explain the knowledge of an attacker in terms of message
deduction (e.g., [17, 19, 21, 20]). Given a set of messages S and anothermessageM , one
asks whetherM can be computed from S. The messages are represented by expressions,
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and correspondingly the computations allowed are symbolic manipulations of those
expressions. Intuitively these computations can rely on any step that an eavesdropper
who has obtained the messages in S can perform on its own in order to deriveM . For
example, the eavesdropper can encrypt and decrypt using known keys, and it can extract
parts of messages.

Despite its usefulness in proofs about protocol behaviors, the concept of message
deduction does not always provide a sufficient account of knowledge, and it is worth-
while to consider alternatives. For instance, suppose that we are interested in a protocol
that transmits an encrypted boolean value, possibly a different one in each run. We
might like to express that this boolean value remains secret by saying that no attacker
can learn it by eavesdropping on the protocol. On the other hand, it is unreasonable to
say that an attacker cannot deduce the well-known boolean values “true” and “false”.
Instead, we may say that the attacker cannot distinguish an instance of the protocol
with the value “true” from one with the value “false”. More generally, we may say
that two systems are equivalent when an attacker cannot distinguish them, and we may
then express security guarantees as equivalences. The use of equivalences is common in
computational approaches to cryptography (e.g., [16]), and it also figures prominently
in several formal methods (e.g., [4, 18, 2]).

Two systems that output messages that an attacker can tell apart are obviously dis-
tinguishable. Conversely, in order to establish equivalences between systems, an impor-
tant subtask is to establish equivalences between the messages that the systems generate
(for example, between the encrypted boolean values). These equivalencesmay be called
static equivalences, because they consider only themessages, not the dynamic processes
that generate them. Bisimulation proof techniques can reduce process equivalences to
static equivalences plus fairly standard bisimulation conditions [2] (see also [3, 9]).

In this paper we study the decidability of message deduction and static equivalence.
We define a relation φ ! M that means that M can be deduced from φ, and a rela-
tion ϕ ≈s ψ that means that ϕ and ψ are statically equivalent; here φ, ϕ, and ψ are
all essentially lists of messages, each with a name, represented by formal expressions.
For generating these messages, we allow the application of a wide array of functions—
pairing, projections, various flavors of encryption and decryption, digital signatures,
one-way hash functions, etc.. Indeed, our results do not make any assumption on any
particular cryptographic system beyond fairly general hypotheses on the form of the
equational theory that is used for defining the properties of the cryptographic opera-
tions. Our main positive results assume only that the equational theory is defined by a
convergent rewriting system with a finite number of rules of the form M → N where
N is a proper subterm of M or a constant symbol. Such theories, which we call con-
vergent subterm theories, appear frequently in applications. For them, we obtain that
both φ ! M and ϕ ≈s ψ are decidable, in fact in polynomial time. For other equational
theories, even decidable ones, we show that φ ! M and ϕ ≈s ψ can be undecidable.
Moreover, we establish that ! can be reduced to ≈s (not too surprisingly), but that the
converse does not hold.

The problem of deciding knowledge is particularly important in the context of al-
gorithms and tools for automated protocol analysis. Often, special techniques are intro-
duced for particular sets of cryptographic operations of interest, on a case-by-case basis.



For example, the classic Dolev-Yao result deals with a fixed, limited suite of public-key
operations [15]; more recent decidability results deal with exclusive-or and modular ex-
ponentiation (e.g., [10–12]); many variants and combinations that arise in practice have
not yet been explored. On the other hand, other algorithms and tools (e.g., [6–8]) allow
much freedom in the choice of cryptographic operations but their analysis of the knowl-
edge of the attacker is not always guaranteed to terminate. Decidability results under
general equational theories have been rare. The most relevant previous work is that of
Comon-Lundh and Treinen [13], who have studied the decidability of the deduction
problem for a class of equational theories incomparable with ours. (For example, they
allow the homomorphism property enc(〈u, v〉, k) = 〈enc(u, k), enc(v, k)〉 but not the
inverse property I(I(x)) = x.) Simultaneously with our work (but independently), De-
laune and Jacquemard [14] have shown that the deduction problem is decidable for an
active attacker and under a class of equational theories which is included in ours. Nei-
ther Comon-Lundh and Treinen nor Delaune and Jacquemard considered static equiva-
lence.

The next section, section 2, introduces notations and definitions. Section 3 com-
pares ! and ≈s. Section 4 focuses on convergent subterm theories and gives our main
decidability results. Section 5 concludes and discusses the possible use of our results for
automated analysis of security protocols. Because of space constraints, we omit many
technical details; the main ones appear in a research report [1].

2 Basic definitions

Next we review definitions from previous work. We mostly adopt the definitions of the
applied pi calculus [2]. In section 2.1 we give the syntax of expressions. In section 2.2
we explain a representation for the information available to an observer who has seen
messages exchanged in the course of a protocol execution. In section 2.3 and 2.4 we
present the relations ! and ≈s, which (as explained in the introduction) provide two
formalizations of the knowledge that the observer has on the basis of that information.

2.1 Syntax

A signature Σ consists of a finite set of function symbols, such as enc and pair, each
with an arity. Let ar(Σ) be the maximal arity of a function symbol in Σ. A function
symbol with arity 0 is a constant symbol.

Given a signatureΣ, an infinite set of namesN , and an infinite set of variables, the
set of terms is defined by the grammar:

L, M, N, T, U, V ::= terms
k, . . . , n, . . . , s name
x, y, z variable
f(M1, . . . , Ml) function application

where f ranges over the function symbols of Σ and l matches the arity of f . Although
names, variables, and constant symbols have similarities, we find it clearer to keep them
separate. A term is closed when it does not have free variables (but it may contain names



and constant symbols). We write fn(M) for the set of names that occur in the termM .
We use meta-variables u, v, w to range over names and variables. The size |T | of a term
T is defined by |u| = 1 and |f(T1, . . . , Tl)| = 1 +

∑l
i=1 |Ti|. The DAG-size |T |DAG is

the number of distinct subterms of T .
We equip the signature Σ with an equational theory E, that is, an equivalence rela-

tion on terms that is closed under substitutions of terms for variables and closed under
application of contexts. We write M =E N when M and N are closed terms and the
equationM = N is in E. We use the symbol== to denote syntactic equality of closed
terms. As in these definitions, we often focus on closed terms for simplicity.

2.2 Assembling terms into frames

After a protocol execution, an attacker may know a sequence of messagesM 1, . . . ,Ml.
This means that it knows each message but it also knows in which order it received
the messages. So it is not enough for us to say that the attacker knows the set of terms
{M1, . . . , Ml}. Furthermore, we should distinguish those names that the attacker had
before the execution from those that were freshly generated and which may remain
secret from the attacker; both kinds of names may appear in the terms.

In the applied pi calculus [2], such a sequence of messages is organized into a
frame νñσ, where ñ is a finite set of names (intuitively, the fresh names), and σ is a
substitution of the form:

{M1/x1 , . . . ,
Ml/xl} with dom(σ) def= {x1, . . . , xl}.

The variables enable us to refer to eachM i, for example for keeping track of their order
of transmission. We always assume that the terms Mi are closed. The size of a frame
φ = νñ{M1/x1 , . . . ,

Ml/xl} is |φ|
def=

∑l
i=1 |Mi|.

2.3 Deduction

Given a frame φ that represents the information available to an attacker, we may ask
whether a given term closedM may be deduced from φ. This relation is written φ ! M
(following Schneider [21]). It is axiomatized by the rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñσ ! M

s (∈ ñ
νñσ ! s

φ ! M1 · · · φ ! Mk
f ∈ Σ

φ ! f(M1, . . . , Mk)

φ ! M M =E M ′

φ ! M ′

Since the deducible messages depend on the underlying equational theory, we write
!E when E is not clear from the context. Intuitively, the deducible messages are the
messages of φ and the names which are not protected in φ, closed by equality in E and
closed by application of functions.We have the following characterization of deduction:

Proposition 1. Let M be a closed term and νñσ be a frame. Then νñσ ! M if and
only if there exists a term ζ such that fn(ζ) ∩ ñ = ∅ and ζσ =E M .



As an example, we consider the equational theory of pairing and symmetric encryp-
tion. The signature is Σ1 = {pair, enc, fst, snd, dec}. As usual, we write 〈x, y〉 instead
of pair(x, y). The theory E1 is defined by the axioms:

fst(〈x, y〉) = x snd(〈x, y〉) = y dec(enc(x, y), y) = x.

Let φ def= νk, s{enc(s, k)/x, k/y}. Then φ ! k and φ ! s. Furthermore, we have
k =E1 yφ and s =E1 dec(x, y)φ.

2.4 Static equivalence

Deduction does not always suffice for expressing the knowledge of an attacker, as dis-
cussed in the introduction. For example, consider φ1

def= νk{enc(0, k)/x, k/y} and
φ2

def= νk{enc(1, k)/x, k/y}, where 0, 1 ∈ Σ are constant symbols. The attacker can
deduce the same set of terms from these two frames since it knows 0 and 1. But it could
tell the difference between these two frames by checking whether the decryption of x
with y produces 0 or 1.

We say that two terms M and N are equal in the frame ϕ for the equational
theory E, and write (M =E N)ϕ, if and only if ϕ = νñ.σ, Mσ =E Nσ, and
{ñ}∩(fn(M)∪fn(N)) = ∅ for some names ñ and substitution σ. Then we say that two
frames ϕ and ψ are statically equivalent, and write ϕ ≈s ψ, when dom(ϕ) = dom(ψ)
and when, for all termsM and N , we have (M =E N)ϕ if and only if (M =E N)ψ.
We write ≈sE when E is not clear from the context.

In our example, we have (dec(x, y) =E1 0)φ1 but not (dec(x, y) =E1 0)φ2. There-
fore, φ1 (≈s φ2 although νk{enc(0, k)/x} ≈s νk{enc(1, k)/x}.

3 Comparison of deduction and static equivalence

We compare equality, deduction, and static equivalence from the point of view of de-
cidability. There is little hope that deduction or static equivalence would be decidable
when equality itself is not. (We note however that, for some artificial, especially de-
signed equational theories, deduction may be decidable while equality is undecidable.)
Therefore, we focus on equational theories for which equality is at least decidable.

3.1 !may be undecidable

Unfortunately, the decidability of equality is not sufficient for the decidability of deduc-
tion and static equivalence. As evidence, let us consider the decidable equational theory
E2 defined by:

x · (y · z) = (x · y) · z
[x1, y1] · [x2, y2] = [x1 · x2, y1 · y2]
f([x · y, x · y]) = f([x, x])

According to these equations, the symbol · is associative and distributes over the sym-
bol [ ], and any term of the form f(M, M) can be collapsed into any term f(M ′, M ′)



where M ′ is a prefix of M . This equational theory enables us to encode the Post Cor-
respondence Problem (PCP) into the deduction problem.

Proposition 2. The deduction problem for E2 (!E2) is undecidable.

The PCP is: given a finite number of pairs of words (u i, vi)1≤i≤n on the alphabet
A ⊂ N , does there exists a sequence s1 · · · sk ∈ {1..n}∗ such that: us1 · · ·usk =
vs1 · · · vsk? We map the PCP input (ui, vi)1≤i≤n to the substitution σ = {[ui, vi]/xi}.
Then we can verify that there exists a solution to the PCP if and only if there exists a
letter a ∈ A such that (νΣ)σ !E2 T ([a, a]).

3.2 ! reduces to≈s

Next we show that deduction may be reduced to static equivalence. For this purpose,
we add the familiar equation dec(enc(x, y), y) = x. (We have not studied what happens
without this equation, since it is so common in applications.)

Proposition 3. Let E be an equational theory over some signature Σ. Let 0, 1 be two
constants, dec and enc be two binary function symbols that are not in Σ.
We define Σ ′ def= Σ - {0, 1, enc, dec} and E ′ def= E - {dec(enc(x, y), y) = x}. Let
φ = νñ{M1/x1 , . . . ,

Ml/xl} be a frame and M be a closed term. Then φ !E M if and
only if

νñ{M1/x1 , . . . ,
Ml/xl ,

enc(0,M)/xl+1} (≈sE′ νñ{M1/x1 , . . . ,
Ml/xl ,

enc(1,M)/xl+1}.

We derive that if ≈s is decidable for E - {dec(enc(x, y), y) = x}, then ! is decidable
for E (with at most the same complexity).

3.3 ≈s does not reduce to ! in general

The converse is not true: ! may be decidable while ≈s is not. Indeed, we can encode
an undecidable problem into the static equivalence problem in such a way that the de-
duction problem remains decidable.

Proposition 4. There exists an equational theory such that ≈s is undecidable while !
is decidable.

We consider the following construction: Given two deterministic TuringmachinesM 1 =
(Q, A, q0, Qf , δ1) and M2 = (Q, A, q0, Qf , δ2) with the same control states, where
δ1, δ2 : Q × A → Q × A × {L, R}, we construct the machine M(M1, M2) =
(Q, A, q0, Qf , δ) where δ : {1, 2}× Q × A → Q × A × {L, R} such that δ(1, q, a) =
δ1(q, a) and δ(2, q, a) = δ2(q, a). At each step, the machineM(M1, M2) plays a tran-
sition of either M1 or M2. Since the machines M1 and M2 are deterministic, a run of
the machineM(M1, M2) on a word w may be described by a word s of {1, 2}∗, which
gives the list of choices made byM(M1, M2) at each step.M(M1, M2), w

s→ denotes
the machine (with its current tape) after the sequence of choices s on the word w. We
assume that the local control state is written on the tape.



Proposition 5. The following problem is undecidable.
Input: Two machinesM(M1, M2) andM(M ′

1, M
′
2) and a word w of A∗.

Output: Does the following property hold for M(M1, M2) andM(M ′
1, M

′
2): for any

sequences s1, s2 ∈ {1, 2}∗,M(M1, M2), w
s1→ andM(M1, M2), w

s2→ have the same
tape if and only ifM(M ′

1, M
′
2), w

s1→ andM(M ′
1, M

′
2), w

s2→ have the same tape?
We reduce this undecidable problem to the ≈s problem under an equational theory E3

such that ! remains decidable. The intuitive idea of our encoding is that a frame φ
represents a machine of the form M(M1, M2), a term M represents a sequence of
choices such that Mφ represents the tape of the machine (and the number of choices)
after this sequence of choices. Then, for two “machines” φ and φ ′, it is undecidable
whether there exists two sequences of choices M1, M2 such that (M1 =E3 M2)φ and
(M1 (=E3 M2)φ′, i.e., whether φ (≈s φ′.

On the other hand, it is possible to decide whether there exists a sequence of choices
M such that Mφ =E3 N (i.e., whether φ ! N ) for a given term N . Indeed, the term
N contains the number of choices, so it is sufficient to test any sequence of choices of
length equal to this number of choices.

4 Deciding knowledge under convergent subterm theories

In order to obtain decidability results for both ! and ≈ s, we restrict attention to sub-
term theories, defined by a finite set of equations of the form M = N where N is a
proper subterm of M or a constant symbol. In section 4.1, we motivate and introduce
a convergence condition on subterm theories. Convergent subterm theories are quite
common in applications, as we illustrate with examples in section 4.2. We present our
main decidability results for these theories in section 4.3.

4.1 Convergence
The definition of subterm theories is almost vacuous on its own. Even equality may
be undecidable for subterm theories. Any equational theory defined by a finite set of
equations M = M ′ with variables can be encoded as a subterm theory, with the two
equations:

Whichever(M, M ′) = M Whichever(M, M ′) = M ′

for each original equation M = M ′. In light of this encoding, we should add the as-
sumption that, by orienting the equations that define a subterm theory from left to right,
we obtain a convergent rewriting system:
Definition 1. A equational theory E, defined by a finite set of equations

⋃n
i=1{Mi =

Ni} where fn(Mi) = fn(Ni) = ∅, is a convergent subterm theory if the set of rewriting
rules r(E) def=

⋃n
i=1{Mi → Ni} is convergent and if eachNi is a proper subterm ofMi

or a constant. We write U → V if U and V are closed terms and U may be rewritten to
V (in one step) using a rule of r(E).
As usual, if r(E) is convergent then for all terms U, V , we have U =E V if and only if
U ↓= V ↓, where U ↓ and V ↓ are the normal forms of U and V .

We write→E instead of→when the equational theory is not clear from the context.



4.2 Examples

Important destructor-constructor rules like those for pairing, encryption, and signature
may be expressed in subterm theories (typically convergent ones):

fst(< x, y >) = x dec(enc(x, y), y) = x
snd(< x, y >) = y check(x, sign(x, sk(y)), pk(y)) = ok

Additional examples can be found in previous work (e.g., [2, 8]). Convergent subterm
theories also enable us to capture sophisticated but sensible properties, as in:

E4 : {I(I(x)) = x, I(x) × x = 1, x × I(x) = 1} ,
E5 : {h(h(x)) = x},
E6 : {enc(enc(x, y), y) = x}.

The theory E4 models an inverse function. The theory E5 models a hash function that
is idempotent on small inputs (since the hash of a hash gives the same hash). The theory
E6 represents an encryption function that also decrypts: the encryption of a plaintext,
twice with the same key, returns the plaintext.

4.3 Decidability results

For convergent subterm theories, both ! and ≈ s become decidable. Let E be a conver-
gent subterm theory given by

⋃n
i=1{Mi = Ni}, and cE = max1≤i≤n(|Mi|, ar(Σ)+1).

Theorem 1. For any frames φ and φ′, for any closed term M , we can decide φ ! M
and φ ≈s φ′ in polynomial time in |φ|, |φ′|, and |M |.

The end of this section is devoted to outlining the proof of the theorem.

Step 1 of the proof: saturating a frame φ. We first associate with each frame φ the
set of subterms of messages in φ that may be deduced from φ by applying only small
contexts. We prove that this set can be computed in polynomial time. In addition, we
show that each term in this set has a “representation” whose DAG-size is polynomial.

Definition 2. Let φ = νñ{M1/x1, . . . , Mk/xk} be a frame. Let st(φ) be the set of
subterms of the Mi’s. The saturation sat(φ) of φ is the minimal set such that:

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ),
2. if M1, . . . , Mk ∈ sat(φ) and C[M1, . . . , Mk] → M , where C is a context, |C| ≤

cE , fn(C) ∩ ñ = ∅, andM ∈ st(φ) then M ∈ sat(φ),
3. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(φ), then f(M1, . . . , Mk) ∈

sat(φ).

Proposition 6. Let φ be a frame, φ = νñσ.

1. The set sat(φ) can be computed in time O(|φ|max(ar(Σ),cE)+2).
2. For everyM ∈ sat(φ), there exists a term ζM such that fn(ζM )∩ñ = ∅, |ζM |DAG ≤

(cE + 1)|φ|, and ζMσ =E M . The term ζM is called a recipe of M and is chosen
arbitrarily between the possible terms verifying these properties.



The set sat(φ) is obtained by saturating the set {M1, . . . , Mk} by applying the rules 2
and 3 of definition 2. Since sat(φ) ⊆ st(φ), this set is saturated in at most |φ| steps. At
each step, we have to compute:

– Every closed term of the formC[M1, . . . , Mk] (up to renamings inC), where |C| ≤
cE and the Mi’s are already in the set, and check if it is an instance of some left-
hand side of a rule. Thus we need at mostO(|φ|cE+1) computations.

– Every term f(M1, . . . , Mk) that is also in st(φ). Thus we have to construct at most
|Σ||φ|ar(Σ) terms.

Since each step requires at mostO(|φ|max(ar(Σ),cE+1)) computations and since there are
at most |φ| steps, sat(φ) may be computed in time O(|φ|max(ar(Σ),cE)+2). For the sec-
ond part of proposition 6, we already know by proposition 1 that each termM of sat(φ)
has a representation ζM such that fn(ζM ) ∩ ñ = ∅ and ζMσ =E M . By construction
of sat(φ), the recipes may be chosen so that:

1. ζM = xi if σ(xi) = M ,
2. ζM = C[ζM1 , . . . , ζMk ] withMi ∈ sat(φ) ifM is obtained by the rule 2,
3. ζM = f(ζM1 , . . . , ζMk) withMi ∈ sat(φ) ifM is obtained by the rule 3.

Since there are at most |sat(φ)| ≤ |φ| recipes, the maximal DAG-size of a recipe of a
term in sat(φ) is (cE + 1)|φ|.

Step 2 of the proof: Introducing a finite set of equalities to characterize a frame. With
each frame φ, we associate a set of equalities Eq(φ) (finite modulo renaming) such that
two frames are equivalent if and only if they satisfy the equalities from each other’s set:
φ′ satisfies the equalities Eq(φ) and φ satisfies the equalities Eq(φ′). We assume fixed
the set of recipes corresponding to the terms of sat(φ).

Definition 3. Let φ = νñσ be a frame. The set Eq(φ) is the set of equalities

C1[ζM1 , . . . , ζMk ] = C2[ζM ′
1
, . . . , ζM ′

l
]

such that (C1[ζM1 , . . . , ζMk ] =E C2[ζM ′
1
, . . . , ζM ′

l
])φ, |C1|, |C2| ≤ cE , and the Mi

and M ′
i are in sat(φ). If φ′ is a frame such that (M =E N)φ′ for every (M = N) ∈

Eq(φ), we write φ′ |= Eq(φ).

Two crucial lemmas show that it is sufficient to consider these equalities:

Lemma 1. Let φ = νñσ and φ′ = νñ′σ′ be two frames such that φ′ |= Eq(φ). For all
contexts C1, C2 such that (fn(C1) ∪ fn(C2)) ∩ ñ = ∅, for all terms Mi, M ′

i ∈ sat(φ),
if C1[M1, . . . , Mk] == C2[M ′

1, . . . , M
′
l ], then (C1[ζM1 , . . . , ζMk ] =E C2[ζM ′

1
, . . . ,

ζM ′
l
])φ′.

Lemma 2. Let φ = νñσ be a frame. For every context C1 such that fn(C1) ∩ ñ = ∅,
for every Mi ∈ sat(φ), for every term T such that C1[M1, . . . , Mk] →E T , there
exist a context C2 such that fn(C2) ∩ ñ = ∅, and terms M ′

i ∈ sat(φ), such that
T == C2[M ′

1, . . . , M
′
l ] and for every frame φ′ |= Eq(φ), (C1[ζM1 , . . . , ζMk ] =E

C2[ζM ′
1
, . . . , ζM ′

l
])φ′.

How these lemmas are used to prove the decidability of deduction and static equivalence
is explained in steps 3 and 4 of the proof, respectively.



Step 3 of the proof: decidability of !. Here we show that any message deducible from
a frame φ is actually a context over terms in sat(φ).

Proposition 7. Let φ = νñσ be a frame, M be a closed term and M ↓ its normal
form. Then φ ! M if and only if there exist C and M1, . . . , Mk ∈ sat(φ) such that
fn(C) ∩ ñ = ∅ and M ↓== C[M1, . . . , Mk].

If M ↓== C[M1, . . . , Mk] with fn(C) ∩ ñ = ∅, then M =E C[ζM1 , . . . , ζMk ]σ, by
construction of the ζMi ’s. Thus, by proposition 1, φ ! M . Conversely, if φ ! M , then
by proposition 1, there exists ζ such that fn(ζ) ∩ ñ = ∅ andM =E ζσ. ThusM ↓==
(ζσ) ↓. Applying recursively lemma 2, we obtain that (ζσ) ↓== C[M1, . . . , Mk] for
someM1, . . . , Mk ∈ sat(φ) and C such that fn(C) ∩ ñ = ∅.

We derive that φ ! M can be decided by checking whether M ↓ is of the form
C[M1, . . . , Mk] with Mi ∈ sat(φ). Given a term M , M ↓ can be computed in poly-
nomial time. Once sat(φ) is computed (in polynomial time by proposition 6), check-
ing whether there exist C and M1, . . . , Mk ∈ sat(φ) such that fn(C) ∩ ñ = ∅ and
M ↓== C[M1, . . . , Mk]may be done in timeO(|M ||φ|2). We conclude that φ ! M is
decidable in polynomial time.

Step 4 of the proof: decidability of ≈s.

Proposition 8. For all frames φ and φ′, we have φ ≈s φ′ if and only if φ |= Eq(φ′)
and φ′ |= Eq(φ).

By definition of static equivalence, if φ ≈s φ′ then φ |= Eq(φ′) and φ′ |= Eq(φ).
Conversely, assume now that φ′ |= Eq(φ) and considerM, N such that there exist ñ,σ
such that φ = νñσ, (fn(M) ∪ fn(N)) ∩ ñ = ∅ and (M =E N)φ. ThenMσ =E Nσ,
so (Mσ)↓== (Nσ)↓. Let T = (Mσ)↓. Applying recursively lemma 2, we obtain that
there existM1, . . . , Mk ∈ sat(φ) and CM such that fn(CM ) ∩ ñ = ∅ and

T == CM [M1, . . . , Mk] andMσ′ =E CM [ζM1 , . . . , ζMk ]σ′.

Since T == (Nσ) ↓, we obtain similarly that there exist M ′
1, . . . , M

′
l ∈ sat(φ) and

CN such that fn(CN ) ∩ ñ = ∅ and

T == CN [M ′
1, . . . , M

′
l ] andNσ′ =E CN [ζM ′

1
, . . . , ζM ′

l
]σ′.

Moreover, since CM [M1, . . . , Mk] == CN [M ′
1, . . . , M

′
l ], we derive from lemma 1

that CM [ζM1 , . . . , ζMk ]σ′ =E CN [ζM ′
1
, . . . , ζM ′

l
]σ′, thus (M =E N)φ′. Conversely, if

(M =E N)φ′ and φ |= Eq(φ′), we can prove that (M =E N)φ. We conclude φ ≈s φ′.
Therefore, given φ and φ′, to decide whether φ ≈s φ′ we construct sat(φ) and

sat(φ′). This can be done in polynomial time by proposition 6. For each term M
of sat(φ) or sat(φ′), the term ζM has a polynomial DAG-size. Then, for all con-
texts C1, C2 such that |C1|, |C2| ≤ cE , for all Mi, M ′

i ∈ sat(φ), we check whether
(C1[ζM1 , . . . , ζMk ] =E C2[ζM ′

1
, . . . , ζM ′

l
])φ and (C1[ζM1 , . . . , ζMk ] =E C2[ζM ′

1
, . . . ,

ζM ′
l
])φ′. There are at most O((|φ|cE )2) equalities in Eq(φ) (up to renamings of the

names in C1 and C2). Each term of the form C1[ζM1 , . . . , ζMk ]φ has a polynomial



DAG-size. The equality of two terms represented by DAGs can be checked in polyno-
mial time: we do not need to expand the DAGs to test for equality. We conclude that
φ ≈s φ′ can be decided in polynomial time in |φ| and |φ ′|.

Although this proof is effective, the complexity bounds that we obtain from it appear
rather high. For example, for the equational theoryE 1 of section 2.3, we can obtain that
φ ! M is decidable in timeO(|M |3|φ|7). It should be possible to do much better.

5 Conclusion

This paper investigates decidability questions for message deducibility and static equiv-
alence, two formal representations for knowledge in the analysis of security protocols.
This investigation yields a few somewhat negative results, for example that static equiv-
alence cannot always be reduced to message deducibility. On the other hand, the main
results are strong, positive ones: both message deducibility and static equivalence are
decidable in polynomial time under a large and useful class of equational theories.

These positive results suggest some directions for further research in protocol anal-
ysis. In the general case of infinite-state protocols, our algorithms could be integrated
into analysis tools; substantial work on optimizations may however be required. For
finite-state protocols, various security properties are decidable under specific equational
theories (e.g., [5]). Perhaps our results can serve as the starting point for a generalization
to a broad class of equational theories. This generalization may be easy if one restricts
attention to passive attackers (eavesdroppers): since the capabilities of eavesdroppers
are limited to deducing and comparing messages, our decidability results may apply
fairly directly. The case with active attackers is clearly more difficult and interesting; as
mentioned in the introduction, Delaune and Jacquemard have recently proved that the
deduction problem is still decidable for a subclass of convergent subterm theories. It
remains to study whether this work could be extended to establish process equivalences
(such as testing equivalences [4]).
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