
Moby/RT: A Tool for

Specification and Verification of Real-Time Systems

Ernst-Rüdiger Olderog
(Department of Computing Science

University of Oldenburg
olderog@informatik.uni-oldenburg.de)

Henning Dierks
(Department of Computing Science

University of Oldenburg
dierks@informatik.uni-oldenburg.de)

Abstract: The tool Moby/RT supports the design of real-time systems at the
levels of requirements, design specifications and programs. Requirements are ex-
pressed by constraint diagrams [Kleuker, 2000], design specifications by PLC-Autom-
ata [Dierks, 2000], and programs by Structured Text, a programming language dedi-
cated for programmable logic controllers (PLCs), or by programs for LEGO Mindstorm
robots. In this paper we outline the theoretical background of Moby/RT by discussing
its semantic basis and its use for automatic verification by utilising the model-checker
UPPAAL [Larsen et al., 1997].

Key Words: real-time, specification, formal verification, requirements’ capture, Con-
straint Diagrams, PLC-Automata

Category: D2.1, D2.2, D2.4, D4.7, F3.1, F4.1

1 Introduction

Real-time systems are reactive systems where reactions to certain inputs have to
occur within given time intervals. When designing real-time systems one has
to bridge several levels of abstraction: requirements, specifications, software,
and hardware. For these levels different computational models for real-time sys-
tems have been proposed. At the requirements and specification level models
based on the continuous time domain Time = R≥0 are prevailing. Suitable log-
ics for describing properties of such models are higher-order logic or Timed
Computation Tree Logic (TCTL, [Henzinger et al., 1994]) or Duration Cal-
culus [Zhou Chaochen et al., 1991, Hansen and Zhou Chaochen, 1997]. Opera-
tional descriptions for such models are Timed Automata [Alur and Dill, 1994].

At the software level models based on the discrete time domain Time =
N are often used. Declarative descriptions use Computation Tree Logic (CTL,
[Clarke et al., 1986]), operational descriptions use Kripke structures. Discrete
time models also underly synchronous languages like ESTEREL [ESTEREL].
At the hardware level task systems are used as a basis for scheduling analysis.

Our approach to modelling real-time systems is based on the following
choices. We use continuous time Time = R≥0 and model real-time systems by a

Journal of Universal Computer Science, vol. 9, no. 2 (2003), 88-105
submitted: 14/10/02, accepted: 14/2/03, appeared: 28/2/03  J.UCS

set of observables obs : Time → Dobs. As demonstrated in the research project
ProCoS [He Jifeng et al., 1994, Schenke and Olderog, 1999] this approach is flex-
ible to describe systems at various level of detail. Properties of these observ-
ables we describe in the Duration Calculus, an interval-based logic and calculus
for real-time systems. Duration Calculus serves both as a high-level specifica-
tion language for real-time systems and as a basis for giving the semantics of
other specification languages. At the implementation level we assume that re-
actions take time. To formalise this, we use PLC-Automata [Dierks, 2000] as
design specifications. Unlike Timed Automata, PLC-Automata can be imple-
mented directly on a widespread hardware platform, the Programmable Logic
Controllers (PLCs for short). To verify properties of PLC-Automata we rely on
their translation into Timed Automata and use the model-checker UPPAAL
[Bengtsson et al., 1996, Larsen et al., 1997].

This paper is organised as follows. Section 2 gives a brief introduction to Du-
ration Calculus. Section 3 describes how real-time requirements are described by
constraint diagrams. Section 4 presents PLC-Automata as a means for describing
design specifications. Section 5 explains how to verify that PLC-Automata sat-
isfy constraint diagrams by using Timed Automata. Section 6 gives an overview
of the tool Moby/RT. Finally, Section 7 concludes the paper.

2 Duration Calculus

Duration Calculus (DC for short) is a real-time logic and calculus for
interval-based properties of observables [Zhou Chaochen et al., 1991,
Hansen and Zhou Chaochen, 1997]. From interval temporal logic
[Moszkowski, 1985] the DC inherits the chop operator “ ; ” and the length
operator �. A formula F ; G holds on an interval [b, e] if this can be chopped into
two adjacent subintervals [a, m] and [m, e] such that F holds on [a, m] and G

holds on [m, e]. Using the chop the two modalities � (for some subinterval) and
� (for all subintervals) can be introduced as abbreviations:

�F
df= true ;F ; true and �F

df= ¬�¬F

For a given interval [b, e] the operator � measures its length e − b. Addi-
tionally, DC has the integral (or duration) operator

∫
. For illustration con-

sider the gas burner example studied in the ProCoS project [Ravn et al., 1993,
He Jifeng et al., 1994].

Example 1. A gas burner is safety critical because a gas leak might lead to an
explosion. Thus the controller of a gas burner must be constructed in such a way
that the leak time of gas is only a small percentage of the overall operation time.
Using a Boolean observable Leak : Time −→ {0, 1} the top level safety property

89Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

can be formalised in DC as the following real-time requirement R:

R
df= � (� ≥ 60 =⇒ 20 · ∫ Leak ≤ �)

This requirement states that for every subinterval (operator �) which has a
length (operator �) of at least 60 seconds the accumulated duration of leaks
(formalised by the integral operator

∫
applied to the observable Leak) should be

at most 5% of the length of the considered subinterval (or equivalently, 20 times
the duration should be at most the length of the subinterval). Figure 1 exhibits
timing diagrams for the observable Leak depending on the observables Gas and
Flame by the expression Gas ∧ ¬Flame.

���
���
���
���

���
���
���
���

0

1

0

1

0

1

����
����
����
����

����
����
����
����

Gas

Flame

Leak

60

Figure 1: Gas burner safety requirement

We pursue a logic-based approach where the semantics is given by DC for-
mulae. Thus for both requirements req and design specifications spec we shall
define a corresponding DC semantics DC(req) and DC(spec). This is trivial if
a requirement is already given as a DC formula as in the case of R above, but
in the following sections we shall meet graphical languages for requirements and
specifications where separate semantics needs to be defined.

An advantage of this setting is that correctness or satisfaction can be mod-
elled by logical implication: for any specification spec and requirement req

spec satisfies req iff DC(spec)⇒ DC(req).

In general, when the DC formulae for spec and req use different sets of (abstract
and concrete) observables a and c, we need a data invariant between a and c

expressed as a DC formula linka,c. Then

spec satisfies req iff DC(spec)c ∧ linka,c ⇒ DC(req)a.

90 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

High-level DC formulae like R are easy to understand but difficult to imple-
ment. For a lower level of abstraction that is more easily implementable, DC
implementables have been introduced in [Ravn, 1995] as a subset of DC. This
subset makes use of the following abbreviations where S is a state expression, F

is an arbitrary DC formula, and s, t ∈ Time:

point interval : �� df= � = 0
everywhere : �S� df=

∫
S = � ∧ � > 0

followed-by : F −−→ �S� df= �¬ (F ; �¬S�)
timed up-to : F ≤s−−→ �S�

df= (F ∧ � ≤ s)−−→ �S�
timed leads-to : F t−−→ �S� df= (F ∧ � = t)−−→ �S�

Informally, �S� requires that the state expression S holds almost everywhere
on a non-point interval. F −−→ �S� requires that whenever a pattern given by a
formula F is observed, it will be “followed by” an interval where S holds. In the
“up-to” form the pattern is bounded by a length “up to” s, and in the “leads-to”
form this pattern is required to have a length t.

DC-Implementables are certain patterns where π is a state expression in some
observable X and ϕ is a state expression in observables Y distinct from X .

Initialisation : �� ∨ �π� ; true

Sequencing : �π� −−→ �π ∨ π1 ∨ . . . ∨ πn�
Progress : �π� t−−→ �¬π�
Synchronisation : �π ∧ ϕ� t−−→ �¬π�
Stability : �¬π� ; �π ∧ ϕ� −−→ �π ∨ π1 ∨ . . . ∨ πn�

and �¬π� ; �π ∧ ϕ� ≤t−−→ �π ∨ π1 ∨ . . . ∨ πn�
The sequencing pattern requires that when the real-time system is currently in
phase π it may stay there or evolve to one of the phases π1, ..., πn. Synchroni-
sation requires that when phase π and condition ϕ hold for t seconds then the
system has to leave the phase π. With ϕ being true, synchronisation specialises
to progress. Stability observes the system from the moment when the phase π

starts and assumes condition ϕ to hold. In the first case of unbounded stability
it requires a future behaviour as the sequencing constraint. In the second case
of bounded stability the sequencing behaviour is guaranteed only for t seconds.

3 Requirements: Constraint Diagrams

To help non-specialists using our approach we conceal the details of DC as much
as possible. Therefore we use a graphic notation called constraint diagrams,
abbreviated CDs, to formalise real-time requirements. These diagrams were in-
troduced in [Dietz, 1996] and further investigated in [Kleuker, 2000]. A CD de-
scribes the required real-time behaviour of observables using an assumption-
commitment paradigm.

91Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

Example 2. A watchdog continuously checks an input signal S. If S has been
absent for more than 10 seconds an alarm A should be raised within 1 second.
To model this system we consider two Boolean observables

S : Time −→ {0, 1} and A : Time −→ {0, 1}.

The following CD specifies the behaviour required for these two observables:

S
¬S
10

A
A�

[0, 1]

The two horizontal lines describe the behaviour of S and A in isolation. The
arrow gives the link between S and A. Informally, the diagram represents an
implication: if for a duration of 10 seconds ¬S was observed (assumption) then
within 1 second a period where A holds has to occur (commitment). The boxes
around A and [0, 1] indicate that these are commitments whereas the remaining
parts are all assumptions. The dashed parts of the lines represent arbitrary
behaviour of S and A and abbreviate the predicate true.

The general form of CDs is illustrated by the following diagram about observables
Xi, ..., Xj .

Xi

πi
1

π̃i
1 πi

2
π̃i

2

[c, d]

πi
m

π̃i
m

...

Xj

πj
1

π̃j
1 πj

2
π̃j

2 πj
n

π̃j
n

�

[a, b]

�

[e, f]

For each of these observables a sequence of phases is displayed where for each
phase an assumption πi

k and a commitment π̃i
k with k ∈ {1, ..., n}may be stated.

Arrows with assumed time intervals like [a, b] or committed time intervals like
[e, f] may link these phases. Also the phases may have assumed lengths like [c, d]
or committed lengths.

3.1 DC Semantics of CDs

The formal semantics of a CD is defined by a DC formula of the form

∀x ∈ Time • Assumptions(x) =⇒ ∃y ∈ Time • Commitments(x,y)

92 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

where x and y are (lists of) variables ranging over Time. The details of this
definition can be found in [Kleuker, 2000].

Example 3. The semantics of the watchdog CD of Example 2 is given by the
following DC formula:

∀ x ∈ Time • � = x ; (�¬S� ∧ � = 10) ; true (1)

=⇒ ∃ y ∈ Time • Pref (� = y ; �A� ; true) ∧ (2)

y − (x + 10) ∈ [0, 1]) (3)

Line (1) describes the assumed phase sequence for the observable S starting in
a phase of unknown length x, followed by a phase of length 10 where ¬S holds,
followed by an arbitrary phase. Line (2) describes the committed phase sequence
for the observable A, namely that after a phase of length y a phase occurs where
A holds. Line (3) represents the committed time interval [0,1] at the arrow from
¬S to A by requesting that the length difference y − (x + 10) is in this time
interval. We have not yet explained the meaning of the operator Pref in line (2).
It requests that only a prefix of the commitment � = y ; �A� ; true has to match
the assumption � = x ; (�¬S� ∧ � = 10) ; true. This is relevant in case the final
phase true in the assumption is too short to accommodate the maximal delay
time of 1 for the alarm A to hold. In other words, only when we have observed
the observables S long enough, the commitment guarantees that A occurs.

3.2 Expressiveness

In [Kleuker, 2000] it is shown that conjunctions of CDs are Turing powerful. More
precisely, by exploiting the density of the continuous time domain Time = R≥0,
it is shown that conjunctions of CDs can express the behaviour of any given two
counter machine. This is shown by giving CDs for all the DC formulae used in the
proof of [Zhou Chaochen et al., 1993] that the DC can express the behaviour of
any given two counter machine. As a consequence, it is not decidable whether a
given set of CDs represents a satisfiable real-time requirement. In [Kleuker, 2000]
also the following specific result on expressiveness is shown.

Theorem 1. DC-Implementables can be expressed by CDs.

For illustration we exhibit two cases treated in the proof of this theorem. We
assume that π is a state expression in the observable X and that ϕ is a state
expression in observables Y distinct from X .

– Initialisation: the implementable �� ∨ �π� ; true is expressed by the CD

X

π

93Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

– Synchronisation: the implementable �π ∧ ϕ� t−−→ �¬π� is expressed by the
CD

X
π

t

¬π

Y
ϕ�

0
�
0

4 Design Specifications: PLC-Automata

Participation in the research project UniForM [Krieg-Brückner et al., 1999]
triggered our interest in Programmable Logic Controllers, abbreviated PLCs
[IEC, 1993, Lewis, 1995]. This simple type of processor is widespread in automa-
tion industry. The characteristics of PLCs are interesting because they provide
a means of implementing real-time systems. A PLC performs the following non-
terminating cycle:

loop forever do
• poll sensors: input;
• compute next state; ←− timers
• update actuators: output

od

PLCs offer timers that can be set to a certain desired time and tested whether
this time has elapsed. The computation of the next state can depend on these
timers. We assume an upper bound εPLC for the cycle time. The timing be-
haviour of a PLC can be depicted in Figure 2.

In [Dierks, 2000] a formal model for specifying the body of the PLC cycle
was introduced, the PLC-Automaton, which can be represented graphically.

Example 4. The PLC-Automaton in Figure 3 models a watchdog. It has three
states q0, q1, q2 and reacts to inputs s and n (abbreviating signal and no signal)
with outputs OK , Test , and Alarm . Every state has two annotations in the
graphical representation. The upper one denotes the output of the state, for
instance in state q0 the output is OK and in state q2 the output is Alarm. The
lower annotation is either 0 or a pair (d, S) consisting of a real number d > 0
and a subset S of inputs.

We formalise this graphic notation using an automata-like structure extended
by some components.

Definition 2. A PLC-Automaton is a tuple A = (Q, Σ, δ, q0, ε, St, Se, Ω, ω) with
the following components:

94 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

Input

PLC

Output

computing computing

co
m

pu
tin

g

po
lli

ng

po
lli

ng

po
lli

ng

up
da

tin
g

up
da

tin
g

up
da

tin
g

po
lli

ng

max. cycle time max. cycle time max. cycle time

input values

output values

Time

Figure 2: Cyclic behaviour of a PLC

q
1

q
2

0

OK

s

s
Alarm

0

s,n

Test

q
0

n n
 9,{ }n

Figure 3: An example of a PLC-Automaton.

– Q is a nonempty, finite set of states,

– Σ is a nonempty, finite set of inputs,

– δ : Q×Σ −→ Q is the transition function,

– q0 ∈ Q is the initial state,

– ε > 0 is the upper bound for a cycle,

– St : Q −→ R≥0 is a function assigning to each state q a delay time,

– Se : Q −→ P(Σ) is a function assigning to each state a set of delayed inputs,1

– Ω is a nonempty, finite set of outputs, and

– ω : Q −→ Ω is the output function.
1 If St(q) = 0 the set Se(q) can be arbitrarily chosen. The single 0 represents this in

the graphical notation (cf. Figure 3).

95Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

The components Q, Σ, δ, q0, Ω and ω are as in finite state Moore automata. The
additional components are needed to model a polling behaviour and to enrich
the language for dealing with real-time aspects. The ε represents the upper time
bound for a polling cycle and enables us to model this cycle in the semantics.
The delay function St and Se represent the annotations of the states. In the case
of St(q) = 0 no delay time is given and the value Se(q) is arbitrary. If the delay
time St(q) is greater than 0 the set Se(q) denotes the set of inputs for which the
delay time is valid.

4.1 DC Semantics of PLC-Automata

A PLC-Automaton describes the behaviour of the system in the computation
phase. The operational behaviour is similar to a finite state machine, i.e. depend-
ing on the polled input value the system changes both its state and its output.
The behaviour is modified in only one case: if

– the annotation of the current state is (d, S) and

– the polled input is in S and

– the current state does not hold longer than d seconds,

then no transition is executed.

Example 5. The PLC-Automaton of Figure 3 should raise an alarm when the
signal s has been absent for more than 10 seconds. To do so it starts in state q0

outputting OK and remains there as long as it reads the input s (signal present).
The first time it reads n (no signal) it switches to state q1 outputting Test . In q1

the automaton reacts to the input s by moving back to state q0 independently
of the time it stayed in state q1. It reacts to the input n by switching to state q2

provided that q1 holds longer than 9 seconds. Once the automaton has entered q2

it remains there forever. Hence, we know that the automaton changes its output
to Alarm when the input n holds a little bit longer than 9 seconds (the cycle
time has to be considered, see subsection 4.2).

Given a PLC-Automaton A = (Q, Σ, δ, q0, ε, St, Se, Ω, ω), its formal
semantics is expressed in terms of the observables

inputA : Time −→ Q, stateA : Time −→ Σ, outputA : Time −→ Ω

by a DC formula of the form DC(A) df=
∧11

j=1 DCj where e.g.

DC1
df= �� ∨ �stateA = q0� ; true

states that the initial state is q0, and

DC3
df= �stateA = q ∧ inputA ∈ A� ε−−→ �stateA = q ∨ stateA ∈ δ(q, A)�

96 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

formalises that state change depends only on the inputs during the last cycle
period of ε seconds. For more details we refer the reader to [Dierks, 2000].

4.2 Timing Analysis

Based on the DC semantics we can calculate upper bounds of the reaction time
of PLC-Automata to particular input stimuli. For n ≥ 0 the notation δn(Q0, Σ0)
describes the set of all states that are reachable from states of the set Q0 by n

steps of the transition function δ using inputs from set Σ0. For n = 0 we put
δ0(Q0, Σ0) = Q0.

Theorem 3. For a PLC-Automaton A = (Q, Σ, δ, q0, ε, St, Se, Ω, ω) with
Q0 ⊆ Q, Σ0 ⊆ Σ, δ(Q0, Σ0) ⊆ Q0, and n ≥ 0 the following holds:

�stateA ∈ Q0 ∧ inputA ∈ Σ0� cn−−→ �stateA ∈ δn(Q0, Σ0)�

where the upper bound of the reaction time is

cn = ε + max




k∑
i=1

s(qi, Σ0)

∣∣∣∣∣∣
k ≤ n ∧
∃ q1, . . . , qk ∈ Q0 \ δn(Q0, Σ0) :

∀ 1 ≤ j < k : qj+1 ∈ δ(qj , Σ0)


 (4)

with

s(q, Σ0) =
{

St(q) + 2 · ε if St(q) > 0 ∧ Σ0 ∩ Se(q) �= ∅

ε otherwise
(5)

Proof. Intuitively, the formula (4) calculates the worst case reaction time of all
paths from Q0 to δn(Q0, Σ0). For each transition step in such a path starting
in a state q the formula (5) checks whether there is a delay input in Σ0 and
calculates the reaction times accordingly. For details see [Dierks, 2000]. �

Example 6. For the PLC-Automaton of Figure 3 the above theorem yields

�stateA ∈ Q ∧ inputA = n� 9+4·ε−−−−→ �stateA ∈ {q2}� .

Thus by choosing ε ≤ 1
4 for the cycle time of the PLC-Automaton the desired

reaction time of 10 seconds to the absence of a signal s is guaranteed.

4.3 Synthesis

Starting from requirements given as a set of DC implementables – which by
Theorem 1 can be expressed by CDs – it is possible to synthesise a PLC-Autom-
aton satisfying these requirements provided they are consistent.

97Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

Theorem 4. There is an efficient algorithm which for a given finite set

Req ⊆ DC-Implementables

in the observables inputA and outputA

– decides whether Req is satisfiable and if so

– outputs a PLC-Automaton A satisfying Req, i.e. with DC(A)⇒ Req.

Proof. See [Dierks, 1999].

4.4 PLC-Software

For PLCs several dedicated programming notations have been devised
[IEC, 1993, Lewis, 1995]. Closest to conventional imperative programming lan-
guages is the Structured Text, abbreviated ST. PLC-Automata can be easily
compiled into ST.

Example 7. Below we show an ST program PRG WATCH implementing the PLC-
Automaton of Figure 3. In ST timers are declared as variables of a special type
TP. The program PRG WATCH contains a declaration of such a variable called
timer. The statement timer(IN:=TRUE,PT:=t#9.0s) switches the timer on and
sets it to 9 seconds. This statement is executed when entering state 1. The
condition NOT timer.Q is true as soon as the timer has expired. This condition
has to be met in order to react to the input n by switching to the alarm state
2. The statement timer(IN:=FALSE,PT:=t#0.0s) switches the timer off. It is
executed when leaving state 1.

PROGRAM PRG WATCH
VAR
state : INT := 0; (* 0 for OK, 1 for Test, 2 for Alarm *)
timer : TP;

ENDVAR
IF state=0 THEN

%output:=OK;
IF %input = n THEN

state:=1; %output:=Test;
ENDIF

ELSIF state=1 THEN
timer(IN:=TRUE,PT:=t#9.0s);
IF (%input = n AND NOT timer.Q) THEN

state:=2; %output:=Alarm;
timer(IN:=FALSE,PT:=t#0.0s);

ELSIF %input = s THEN
state:=0; %output:=OK;
timer(IN:=FALSE,PT:=t#0.0s);

ENDIF
(* do nothing if state=2 *)
ENDIF

98 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

5 Verification: Timed Automata

Since the tool support for DC with continuous time is not very much developed
(see, however, [Tapken, 2001, Dierks and Tapken, 2003]), we verify properties
of PLC-Automata with the help of existing tools for Timed Automata. This
requires an alternative semantics of PLC-Automata and constraint diagrams in
terms of Timed Automata.

5.1 TA Semantics of PLC-Automata

We represent the semantics of a PLC-Automaton A by a Timed Automaton
TA(A). To this end, TA(A) uses three clocks, the first one measures how long the
current input is stable, the second measures the time spent in the current state,
and the third measures the time elapsed in the current cycle. The equivalence
of the two semantics can be stated as follows:

Theorem 5. For every PLC-Automaton A its TA semantics is equivalent to a
strong version of its DC semantics:

TA(A) ≈ DCstrong(A) where DCstrong(A)⇒ DC(A)

Proof idea. The equivalence ≈ relates the runs of TA(A) with the interpreta-
tions satisfying DCstrong(A), which is like DC(A) but with more DC formulae
conjoined. For details see [Dierks et al., 1998]. �

5.2 Automatic Verification

For certain patterns of constraint diagrams C – among them DC implementables
– timed test automata TA(C) can be generated. These test automata have a
distinguished state bad.

Theorem 6. For PLC-Automata A and constraint diagrams C of the considered
patterns the following holds:

DC(A)⇒ DC(C) iff TA(A) || TA(C) �|= ∃ � at bad

Proof. Thus A satisfies the requirement C if the state bad is not reachable in
the parallel composition of the timed automata for A and C. Using the model-
checker UPPAAL this reachability question can be verified automatically. For
details see [Lettrari, 2000, Dierks and Lettrari, 2002]. �

Example 8. We reconsider the specification given in Figure 3 and require the
system to satisfy

�outputA �= Alarm ∧ inputA = n� 10−−→ �outputA = Alarm� .

99Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

This formula is a synchronisation property as defined in Section 2 (with π
df=

(outputA �= Alarm), ϕ
df= (inputA = n), and t = 10. As explained in Section 3

the following CD expresses this property:

outputA
¬Alarm

10

Alarm

inputA
n�

0
�
0

The CD forbids periods in which the signal is not present (inputA = n) and the
alarm is not set that hold more than 10 seconds. The test automaton generated
for this CD is sketched in Figure 4.

init bad

true

¬Alarm ∧ n

c:=0

¬Alarm ∧ n

¬Alarm ∧ c = 10

c:=0

¬Alarm

¬Alarm ∧ c > 0

Figure 4: Sketch of a test automaton for a synchronisation.

6 Overview of Moby/RT

The tool Moby/RT implements all theoretical results presented in the previous
sections within a single framework. It comprises

– graphical editors for CDs and PLC-Automata,

– a simulator for networks of PLC-Automata with recording and playback
functionality,

– compilers generating code from (networks of) PLC-Automata into the pro-
gramming language ST for (networks of) PLCs and for (infrared networks
of) LEGO Mindstorms (so-called RCX bricks)2,

– an algorithm for the analysis of reaction times as described in Section 4.2,

– a synthesis algorithm for generating PLC-Automata from DC implementa-
bles as described in Section 4.3,

2 Actually, for Mindstorms Moby/RT generates C++ code that can be compiled into
executable code for the open source operating system “brickOS” (formerly known as
“legOS”) for Mindstorms.

100 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

– algorithms exploiting Theorem 6 enabling the user to verify specifications
(PLC-Automata) against requirements (CDs) even without knowing the the-
ory behind it.

For the last point the tool offers the translation of an arbitrary set of PLC-
Automata together with a CD into the input syntax of UPPAAL. Moreover, the
necessary invocation is done automatically and the results of the model-checker
are presented to the user appropriately: either the requirement is satisfied or the
model-checker returns a counter example. In the latter case the counter example
can be executed by the simulator of Moby/RT.

The art of model-checking is to avoid the state explosion. Moby/RT helps
to do this by applying abstractions on the timed automata models. These ab-
stractions are specified by the user by selecting entities of PLC-Automata like
variables or delays before the translation into UPPAAL input takes place. If
these abstractions are applied, there are three possible outcomes of the model-
checking process:

– The property (a CD) is satisfied for the abstracted model. Then the CD
holds also for the full model due to the construction of the abstractions.

– The property does not hold for the abstracted model and the model-checker
returns an abstract counter example. In this case Moby/RT invokes UP-
PAAL again with the full model together with a special test automaton
which is generated from the (abstract) counter example. The outcome of the
second model-checking process determines the final result:

• If UPPAAL returns another counter example, then it is a counter exam-
ple of the full model for the original CD due to the construction of the
special test automaton.

• Otherwise the abstractions applied to the model were too coarse.

All this can be done by the user without learning to use UPPAAL. The archi-
tecture of Moby/RT is given in Figure 5.

Figure 6 demonstrates the “look and feel” of Moby/RT. It shows a screen-
shot of a system that consists of a single PLC-Automaton (uppermost box) that
corresponds to the automaton in Figure 3. The differences are the additional
concept of typed variables and assignments to them when transitions are taken.
Moreover, loop transitions can be omitted in Moby/RT. It is even allowed to
structure the PLC-Automata and their states hierarchically as in state charts
[Harel, 1987] (not shown in Figure 6).

Each of the two boxes in the middle represent a CD. Since both CDs belong
to the patterns for which a TA semantics is given (“testable”), model-checking
is possible. The results are displayed in the nodes below the CDs, saying that

101Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

Design Analysis

Requirements
Editor
for CDs

UPPAAL

Specifications
Editor for
PLC-Automata

Simulator

Programs ST C++

Hardware PLCs RCX

Synthesis
Counter
examples

Visuali-

sation

Figure 5: Architecture of Moby/RT

the current model has not changed semantically since the last model-checking
attempt (“Export: valid”), that the result of the model-checking was positive
(“Result: passed”), and that hence no simulation of a counter example is available
(“Simfile: no”). The CD on the left requires the system to hold output Test less
than 9.5 seconds. The CD on the right is the one of Example 8.

7 Conclusion

During the UniForM project [Krieg-Brückner et al., 1999] Moby/RT has been
successfully used to model and simulate two industrial case studies for railway
control [Dierks, 2000]. Recently Moby/RT has been applied to specify and gen-
erate code for the LEGO Mindstorm platform [LEGO]. In the future we plan to
extend this work to cooperating autonomous systems.

Model checking in the continuous time domain using UPPAAL is efficient
but nevertheless quickly meets its limits as the number of clocks grow. In
[Toben, 2001] first results were obtained on how to apply discrete time model
checkers for verifying properties of PLC-Automata, without loosing any infor-
mation about the underlying continuous time model.

Acknowledgements

Moby/RT has been developed on top of two student projects and several Mas-
ter and PhD theses. We are particularly grateful to the following people: Hans

102 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

Figure 6: Screen-shot of Moby/RT

Fleischhack, Cheryl Kleuker, Marc Lettrari, Marco Oetken, Josef Tapken and
Tobe Toben.

References

[Alur and Dill, 1994] Alur, R. and Dill, D. (1994). A theory of timed automata. TCS,
126:183–235.

[Bengtsson et al., 1996] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and
Wang Yi (1996). Uppaal – a Tool Suite for Automatic Verification of Real-Time
Systems. In Alur, R., Henzinger, T., and Sontag, E., editors, Hybrid Systems III,
volume 1066 of LNCS. Springer. 232–243.

[Clarke et al., 1986] Clarke, E., Emerson, E., and Sistla, A. (1986). Automatic veri-
fication of finite-state concurrent systems using temporal logic specifications. ACM
TOPLAS, 8:244–263.

[Dierks, 1999] Dierks, H. (1999). Synthesizing Controllers from Real-Time Specifi-
cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(1):33–43.

[Dierks, 2000] Dierks, H. (2000). PLC-Automata: A New Class of Implementable Real-
Time Automata. TCS, 253(1):61–93.

[Dierks et al., 1998] Dierks, H., Fehnker, A., Mader, A., and Vaandrager, F. (1998).
Operational and Logical Semantics for Polling Real-Time Systems. In Ravn, A.
and Rischel, H., editors, FTRTFT’98, volume 1486 of LNCS, pages 29–40, Lyngby,
Denmark. Springer.

[Dierks and Lettrari, 2002] Dierks, H. and Lettrari, M. (2002). Constructing Test Au-
tomata from Graphical Real-Time Requirements. In Damm, W. and Olderog, E.-R.,

103Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

editors, FTRTFT 2002, volume 2469 of LNCS, pages 433–453, Oldenburg, Germany.
Springer.

[Dierks and Tapken, 2003] Dierks, H. and Tapken, J. (2003). Moby/DC — A Tool for
Model-Checking Parametric Real-Time Specifications. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), LNCS. Springer.

[Dietz, 1996] Dietz, C. (1996). Graphical Formalization of Real-Time Requirements.
In Jonsson, B. and Parrow, J., editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1135 of LNCS, pages 366–385, Uppsala, Sweden. Springer.

[ESTEREL] ESTEREL. The ESTEREL language.
See http://www-sop.inria.fr/meije/esterel/esterel-eng.html.

[Hansen and Zhou Chaochen, 1997] Hansen, M. and Zhou Chaochen (1997). Duration
Calculus: Logical Foundations. FAC, 9:283–330.

[Harel, 1987] Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8(3). 231–274.

[He Jifeng et al., 1994] He Jifeng, Hoare, C., Fränzle, M., Müller-Olm, M., Olderog,
E.-R., Schenke, M., Hansen, M., Ravn, A., and Rischel, H. (1994). Provably Correct
Systems. In Langmaack, H., de Roever, W.-P., and Vytopil, J., editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages
288–335, Lübeck, Germany. Springer.

[Henzinger et al., 1994] Henzinger, T., Nicollin, X., Sifakis, J., and Yovine, S. (1994).
Symbolic Model Checking for Real-Time Systems. Information and Computation,
111:193–244.

[IEC, 1993] IEC (1993). IEC International Standard 1131-3, Programmable Con-
trollers, Part 3, Programming Languages.

[Kleuker, 2000] Kleuker, C. (2000). Constraint Diagrams. PhD thesis, University of
Oldenburg.

[Krieg-Brückner et al., 1999] Krieg-Brückner, B., Peleska, J., Olderog, E.-R., and
Baer, A. (1999). The UniForM Workbench, a Universal Development Environment
for Formal Methods. In Wing, J., Woodcock, J., and Davies, J., editors, FM’99 –
Formal Methods, volume 1709 of LNCS, pages 1186–1205. Springer.

[Larsen et al., 1997] Larsen, K., Petterson, P., and Wang Yi (1997). Uppaal in a nut-
shell. STTT, 1(1+2):134–152.

[LEGO] LEGO. PLC-Automata and LEGO mindstorms.
See http://semantik.Informatik.Uni-Oldenburg.DE/
teaching/fp realzeitsys ws0001/result/eindex.html.

[Lettrari, 2000] Lettrari, M. (2000). Eine Testautomatensemantik für Constraint Di-
agrams und ihre Anwendung. Master’s thesis, University of Oldenburg, Department
of Computer Science, Oldenburg, Germany.

[Lewis, 1995] Lewis, R. (1995). Programming industrial control systems using IEC
1131-3. The institution of Electrical Engineers.

[Moszkowski, 1985] Moszkowski, B. (1985). A Temporal Logic for Multilevel Reason-
ing about Hardware. IEEE Computer, 18(2):10–19.

[Ravn, 1995] Ravn, A. (1995). Design of Embedded Real-Time Computing Systems.
Technical Report 1995-170, Technical University of Denmark.

[Ravn et al., 1993] Ravn, A., Rischel, H., and Hansen, K. (1993). Specifying and Ver-
ifying Requirements of Real-Time Systems. IEEE Transactions on Software Engi-
neering, 19:41–55.

[Schenke and Olderog, 1999] Schenke, M. and Olderog, E.-R. (1999). Transforma-
tional design of real-time systems – Part I: From requirements to program speci-
fications. Acta Informatica, 36:1–66.

[Tapken, 2001] Tapken, J. (2001). Model-Checking of Duration Calculus Specifications.
PhD thesis, University of Oldenburg.

[Toben, 2001] Toben, T. (2001). Diskretes Model-Checking für SPS-Automaten. Mas-
ter’s thesis, University of Oldenburg, Department of Computer Science, Oldenburg,
Germany.

104 Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

[Zhou Chaochen et al., 1993] Zhou Chaochen, Hansen, M., and Sestoft, P. (1993). De-
cidability and undecidability results for duration calculus. In Enjalbert, P., Finkel,
A., and Wagner, K., editors, Symposium on Theoretical Aspects of Computer Science
(STACS 93), volume 665 of LNCS, pages 58–68. Springer.

[Zhou Chaochen et al., 1991] Zhou Chaochen, Hoare, C., and Ravn, A. (1991). A Cal-
culus of Durations. IPL, 40/5:269–276.

105Oderog E.-R., Dierks H.: Moby/RT: A Tool for Specification and Verification ...

