
Privacy-Preserving Database Systems

Elisa Bertino, Ji-Won Byun, and Ninghui Li

Department of Computer Science and Cerias,
Purdue University,

656 Oval Drive, West Lafayette, IN 47907
{bertino, byunj, ninghui}@cs.purdue.edu

Abstract. Privacy is today an important concern for both users and en-
terprises. Therefore, intense research is today being carried out on various
aspects of privacy-preserving data management systems. In this paper,
we focus on database management systems (DBMS) able to enforce pri-
vacy promises encoded in privacy languages such as P3P. In particular,
in the paper, we first present an overview of the P3P language and out-
lines some of its critical aspects. We then outline the main requirements
for a privacy-preserving DBMS and we discuss solutions related to the
management of privacy-related meta-data, focusing on special category
of meta-data information, that is, purpose information. Purpose informa-
tion represents an important component of privacy statements and thus
their effective management is crucial. We then discuss current solutions
to to fine-grained access control in the context of relational database
systems and identify relevant issues.

1 Introduction

Data represent today an important asset. We see an increasing number of or-
ganizations that collect data, very often concerning individuals, and use them
for various purposes, ranging from scientific research, as in the case of medical
data, to demographic trend analysis and marketing purposes. Organizations may
also give access to the data they own or even release such data to third parties.
The number of increased data sets that are thus available poses serious threats
against the privacy of individuals and organizations. Because privacy is today an
important concern, several research efforts have been devoted to address issues
related to the development of privacy-preserving data management techniques.

A first important class of techniques deals with privacy-preservation when
data are to be released to third parties. In this case, data once are released are not
any longer under the control of the organizations owning them. Therefore, the
organizations owners of the data are not able to control the way data are used.
The most common approach to address the privacy of released data is to modify
the data by removing all information that can directly link data items with
individuals; such a process is referred to as data anonymization. It is important
to note that simply removing identity information, like names or social-security-
numbers, from the released data may not be enough to anonymize the data.
There are many examples showing that even when such information is removed

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 178–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Privacy-Preserving Database Systems 179

from the released data, the remaining data combined with other information
sources may still link the information to the individuals it refers to. To overcome
this problem, approaches based on generalization techniques have been proposed,
the most well known of which is based on the notion of k-anonymity [27,28].

A second class of techniques deals specifically with privacy-preservation in
the context of data mining. Data mining techniques are today very effective.
Thus even though a database is sanitized by removing private information, the
use of data mining techniques may allow one to recover the removed information.
Several approaches have been proposed, some of which are specialized for specific
data mining techniques, for example tools for association rule mining or classi-
fication systems, whereas other are independent from the specific data mining
technique. In general all approaches are based on modifying or perturbing the
data in some way; for example, techniques specialized for privacy preserving min-
ing of association rules modify the data so to reduce the confidence of sensitive
association rules. A problem common to most of those techniques is represented
by the quality of the resulting database; if data undergo too many modifications,
they may not be any longer useful. To address this problem, techniques have been
developed to estimate the errors introduced by the modifications; such estimate
can be used to drive the data modification process. A different technique in this
context is based on data sampling [7]. The idea is to release a subset of the data,
chosen in such a way that any inference made from the data has a low degree of
confidence. Finally, still in the area of data mining, techniques have been devel-
oped, mainly based on commutative encryption techniques, the goal of which is
to support distributed data mining processes on encrypted data [8]. In particu-
lar, the addressed problem deals with situations in which the data to be mined
is contained at multiple sites, but the sites are unable to release the data. The
solutions involve algorithms that share some information to calculate correct
results, where the shared information can be shown not to disclose private data.

Finally, some efforts have been reported dealing with database management
systems (DBMS) specifically tailored to support privacy policies, like the poli-
cies that can be expressed by using the well known P3P standard [29]. In par-
ticular, Agrawal et al. [1] have recently introduced the concept of Hippocratic
databases, incorporating privacy protection in relational database systems. In
their paper, Agrawal et al. introduce the fundamental principles underlying
Hippocratic databases and then propose a reference architecture. An important
feature of such architecture is that it uses some privacy metadata, consisting
of privacy policies and privacy authorizations stored in privacy-policies tables
and privacy-authorizations table respectively. There is strong need for develop-
ment of privacy-preserving DBMS driven by the demand organizations have of
complying with various privacy laws and requirements and of increasing user
trusts [19]. The development of database technology entails however addressing
many challenging issues, ranging from modeling to architectures, and may lead
to the next-generation of DBMS.

In this paper we focus on the development of privacy-preserving DBMS be-
cause it poses several challenges with respect to both theory and architectures.

180 E. Bertino, J.-W. Byun, and N. Li

It is important to notice, however, that privacy-preserving DBMS may be com-
bined with tools for data anonymization and privacy-preserving data mining in
order to provide comprehensive platforms for supporting flexible and articulated
privacy-preserving information management.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide an overview of P3P; this standard, even though has several limitations [19],
is an important reference in the current privacy practices. Thus, it represens
one of the starting points for development of privacy-preserving DBMS. In Sec-
tion 3 we then discuss relevant requirements towards the development of privacy-
preserving DBMS; in particular, we elaborate on some of the requirements arising
from the support of P3P policies. We then survey some existing solutions and
elaborate on some of those requirements in Section 4. We review some techniques
of fine-grained access control and discuss some key challenges in Section 5, and
we conclude the paper in Section 6.

2 Platform for Privacy Preferences (P3P)

The W3C’s Platform for Privacy Preferences Project (P3P) [29] is one major
effort to improve today’s online privacy practices. P3P enables websites to en-
code their data-collection and data-use practices in a machine-readable XML
format, known as P3P policies [12]. The W3C has also designed APPEL (A P3P
Preference Exchange Language) [16], which allows users to specify their privacy
preferences. Ideally, through the use of P3P and APPEL, a user’s agent should
be able to check a website’s privacy policy against the user’s privacy prefer-
ences, and automatically determine when the user’s private information can be
disclosed. In short, P3P and APPEL are designed to enable users to play an
active role in controlling their private information. In this section, we provide a
brief overview of P3P and APPEL and discuss some related issues.

2.1 Overview of P3P

Each P3P policy is specified by one POLICY element that includes the following
major elements.

– One ENTITY element: identifies the legal entity making the representation of
privacy practices contained in the policy.

– One ACCESS element: indicates whether the site allows users to access the
various kind of information collected about them.

– One DISPUTES-GROUP element: contains one or more DISPUTES elements that
describe dispute resolution procedures to be followed when disputes arise
about a service’s privacy practices.

– Zero or more EXTENSION elements: contain a website’s self-defined extensions
to the P3P specification.

– And one or more STATEMENT elements: describe data collection, use and
storage. A STATEMENT element specifies the data (e.g. user’s name) and the
data categories (e.g. user’s demographic data) being collected by the site, as
well as the purposes, recipients and retention of that data.

Privacy-Preserving Database Systems 181

<STATEMENT> stmt(
<PURPOSE><admin required="opt-in"/></PURPOSE> purpose: {admin(opt-in)}
<RECIPIENT><public/></RECIPIENT> recipient: {public}
<RETENTION><indefinitely/></RETENTION> retention: {indefinitely}
<DATA-GROUP> data: {#user.home-info.postal}
<DATA ref="#user.home-info.postal"></DATA>)

</DATA-GROUP>
</STATEMENT>

Fig. 1. An Example P3P Statement. The XML representation appears on the left side
and a more succinct representation on the right side.

There are two kinds of P3P statements. The first kind contains the
NON-IDENTIFIABLE element, which is used to indicate that either no information
will be collected or information will be anonymized during collection. The sec-
ond kind does not contain the NON-IDENTIFIABLE element; this is the commonly
used one. For now, we will focus on the latter. A brief discussion of statements
with NON-IDENTIFIABLE element is given later in this section.

Figure 1 provides an example of a P3P statement. Each such statement
contains the following:

– One PURPOSE element, which describes for which purpose(s) the information
will be used. It contains one or more pre-defined values such as current, ad-
min, individual-analysis and historical. A purpose value can have an optional
attribute ‘required’, which takes one of the following values: opt-in, opt-out,
and always. The value ‘opt-in’ means that data may be used for this pur-
pose only when the user affirmatively requests this use. The value ‘opt-out’
means that data may be used for this purpose unless the user requests that
it not be used in this way. The value ‘always’ means that users cannot opt-in
or opt-out of this use of their data. Therefore; in terms of strength of data
usage, ‘always’ > ‘opt-out’ > ‘opt-in’. In Figure 1, PURPOSE is admin and
the attribute ‘required’ takes the value opt-in.

– One RECIPIENT element, which describes with whom the collected informa-
tion will be shared. It contains one or more pre-defined values such as ours,
delivery and public. A recipient value can have an optional attribute ‘re-
quired’, which is similar to that of a PURPOSE element. In Figure 1, RECIPIENT
is public.

– One RETENTION element, which describes for how long the collected informa-
tion will be kept. It contains exactly one of the following pre-defined values:
no-retention, stated-purpose, legal-requirement, business-practices and in-
definitely. In Figure 1, the RETENTION value is indefinite.

– One or more DATA-GROUP elements, which specify what information will be
collected and used. Each DATA-GROUP element contains one or more DATA ele-
ments. Each DATA element has two attributes. The mandatory attribute ‘ref’
identifies the data being collected. For example, ‘#user.home-info.telecom.
telephone’ identifies a user’s home telephone number. The ‘optional’ at-
tribute indicates whether or not the data collection is optional. A DATA

182 E. Bertino, J.-W. Byun, and N. Li

element may also contain a CATEGORIES element, which describes the kind
of information this data item is, e.g., financial, demographic and health. In
Figure 1, DATA is postal info.

– Zero or one CONSEQUENCE element, which contains human-readable contents
that can be shown to users to explain the data usage practice’s ramifications
and why the usage is useful.

2.2 Issues in P3P

Since proposed, P3P has received broad attention from both industry and the re-
search community, and has been gradually adopted by companies. On the other
hand, the full deployment of P3P in enterprise information systems has raised
many challenging questions. For example, P3P represents an enterprise’s promise
to users about its privacy practice. How can we ensure that an organization and
its customers have a common understanding of these promises? P3P promises
must be fulfilled in the services provided by enterprises. How can a company
guarantee that its P3P policy is correctly enforced in those applications? We
discuss some of the issues regarding the former question (privacy policy specifi-
cation) in this section. The issues regarding the latter question (privacy policy
enforcement) are discussed in the subsequent section.

The Lack of Formal Semantics in P3P. One major problem that hinders
P3P adoption is that a P3P policy may be interpreted and represented differently
by different user agents. Companies are thus reluctant to provide P3P policies on
their websites, fearing that the policies may be misrepresented [11,25]. Quoting
from CitiGroup’s position paper [25], “The same P3P policy could be represented
to users in ways that may be counter to each other as well as to the intent of the
site.” “... This results in legal and media risk for companies implementing P3P
that needs to be addressed and resolved if P3P is to fulfill a very important need.”

For instance, consider the statement in Figure 1. In the statement, the three
components (purpose, recipient and retention) all refer to the same data item
‘#user.home-info.postal’; however, for the statement to have a precise meaning,
one must also determine how these components interact. We consider two inter-
pretations. In the first interpretation, all three components are related, i.e., the
purpose, the recipient and the retention are about one data usage. In Figure 1,
the postal information will be used for the admin purpose (technical support
of the website and its computer system); the information will be shared with
the public and will be stored indefinitely. For this statement, this interpretation
seems counterintuitive, because there is no need to share the data with the pub-
lic for the admin purpose. Furthermore, it is not clear whether this data usage
is required or optional, since the ‘required’ attribute has the ‘opt-in’ value for
purpose but the default ‘always’ value for recipient. The explanation for this
statement, provided by one of the P3P architects [10], is that the data item
‘#user.home-info.postal’ will always be collected and shared with the public.
Additionally, if the user chooses to opt-in, their postal information will be used

Privacy-Preserving Database Systems 183

for the admin purpose. In other words, whether the individual’s postal informa-
tion will be shared with the public does not depend upon whether or not the
information is used for the admin purpose.

This leads us to the second interpretation, in which purpose, recipient and
retention are considered orthogonal. In this interpretation, a P3P statement
specifies three relations: the purposes for which a data item will be used, the
recipients with whom a data item will be shared, and how long the data item
will be stored. Even though these relations are specified in the same statement,
they are not necessarily about a single data usage. Given this data-centric in-
terpretation, the following three P3P policies will have the same meaning in the
sense that all relations contain a data component:

Example 1. Three P3P policies that have the same meaning.

Policy 1:
stmt(data: {#user.home-info.telecom,

#user.bdate(optional)},
purpose: {individual-analysis,

telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Policy 2:
stmt(data: {#user.home-info.telecom,

#user.bdate(optional)},
purpose: {individual-analysis},
recipient: {ours},
retention: {stated-purpose})

stmt(data: {#user.home-info.telecom,
#user.bdate(optional)},

purpose: {telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Policy 3:
stmt(data: {#user.home-info.telecom},

purpose: {individual-analysis,
telemarketing(opt-in)},

recipient: {ours},
retention: {stated-purpose})

stmt(data: {#user.bdate(optional)},
purpose: {individual-analysis,

telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Part of this problem is caused by overlooking the need for a semantics in the
initial design of P3P, leaving too much freedom for P3P policies to be misinter-
preted and misrepresented by user agents. The fact that the same meaning may
be encoded in several different ways makes it very difficult to correctly express
privacy preferences in a syntax-based preference language such as APPEL. One

184 E. Bertino, J.-W. Byun, and N. Li

representation can be accepted by a preference, but another representation could
be rejected by the same preference.

Potential Semantic Inconsistencies in P3P Policies. In general, any com-
binations of the values for purpose, recipient and retention are allowed in P3P.
However, in a practical setting, semantic dependencies arise naturally between
these values, making some of the combinations invalid. A P3P policy using in-
valid combinations is thus semantically inconsistent. This problem has been rec-
ognized [9,24], and P3P’s designers are beginning to address some of these con-
flicts [9]. Nonetheless, many places where potential conflicts may occur have not
been previously identified. We now identify some additional classes of potential
semantic inconsistencies in P3P.

– A P3P policy may be inconsistent because multiple retention values apply to
one data item.
P3P allows one data item to appear in multiple statements, which introduces
a semantic problem. Recall that in each P3P statement, only one retention
value can be specified, even though multiple purposes and recipients can
be used. The rationale behind this is that retention values are mutually
exclusive, i.e., two retention values conflict with each other. For instance,
no-retention means that “Information is not retained for more than a brief
period of time necessary to make use of it during the course of a single online
interaction”[12]. And indefinitely means that “Information is retained for an
indeterminate period of time”[12]. One data item cannot have both retention
values. However, allowing one data item to appear in multiple statements
makes it possible for multiple retention values to apply to one data item.

– A statement may have conflicting purposes and retention values.
Consider a statement in a P3P policy that collects users’ postal information
for the purpose historical with retention no-retention. Clearly, if the postal
information is going to be “... archived or stored for the purpose of preserving
social history ...”, as described by the historical purpose, it will conflict with
no-retention, which requires that the collected information “... MUST NOT
be logged, archived or otherwise stored”[12].

– A statement may have conflicting purposes and recipients.
Consider a statement that includes all the purpose values (e.g., history, ad-
min, telemarketing, individual-analysis, etc.) but only the recipient value
delivery (delivery services). This does not make sense as one would expect
that at least ours should be included in the recipients.

– A statement may have conflicting purposes and data items.
Certain purposes imply the collection and usage of some data items. This
has been recognized by the P3P designers and reflected in the guidelines for
designing P3P user agents [9]. For example, suppose a statement contains
purpose contact but does not collect any information from the categories
physical and online. Then the statement is inconsistent because, in order to
contact a user, “the initiator of the contact would possess a data element
identifying the individual This would presuppose elements contained by
one of the above categories”[9].

Privacy-Preserving Database Systems 185

All semantic inconsistency instances must be identified and specified in the
P3P specification. Completion of this work requires a detailed analysis of the
vocabulary, ideally by the individuals who design and use these vocabularies.

Dealing with P3P Statements Having the NON-IDENTIFIABLE Ele-
ment. A STATEMENT element in a P3P policy may optionally contain the
NON-IDENTIFIABLE element, which “signifies that either no data is collected (in-
cluding Web logs), or that the organization collecting the data will anonymize
the data referenced in the enclosing STATEMENT” [12]. We call such statements
non-identifiable statements.

From the above description, we see that the NON-IDENTIFIABLE ele-
ment is used for two unrelated purposes in P3P. We argue that using the
NON-IDENTIFIABLE element to signify that no data is collected is inappropri-
ate. Intuitively, if a statement with the NON-IDENTIFIABLE element contains
the DATA-GROUP element, it means that the data collected in this statement
is anonymized. If such a statement does not have the DATA-GROUP element, it
means that no data is collected. However, this statement is meaningless when
the policy contains other statements that collect and use data. In general, the
fact that a policy does not collect any data should not be specified at the level
of a STATEMENT element; instead, it should be specified at the level of a POLICY
statement. For instance, it seems more appropriate to use a separate sub-element
(or an attribute) for the POLICY element to denote that a policy collects no data.

Another issue that arises from having the NON-IDENTIFIABLE element is that
a data item may appear both in normal statements and in non-identifiable state-
ments. In this situation, it is not clear whether the data item is anonymized upon
collection. According to Cranor [10], it may be possible that: “a company keeps
two different unlinkable databases and the data is anonymized in one but not
the other.”

The most straightforward way seems to annotate an anonymized data item so
that it is different from a normal data item, e.g., one may use ‘#user.home-info’
to denote a normal data item and ‘#@.user.home-info’ to denote an anonymized
version of the same data.

2.3 An Overview of APPEL

Privacy preferences are expressed as a ruleset in APPEL. A ruleset is an ordered
set of rules. An APPEL evaluator evaluates a ruleset against a P3P policy.1 A
rule includes the following two parts:

– A behavior, which specifies the action to be taken if the rule fires. It can
be request, implying that a P3P policy conforms to preferences specified in
the rule body and should be accepted. We call this an accept rule. It can be

1 The APPEL specification allows arbitrary XML elements not related to P3P to be
included together with the P3P policy for evaluation. Since the users may not even
know about them, it is not clear how they write preferences dealing with them. In
this paper, we assume that only a P3P policy is evaluated against a ruleset.

186 E. Bertino, J.-W. Byun, and N. Li

block, implying that a P3P policy violates the user’s privacy preferences and
should be rejected. We call this a reject rule. It can also be limit, which can
be interpreted as accept with warning.

– A number of expressions, which follow the XML structure in P3P policies.
An expression may contain subexpressions. An expression is evaluated to
TRUE or FALSE by matching (recursively) against a target XML element.
A rule fires if the expressions in the rule evaluate to TRUE.

Every APPEL expression has a connective attribute that defines the logical
operators between its subexpressions and subelements of the target XML ele-
ment to be matched against. A connective can be: or, and, non-or, non-and,
or-exact and and-exact. The default connective is and, which means that all
subexpressions must match against some subelements in the target XML ele-
ment, but the target element may contain subelements that do not match any
subexpression. The connective and-exact further requires that any subelement
in the target match one subexpression. The or connective means that at least
one subexpression matches a subelement of the target. The or-exact connective
further requires that all subelements in the target matches some subexpressions.

When evaluating a ruleset against a P3P policy, each rule in a ruleset is
evaluated in the order in which it appears. Once a rule evaluates to true, the
corresponding behavior is returned.

2.4 Issues in EPPAL

Many authors have noted that APPEL is complex and problematic [2,13,14,30].
In this section, we analyze APPEL’s pitfalls and the rationales for some of the
design decisions embedded in APPEL. The main objective for our analysis is
to ensure we design a preference language that avoids the APPEL’s pitfalls
but preserves the desirable functionalities in APPEL. The following subsections
examine the pitfalls and limitations of APPEL.

Semantic Inconsistencies of APPEL. Because of APPEL’s syntax-based
design, two P3P policies that have the same semantic meanings but are expressed
in syntactically different ways may be treated differently by one APPEL ruleset.
This deficiency in APPEL has been identified before [15]. We now show an
example APPEL rule.

01 <appel:RULE behavior="block">
02 <p3p:POLICY>
03 <p3p:STATEMENT>
04 <p3p:DATA-GROUP>
05 <p3p:DATA ref=
06 "#user.home-info.telecom"/>
07 <p3p:DATA ref="#user.bdate"/>
08 </p3p:DATA-GROUP>
09 </p3p:STATEMENT>
10 </p3p:POLICY>
11 </appel:RULE>

Privacy-Preserving Database Systems 187

This is a reject rule, since the behavior (on line 1) is “block”. The body
of this rule has one expression (lines 2-10) for matching a P3P policy. This
expression contains one subexpression (lines 3-9), which in turns contain one
subexpression (lines 4-8). The outmost expression (lines 2-10) uses the default
and directive; therefore, it matches a P3P policy only if the policy contains at
least one statement that matches the enclosed expression (lines 3-9). Overall, this
APPEL rule says that a P3P policy will be rejected if it contains a STATEMENT
element that mentions both the user’s birthday and the user’s home telephone
number.

This rule rejects Policies 1 and 2 in Example 2, but not Policy 3. In Policy
3, the two data items are mentioned in different statements and no statement
mentions both data items. This is clearly undesirable, as the three statements
have the same semantics. This problem is a direct consequence of that fact
that APPEL is designed to query the representation of a P3P policy, rather the
semantics of the policy.

The same problem exists in XPref [2], since it is also syntax-based.

The Subtlety of APPEL’s Connectives. The meaning of an APPEL rule
depends very much on the connective used in the expressions. However, the con-
nectives are difficult to understand and use. The APPEL designers made mis-
takes using them in the first example in the APPEL specification [16]. Consider
the following example taken from [16].

Example 2. The user does not mind revealing click-stream and user agent infor-
mation to sites that collect no other information. However, she insists that the
service provides some form of assurance.

The APPEL rule used in [16] for the above example is as follows:

01 <appel:RULE behavior="request"
02 description="clickstream okay">
03 <p3p:POLICY>
04 <p3p:STATEMENT>
05 <p3p:DATA-GROUP
06 appel:connective="or-exact">
07 <p3p:DATA
08 ref="#dynamic.http.useragent"/>
09 <p3p:DATA
10 ref="#dynamic.clickstream.server"/>
11 </p3p:DATA-GROUP>
12 </p3p:STATEMENT>
13 <p3p:DISPUTES-GROUP>
14 <p3p:DISPUTES service="*"/>
15 </p3p:DISPUTES-GROUP>
16 </p3p:POLICY>
17 </appel:RULE>

The above APPEL rule is an accept rule; its body has one outmost expres-
sion (lines 3-16) to match a P3P policy. The expression contains two subexpres-
sions, matching different elements in a policy. The expression denoted by the

188 E. Bertino, J.-W. Byun, and N. Li

p3p:POLICY element (lines 3–16) does not have the ‘connective’ attribute; there-
fore, the default and connective is used, which means that as long as the two
included expressions, i.e., p3p:STATEMENT (lines 4-12) and p3p:DISPUTES-GROUP
(lines 13-15), match some parts in the P3P policy, the rule accepts the policy.
The expression denoted by p3p:DATA-GROUP uses the or-exact connective, it
matches a DATA-GROUP element if the DATA elements contained in the element is a
non-empty subset of {#dynamic.http.useragent, #dynamic.clickstream.server}.

Overall, this rule means that a P3P policy will be accepted if it contains
a STATEMENT element that mentions only the two specified data items and a
DISPUTES-GROUP element.

Observe that this rule does not express the preference, as it does not take
into consideration the fact that a P3P policy can have multiple statements.
Subsequently, a policy that only mentions “#dynamic.http.useragent” in the
first statement can be accepted by the rule, even if the next statement collects
and uses other user data.

One may try to fix this problem by using the and-exact connective on line
2, which means that each element contained in the P3P policy must match
one of the expressions within the APPEL rule. For such a rule to work as in-
tended, the p3p:POLICY expression (lines 3–16) must contain two additional
sub-expressions: p3p:ENTITY and p3p:ACCESS. Otherwise, no P3P policy will
be accepted because of the existence of ENTITY and ACCESS elements. However,
this fix still does not work. A P3P policy may optionally contain an EXTENSION
element. Even when such a policy collects only ‘#dynamic.http.useragent’ and
‘#dynamic.clickstream.server’, it will not be accepted by the above rule, due
to the semantics of and-exact. On the other hand, including a sub-expression
p3p:EXTENTION cannot fix the problem, as a policy without extensions will not
be accepted in this case.

Another approach to fix the problem is to use the or-exact connective
on line 3 and to include subexpressions for p3p:ENTITY, p3p:ACCESS and
p3p:EXTENSION. Recall that the or-exact connective means that all elements
in the policy must match some subexpressions, but not every subexpression is
required to match some element in the policy. However, this means that the
p3p:DISPUTES-GROUP element also becomes optional. A P3P policy that does
not have the DISPUTES-GROUP element will also be accepted. This is not the
preference described in Example 2.

In fact, as far as we can see, there is no way to correctly specify the preference
in Example 2 in APPEL. One source of difficulty is that one has to intermingle
statements and other aspects (e.g., dispute procedures) of a P3P policy in a
preference rule. This is caused by APPEL’s syntactic nature and the fact that
statements and dispute procedures are all immediate children of a POLICY el-
ement. If conditions about data usages and other aspects of P3P policies may
be specified separately, it is possible to specify the conditions on data usage in
Example 2 using the or-exact connective.

Privacy-Preserving Database Systems 189

3 Requirements Towards the Development of
Privacy-Preserving DBMS

Languages for specification of privacy promises, such as P3P, represent only
one of the components in a comprehensive solution to privacy [3]. It is crucial
that once data are collected, privacy promises be enforced by the information
systems managing them. Because in today information systems, data are in
most cases managed by DBMS, the development of DBMS properly equipped
for the enforcement of privacy promises and of other privacy policies is crucial.
Here we discuss a set of requirements towards the development of such DBMS.
Some of those requirements, as the support for purpose meta-data and privacy
obligations, derive directly from P3P. Other requirements are not directly related
to P3P; however, they are crucial for the development of DBMS able to support
a wide range of privacy policies, going beyond the ones strictly related to P3P.
In the discussion, we use the terms subject to denote the active entities, trying
to gain accesses to the data, and subjects to denote the passive entities, that are
to be protected.

Support for Rich Privacy Related Meta-data. An important characteristic
of P3P is that very often privacy promises, that is, statements specifying the
use of the data by the party collecting them, include the specification of the
intended use of the data by the collecting party as well as other information.
Examples of this additional information are how long the data will be kept and
possible actions that are to be executed whenever a subject accesses the data.
Supporting this additional information calls for the need of privacy-specific meta-
data that should be associated with the data, stored in the database together
with the data, and send with the data whenever the data flow to other parties in
the system. Metadata should be associated with the data according to a range
of possible granularities. For example in a relational database, one should be
able to associate specific metadata with an entire table, with a single tuple, or
even with a column within a single tuple. Such flexibility should not however
affect the performance; thus we need to develop highly efficient techniques for
managing these metadata in particular when dealing with query executions.
Query executions may need to take into account the contents of such metadata
in order to filter out from the data to be returned, the data that cannot be
accessed because of privacy constraints.

Support for Expressive Attribute-Based Descriptions of Subjects. We
see an increasing trend towards the development of access control models that
relies on information concerning subjects. Examples of such models are repre-
sented by trust negotiation systems [4,18], that use credentials certifying relevant
properties of subjects. Such access control models are crucial in the context of
privacy because they provide a high-level mechanism able to support a very
detailed specification of the conditions that subjects must verify in order to ac-
cess data. As such, fine-grained privacy-preserving access control policies can be
supported. They also make it easy to formulate and maintain privacy policies

190 E. Bertino, J.-W. Byun, and N. Li

and verify their correctness. Moreover, such high-level models can provide bet-
ter support for interoperability because they can, for example, easily integrate
with SAML assertions. However, current database technology is very poor in the
representation of subjects. At the best current DBMS provide support for roles
in the context of the well-known role-based access control (RBAC) model [3].
However, apart from this, DBMS do not provide the possibility of specifying
application-dependent user profiles for use in access control and privacy enforce-
ment. It can be argued that such profiles should perhaps be built on top of the
DBMS or even be supported externally. However, in such a case, it is not clear
how efficient access control and privacy enforcement could be supported. It also
important to notice that RBAC does not support subject attributes. Extensions
of RBAC models supporting such a feature should be devised.

Support for Obligations. Obligations specify privacy-related actions that are
to be executed upon data accesses for certain purposes. There is a large va-
riety of actions that can be undertaken, including modifications to the data,
deletion of the data, notifications of data access to the individual to whom the
data are related or to other individuals, insertion of records into privacy logs.
These obligations should be possibly executed, or at least initiated by, the DBMS
because their execution is tightly coupled with data accesses. An important is-
sue here is the development of expressive languages supporting the specification
obligations, and analysis tools to verify the correctness and consistency of obli-
gations. A viable technology to support obligations is represented by trigger
mechanisms, currently available in all commercial DBMS. The main question is
however whether current trigger languages are adequate to support the specifi-
cation of obligations.

Fine-Grained Access Control to Data. The availability of a fine-grained
access control mechanism is an important requirement of a comprehensive so-
lution to privacy. Conventional view mechanisms, the only available mechanism
able to support in some ways a very fine granularity in access control, have sev-
eral shortcomings. A naive solution to enforce fine-grained authorizations would
require specifying a view for each tuple or subset of a tuple that are to be pro-
tected. Moreover, because access control policies are often different for different
users, the number of views would further increase. Furthermore, applications
programs would have to code different interfaces for each user, or group of users,
because queries and other data management commands would need to use for
each user, or group of users, the correct view. Modifications to access control
policies would also require creation of new views with consequent modifications
to application programs. Alternative approaches that address some of those is-
sues have been proposed that are based on the idea that queries are written
against base tables and then automatically re-written by the system against the
view available to the user. These approaches do not require to code different
interfaces for different users, and thus address on of the main problems in the
use of conventional view mechanisms. However, they introduce other problems,
such as inconsistencies between what the user expects to see and what the sys-

Privacy-Preserving Database Systems 191

tems returns; in some cases, they return incorrect results to queries rather than
rejecting them as unauthorized. Different solutions thus need to be investigated.
These solutions must not only address the specification of fine-grained access
control policies but also their efficient implementation in current DBMS.

Privacy-Preserving Information Flow. In many organizations, data flow
across different domains. It is thus important that privacy policies related to
data “stick” with the data when these data move within an organization or
across organizations. This is crucial to assure that if data have been collected
under a given privacy promise from an individual, this promise is enforced also
when data are passed to parties different from the party that have initially
collected them. Information flow has been extensively investigated in the past
in the area of multi-level secure databases. An important issue is to revisit such
theory and possibly extend it for application in the context of privacy.

Protection from Insider Threats. An important problem that so far has not
received much attention is related to the misuse of privileges by legitimate sub-
jects. Most research in the past has been devoted to protection from intrusions
by subjects external to the systems, against which technologies like firewalls can
provide a certain degree of protection. However, such approaches are not effec-
tive against users that are inside the firewalls. A possible technique that can be
employed to start addressing such problem is based on the use of subject access
profiling techniques. Once the profile of the legitimate accesses has been defined,
such profile can be used to detect behavior that is different. Developing such
an approach requires however investigating several issues, such as specific ma-
chine learning techniques to use, efficiency and scalability. Also, the collection of
user profiles may in turn introduce more privacy problems, because users of the
system may be sensible to the fact that all their actions are being monitored.

In the rest of this paper, we elaborate on some of those requirements and
discuss possible solutions.

4 Purpose Management and Access Control

In this section, we present three privacy-centric access control models from recent
literatures. Prior to proceed, we note that privacy protection cannot be easily
achieved by traditional access control models. The key difficulty comes from
the fact that privacy-oriented access control models are mainly concerned with
which data object is used for which purpose(s) (i.e., the intent(s) of data usage),
rather than which user is performing which action on which data object as in
traditional access control models. Another difficulty of privacy protection is that
the comfort level of privacy varies from individual to individual, which requires
access control be fine-grained. Thus, the main challenge of privacy protecting
access control is to provide access control based on the notion of purpose, incor-
porating data subjects’ preferences if necessary, at the most fine-grained level.
In the remainder of this section we discuss two approaches to the management
of purpose information and their use in access control.

192 E. Bertino, J.-W. Byun, and N. Li

4.1 Purpose Based Access Control

Our work in [5,6] presents a comprehensive approach to purpose management,
which is the fundamental building block on which purpose-based access control
can be developed. Our approach is based on intended purposes, which specify
the intended usage of data, and access purposes, which specify the purposes for
which a given data element is accessed. We also introduce the notion of purpose
compliance, which is the basis for verifying that the purpose of a data access
with the intended purposes of the data.

Another important issue addressed in this work is the data labeling scheme;
that is, how data are associated with intended purposes. We address this issue
in the context of relational data model. The main issue here is the granularity
of data labeling. We propose four different labeling schemes, each providing a
different granularity. We also exploit query modification techniques to support
data filtering based on purpose information.

Evidently, how the system determines the purpose of an access request is also
crucial as the access decision is made directly based on the access purpose. To
address this issue, we present a possible method for determining access purposes.
In our approach, users are required to state their access purposes along with the
data access requests, and the system validates the stated access purposes by
ensuring that the users are indeed allowed to access data for the particular
purposes.

Definition of Purposes. In privacy protecting access control models, the no-
tion of purpose plays a central role as the purpose is the basic concept on which
access decisions are made. In order to simplify the management, purposes are
organized according to a hierarchical structure based on the principles of gener-
alization and specialization, which is appropriate in common business environ-
ments. Figure 2 gives an example of purpose tree, where each node is represented
with the conceptual name of a purpose.

Intuitively, an access to a specific data item is allowed if the purposes allowed
by privacy policies for the data include or imply the purpose for accessing the
data. We refer to purposes associated with data and thus regulating data accesses
as Intended Purposes, and to purposes for accessing data as Access Purposes.

General-Purpose

Profiling

Admin Marketing

Direct Third-Party

D-Email

Special-Offers Service-Updates

Analysis

Purchase

 T-Postal T-Email D-Phone

Shipping

Fig. 2. Purpose Tree (From [5])

Privacy-Preserving Database Systems 193

Intended purposes can be viewed as brief summaries of privacy policies for data,
stating for which purposes data can be accessed. When an access to data is
requested, the access purpose is checked against the intended purposes for the
data.

In our model intended purposes support both positive and negative privacy
policies. An intended purpose consists of two components: Allowed Intended Pur-
poses and Prohibited Intended Purposes. This structure provides greater flexi-
bility to the access control model. Moreover, by using prohibited intended pur-
poses, one can guarantee that data accesses for particular purposes are never
allowed. Conflicts between the allowed intended purposes and the prohibited
intended purposes for the same data item are resolved by applying the denial-
takes-precedence policy where prohibited intended purposes override allowed
intended purposes.

An access purpose is the purpose of a particular data access, which is
determined or validated by the system when the data access is requested. Thus,
an access decision can be made based on the relationship between the access pur-
pose and the intended purposes of data. That is, an access is granted if the access
purpose is entailed by the allowed intended purposes and not entailed by the
prohibited intended purposes; in this case we say the access purpose is compliant
to the intended purpose. The access is denied if any of these two conditions fails;
we then say that the access purpose is not compliant to the intended purpose.

Data Labeling Model. In order to build an access control model based on
the notion of purpose, we must consider a specific data model and based on this
model devise a proper labeling scheme. A major question here is at what level
of granularity intended purposes are associated with data.

It is clear that in order to make the best use of data while at the same time
ensure that data providers feel comfortable, the labeling model should allow the
assignments of intended purposes with data at the most fine-grained level. That
is, we should be able to assign an intended purpose to each data element in every
tuple; e.g., for each attribute and for each data provider. It is also possible that
a data provider allows or prohibits access to his/her entire record (i.e., address),
not to individual sub-elements (i.e., street, city, state, etc.). This means that it is
not always necessary to associate each data element with an intended purpose.
However, intended purpose for the address information can vary depending on
each individual. To address these concerns, the labeling model should allow the
assignment of intended purpose to each tuple of a relation.

However, this most fine-grained approach is not efficient in terms of storage
and is not always necessary. For instance, it is possible that there exists some
information for which corresponding privacy policies are mandated by enter-
prises or by laws; i.e., data providers do not have a choice to opt-out from the
required intended purposes. In such cases, the data elements in each column in
the relation have the identical intended purpose. Thus, in order to avoid any
redundant labeling, intended purposes should be assigned to each attribute of
a relation using an auxiliary table, e.g., privacy policy table. Furthermore, it is
possible that the intended purposes of every attribute in a relation be identical.

194 E. Bertino, J.-W. Byun, and N. Li

Such cases occur when information in a relation is meaningful as a whole tuple,
but individual elements or tuples do not have any usefulness. In this case, the
intended purposes are assigned to the entire relation by using a single entry in
the privacy policy table.

In summary, in order to provide privacy protection in a storage efficient way,
intended purpose should be assigned to every relation, to every tuple in every rela-
tion, to every attribute in every relation, or to every data element in every relation.

Access Control Using Query Modification. Privacy-preserving access con-
trol mechanisms must ensure that a query result contains only the data items
that are allowed for the access purpose of the query. In other words, the system
must check the intended purpose of each data element accessed by the query
and filter out its value if the access purpose is not compliant with the intended
purpose of the data element. In our approach, this fine-grained access control
is achieved using query modification [26]. Our query modification algorithm is
outlined in Figure 3. Note that this method is invoked only if the access purpose
of the query is verified to be acceptable by the validate function. If the access
purpose is not acceptable, then the query is rejected without further being pro-
cessed.

In Lines 7 and 9 the compliance checks for relations with the relation- or
attribute-based labeling schemes are executed statically by the query modifica-
tion method. On the other hand, the compliance checks for relations with the
tuple- or element-based labeling schemes are performed during query processing
by the predicates which are added by the query modification algorithm (Lines
15 and 17).

The query modification algorithm checks both the attributes referenced in
the projection list and the attributes referenced in predicates (Line 3). As the
attributes in the projection list determine what data items will be included in
the result relation of a query, it may seem enough to enforce privacy policy
based only on the attributes in the projection list. However, the result of a
query also depends on the predicates, and not enforcing privacy constraints
on the predicates may introduce inference channels. For example, consider the
following query:

SELECT name
FROM Customer
WHERE income > 100000
FOR Third-Party.

Suppose that according to the established privacy policies, name can be ac-
cessed for the purpose of Third-Party, but income is prohibited for this purpose.
If the privacy constraint is not enforced on the predicates, this query will re-
turn a record containing the names of customers whose income is greater than
100,000. This is highly undesirable as this result implicitly conveys information
about the customers’ income. Note that if the privacy policy is enforced at the
predicate level, such inference channels cannot be created.

Privacy-Preserving Database Systems 195

Comp_Check (Number ap, Number aip, Number pip)
Returns Boolean
1. if (ap & pip) ≠ 0 then
2. return False;
3. else if (ap & aip) = 0 then
4. return False;
5. end if;
6. return True;

Modifying_Query (Query Q)
Returns a modified privacy-preserving query Q’
1. Let R1, ..., Rn be the relations referenced by Q
2. Let P be the predicates in WHERE clause of Q
3. Let a1, ..., am be the attributes referenced in both the projection list and P
4. Let AP be the access purpose encoding of Q
5. for each Ri where i = 1, ..., n do
6. if (Ri is relation-based labeling AND Comp_Check (AP, Ri.aip, Ri.pip) = False) then
7. return ILLEGAL-QUERY;
8. else if Ri is attribute-based labeling then
9. for each aj which belongs to Ri do
10. if Comp_Check (AP, aj.aip, aj.pip) = False then
11. return ILLEGAL-QUERY;
12. end if;
13. end for;
14. else if Ri is tuple-based labeling then
15. add ‘ AND Comp_Check (AP, Ri_aip, Ri_pip)’ to P ;
16. else if Ri is element-based labeling then
17. for each aj which belongs to Ri do
18. add ‘ AND Comp_Check (AP, aj_aip, aj_pip)’ to P;
19. end for;
20. else // Ri is a relation without labeling
21. do nothing;
22. end if;
23. end for;
24. return Q with modified P;

Fig. 3. Query Modification Algorithm (From [5])

Notice that the provided algorithm filters out a tuple if any of its elements
that are accessed is prohibited with respect to the given access purpose. For
instance, consider the following query:

SELECT name, phone
FROM Customer
FOR Marketing.

Suppose there is a customer record of which the name is allowed for market-
ing, but the phone is prohibited for this purpose. Then our algorithm excludes
the record from the query result. We note that in the environments where par-
tially incomplete information is acceptable, the query modification algorithm
can be easily modified to mask prohibited values with null values using the case
expression in SQL.

Access Purpose Determination. An access purpose is the reason for access-
ing a data item, and it must be determined by the system when a data access
is requested. Evidently, how the system determines the purpose of an access
request is crucial as the access decision is made directly based on the access pur-

196 E. Bertino, J.-W. Byun, and N. Li

pose. There are many possible methods for determining access purposes. First,
the users can be required to state their access purpose(s) along with the re-
quests for data access. Even though this method is simple, it requires complete
trust on the users and the overall privacy that the system is able to provide en-
tirely relies on the users’ trustworthiness. Another possible method is to register
each application or stored-procedure with an access purpose. As applications or
stored-procedures have limited capabilities and can perform only specific tasks,
it can be ensured that data users use them to carry out only certain actions
with the associated access purpose. This method, however, cannot be used for
complex stored-procedures or applications as they may access various data for
multiple purposes. Lastly, the access purposes can be dynamically determined,
based on the current context of the system. For example, suppose an employee
in the shipping department is requesting to access the address of a customer by
using a particular application in a normal business hour. From this context (i.e.,
the job function, the nature of data to be accessed, the application identification,
and the time of the request), the system can reasonably infer that the purpose
of the data access must be shipping.

In our work [6], users are required to state their access purposes along
with the data access requests, and the system validates the stated access
purposes by ensuring that the users are indeed allowed to access data for
the particular purposes. To facilitate the validation process, each user is
granted authorizations for a set of access purposes, and an authorization
for an access purpose permits users to access data with the particular pur-
pose. To ease the management of access purpose authorizations, users are
granted authorizations through their roles. This method has a great de-
ployment advantage as many systems are already using RBAC mechanisms
for the management of access permissions. This approach is also reason-
able as access purposes can be granted to the tasks or functionalities over
which roles are defined within an organization. However, using an RBAC
mechanism for the management of both access permissions and access pur-
poses may increase the complexity of the role engineering tasks. To ad-
dress this problem, we introduce a simple extension to RBAC. An impor-
tant feature of our approach is that by integrating RBAC with attribute-
based control, our extension simplifies the role administration and also pro-
vides increased flexibility. For more detailed information, users are directed
to [6].

4.2 Limiting Disclosure in Hippocratic Databases

LeFevre et al. [17] presented a database architecture for enforcing limited dis-
closure 2 expressed by privacy polices, which is illustrated by Figure 4. In this
section, we briefly review each component of their architecture.

2 Limited disclosure is one of data privacy principles, which states that data subjects
have control over who is allowed to see their personal information and for what
purpose [1].

Privacy-Preserving Database Systems 197

 Privacy
Meta-Data

 Application
 Context

 Data
Tables

 Choice
 Data

Modify Query

Policy Language
 Translator

 Install Policy
(P3P or EPAL)

 Issue Query
 (SQL)

 Individual
 Choices

Modified Query

Fig. 4. Implementation architecture overview (From [17])

Privacy Policy Meta-language. A privacy policy, 〈data, purpose-recipient
pair, condition〉 3, describes to whom the data may be disclosed (i.e., recip-
ients), how the data may be used (i.e., the purposes), and in what specific
circumstances the data may be disclosed (i.e., conditions). For instance, a
rule 〈address, solicitation-charity, optin=yes〉 requires that a data subject’s
address information can be accessed to a charity organization for the solicitation
purpose if the subject has explicitly consented to this disclosure. Note that a
condition predicate may refer to the data table T as well as any other data
tables and the context environment variables (e.g., $USERID). For example,
a condition to govern the disclosure of patient data to nurses such that, for
treatment, nurses may only see the medical history of patients assigned to the
same floor can be expressed as follows:

EXISTS (SELECT NurseID
FROM Nurses
WHERE Patients.floor = Nurses.floor
AND $USERID = Nurses.NurseID)

Limited Disclosure Models. For enforcing cell-level limited disclosure, two
models are introduced: table semantics and query semantics [17]. The table
semantics model conceptually defines a view of each data table for each purpose-
recipient pair, based on privacy policies. Then queries are evaluated against
these views. On the other hand, the query semantics model takes the query into
account when enforcing disclosure. Despite this subtle difference, the effect of
them is the same in that both models mask prohibited values using null value.
Below we provide the definitions of these two models, taken verbatim from [17].

– (Table Semantics) Let T be a table with n data columns, and let K be the
set of columns that constitute the primary key of T . For a given purpose-
recipient par Pj , the table T , seen as TPj , is defined as follows:

3 It is assumed that privacy policies in P3P or EPAL are translated to this form and
stored, prior to access control.

198 E. Bertino, J.-W. Byun, and N. Li

{r | ∃ t ∈ T ∧ ∀ i, 1 ≤ i ≤ n
(r[i] = t[i] if eval(t[i, j]) = true, 4

r[i]= null otherwise)
∧ r[K] nonenull}

– (Query Semantics) Consider a query Q that is issued on behalf of some
purpose-recipient pair Pj and that refers to table T . Query Semantics is
enforced as follows:
1. Every table T in the FROM clause is replaced by TPj , defined as follows:

{r | ∃ t ∈ T ∧ ∀ i, 1 ≤ i ≤ n
(r[i] = t[i] if eval(t[i, j]) = true,
r[i]= null otherwise)}

2. Result tuples that are null in all columns of Q are discarded.

Privacy Policy Storage. The privacy policies (i.e., disclosure rules) are stored
in the database as the privacy meta-data. These meta-data consists of policy rules
table and conditions table. The policy rules table stores a policy rule as a tuple of
〈RuleID, PolicyID, Purpose, Recipient, Table, Column, CondID〉. The condition
table stores conditional predicates each of which is identified by a CondID. For
instance, a tuple 〈r1, p1, p, r, t, d, c〉 in the policy rules table means that the
data in d of t is available to the user r for the purpose of p if the predicate
identified by c in the conditions table satisfies.

Query Modification. Incoming queries are augmented with case statements 5

to enforce the disclosure rules and conditions specified by the privacy meta-data.
For instance, consider the previous example, where nurses may only see the
medical history of patients assigned to the same floor for treatment. Suppose a
nurse issues a query

SELECT history FROM Patients

for the purpose of treatment. Then the query is rewritten to enforce the
disclosure rules as follows:

SELECT
CASE WHEN EXIST

(SELECT NurseID
FROM Nurses
WHERE Patients.floor = Nurses.floor

AND $USERID = Nurses.NurseID)
THEN history ELSE null END
FROM Patients

4 eval(t[i, j]) denotes the boolean result of evaluating the condition that governs the
disclosure of data column i in the current row of T to the purpose-recipient pair j.

5 In [17], a query modification algorithm using outer-joins is also presented.

Privacy-Preserving Database Systems 199

Observe that the modified query replaces the prohibited history data with
null values. Note also that the modified query accesses an additional patient data
(i.e, “floor”). If this information is governed by another disclosure rule, then such
a rule must be also enforced by checking the rule and adding the corresponding
condition to the modified query.

5 Generalized Fine-Grained Access Control Models for
Database Systems

In recent years, because of privacy requirements, we have seen a growing interest
in fine-grained access control in databases; e.g., the VPD in Oracle, parameter-
ized views in DB2 and the Hippocratic databases work. A motivation for fine-
grained access control is to move access control from applications to databases,
so that they cannot be bypassed and therefore high-assurance privacy can be
achieved.

Fine-grained access control policies may be specified according to two differ-
ent approaches. One approach, that we call view-based approach, uses views or
parameterized views. In this approach, what a user is authorized to see is given
by a set of views. Unlike in standard SQL, where the user is given access only
to the views, the user is given access to the base table; however, the user is lim-
ited to access only those parts of the table that is authorized by the views. The
other approach uses labeling, where each data element (e.g., a cell or a record)
is labeled with information determining whether this element is authorized for a
particular user (or a particular query). Purpose based access control discussed in
Section 4 is an example of this latter approach. In this section, we review some
existing works of the view-based approach and discuss the key challenges posed
by fine-grained access control.

5.1 View-Based Approach

In the view-based approach, a user is given a set of views which then represents
the parts of the database that are accessible to the user. This differs from the
view mechanism in SQL in that users issue their queries against the base tables
directly, not using the given views. In this section, we briefly review two works
that exemplify the view-based approach.

Access Control in INGRES. Stonebraker and Wong [26] introduced query
modification as a part of the access control system in INGRES. The basic
idea of query modification is that before being processed, user queries are
modified transparently to ensure that users do not see more than what they are
authorized to see. In their scheme, an access permission for a user is specified
and stored as a view. Thus, each user is associated with a set of views which
defines a permitted view of database for the user. When the user issues a query,
the query modification algorithm searches for the views that are related to the
query; i.e., the views whose attributes contain the attributes addressed by the

200 E. Bertino, J.-W. Byun, and N. Li

query 6. Then the qualifications (i.e., conditions in the WHERE clause) of such
views are conjuncted with the qualification of the original query. For instance,
consider a table Employee with attributes name, department, salary. Suppose a
user Smith is allowed to see only information on himself in the Employee table.
This restrictions is expressed 7 as:

SELECT name, department, salary
FROM Employee
WHERE name = ‘Smith’

Now suppose Smith wants to find out the salary information on the
employees in the Accounting department and issues the following query:

SELECT name, salary
FROM Employee
WHERE department = ‘Accounting’

As the attributes of the given view contain the attributes of the query, the
restriction is applied to the query and the query is automatically modified into:

SELECT name, salary
FROM Employee
WHERE department = ‘Accounting’ AND name = ‘Smith’

Thus, the modified query effectively limits the query result to the information
of Smith only. Note that once a query is modified, the modified query can be pro-
cessed without further access control; that is, the modified query is guaranteed
never to violate any access restriction placed on the query issuer.

Motro’s Approach. In [21], Motro points out some limitations of the query
modification algorithm in INGRES. The main drawback pointed out is that in
some cases the algorithm returns less than what the user is actually allowed to
see. For instance, consider a relation A with attributes a1, a2 and a3, and assume
that a user is given a view permitting her to access the tuples of a1 and a2 as
long as a condition C is satisfied. Then if the user tries to retrieve the tuples
of a1, a2, or a1 and a2, the access restriction is applied to the query, and only
the tuples that satisfy the condition C will be returned. However, when the user
tries to retrieve the tuples of all a1, a2 and a3, then the query will be denied
as the view given to the user does not contain the all attributes of the query.
To address this problem, Motro proposed an alternative technique. Similar to
the scheme used in INGRES, views are used to represent statements of access

6 Note that the attributes of a query include the attributes in both the SELECT clause
and the WHERE clause.

7 While QUEL [20] is used as the query language in the original paper, we use SQL
for the convenience of readers.

Privacy-Preserving Database Systems 201

permissions. However, the main difference is that granting a user permission to
access a set of views V = {v1, . . . , vm} in Motro’s scheme implies that permission
is also granted to access any view derived from V . Thus, when the user issues a
query Q, which is also a view, the system accepts Q if Q is a view that can be
derived from V . In addition, if Q is not a view of V , but any subview of Q is, then
the subview is accepted; that is, in the previous example where the user tries to
access all a1, a2 and a3, the tuples of a1 and a2 that satisfy C will be returned.
In [21], this is accomplished as follows. The views that permit access are stored
as “meta-relations” in the database. When a query is presented to the database,
the query is performed both on the meta-relations and the actual relations. As
applying the query on the meta-relations results in a view that is accessible to
the user, this result is then applied to the actual query result, yielding the final
result. For complete description and examples, readers are referred to [21].

Although the approach of Motro provides more flexibility to access control,
his technique also poses some subtle problems. First, his algorithm may result
in accepting multiple disjoint subviews of a query. However, it is not trivial
how these subviews are presented to users. Another shortcoming of his approach
is that the logical structure of actual query result may be different from the
expected structure; that is, a query retrieving three attributes may return tuples
with only two attributes. This is highly undesirable or unacceptable to most
database applications.

5.2 Virtual Private Database (VPD) in Oracle

Since the release of Oracle8i, the Virtual Private Database (VPD) has been in-
cluded as one of major access control components in Oracle database systems.
The VPD, defined as “the aggregation of server-enforced, fine-grained access
control” [22], provides a way to limit data access at the row level. Surely, it is
possible to support row level access control using the view mechanism. How-
ever, the view mechanism has several limitations as fine-grained access control
mechanism. First, it is not scalable. For instance, consider a table Employees,
and suppose each employee can only access her own information. In order to
enforce such policy using views, administrators have to create a view for each
employee and grant each employee a permission to access the personal view.
Clearly, this task is not efficient when there are a large number of employees.
Also, this approach is cumbersome to support when policies frequently change.
Another drawback of using views for access control is that view security becomes
useless if users have direct access to base tables.

The VPD overcomes such limitations of views by dynamically modifying user
queries. The basic idea of the VPD is as follows. A table (or a view) that needs
protection is associated with a policy function which returns various predicates
depending on the system context (e.g., current user, current time, etc.). Then
when a query is issued against the table, the system dynamically modifies the
query by adding the predicate returned by the policy function. Thus, the VPD
provides an efficient mechanism to control data access at the row level based on
both the system context and the data content.

202 E. Bertino, J.-W. Byun, and N. Li

It is possible to use VPD at the column level; i.e., associate policy functions
with a column, not an entire table. In the case of column level VPD, one can
also change the behavior of the VPD so that instead of filtering out inaccessible
tuples, just the prohibited values are masked with nulls. The VPD also allows
one to associate multiple policy functions with the same table. In such case, all
policies are enforced with AND syntax.

5.3 Truman Model vs. Non-Truman Model

As previously mentioned, query-modification has been widely accepted as an ef-
fective technique for implementing access control in relational database systems.
With this technique, when a subject issues a query, a modified query is executed
against the database. As the modification of queries is transparent to users,
this approach is equivalent to providing each user with a view of the complete
database restricted by access control considerations and executing her queries
only on this view. For this reason, this approach is called the “Truman model”
for access control in relational database systems [23].

Although the Truman model can effectively support fine-grained access con-
trol, it has a major drawback; there may be significant inconsistencies between
what the user expects to see and what the system returns [23]. For instance,
consider a relation Grades which contains the grades of multiple students, and
suppose each student is allowed to access only the grade of herself. Then when a
student issues a query SELECT * FROM Grades, the Truman model returns only
the grade of the student. However, suppose that a student wants to know the av-
erage grade and issues a query SELECT AVG(grade) FROM Grades. The Truman
model effectively filters out the tuples inaccessible to the student. However, the
system ends up returning the grade of the student, which is obviously incorrect.
However, as such filtering is transparent to the student, the student may falsely
believe that her grade is the same as the average grade.

Due to the inadequacy of the Truman model described above, Rizvi et al. [23]
argue that query modification is inherently inapplicable as a mechanism for
access control in database systems. As an alternative, they propose that every
user be associated with a set of authorized views. Then when a user issues a
query, the system assesses whether the query can be answered based on the
authorized views associated with the user. If the answer is positive, then the
query is processed without any modification. If the answer is negative, the query
is rejected with a proper notification given to the user. For instance, if the user
issues a query that asks for the average grade of all students, and the user’s
authorized views do not include every student’s grade, then the system does not
process the query and informs the user that the query cannot be answered.

5.4 Challenges in Fine-Grained Access Control

In general, a query processing algorithm A that enforces fine-grained access
control policy takes as input a database D, a policy P , and a query Q, and
outputs a result R = A(D, P, Q). We argue that a “correct” query processing
algorithm A should have the following three properties.

Privacy-Preserving Database Systems 203

Soundness. A(D, P, Q) should be “consistent” with S(D, Q), where S is the
standard relational query answering procedure. What do we mean by con-
sistent will be formally defined later.
The intuition is as follows. When the policy P allows complete access to D,
then A(D, P, Q) should be the same as S(D, Q). When P restricts access
to D, A(D, P, Q) may return less information than S(D, Q) does, but it
shouldn’t return wrong information.

Security. A(D, P, Q) should be using only information allowed by P ; in other
words, A(D, P, Q) should not depend on any information not allowed by P .
To formalize this, we require that for any D′, P ′ such that if the portion of D
allowed by P is the same as the portion of D′ allowed by P ′, A(D, P, Q) =
A(D′, P ′, Q). Precise definition of “the portion of D allowed by P” will
depend on how P is specified, and will be given later.
This security property is inspired by the notion of “indistinguishability”
security requirement for encryption schemes [?]. It says that if the algorithm
A is used for query processing, then no matter what queries one issue, one
cannot tell whether the database is in state D, P or in D′, P ′.

Maximality. While satisfying the above two conditions, A should return as
much information as possible. To appreciate the importance of this property,
observe that a query processing algorithm that always returns no information
would satisfy the sound and secure property; however this is clearly .

We argue that our list of the three properties is intuitive and natural. In par-
ticular, it is declarative in that it does not define any procedure for answering
queries. We illustrate the importance of having a definition of “correct query pro-
cessing with fine-grained access control policy” by showing that two approaches
previously discussed violate the above properties. For illustration, we consider
the following example.

Example 3. We have a relation Employee, with four attributes: id, name, age,
and salary, where id is the primary key.

id Name Age Income
1 Alice 22 30000
2 Bob 45 65000
3 Carl 34 40000
4 Diane 28 55000

A policy for a user Alice consists of the following views:

– V1: Alice can see all information about herself.
– V2: Alice can see id, name, and income information for anyone whose income

is less than $60000.
– V3: Alice can see id, name, and age for anyone whose age is less than 30.

204 E. Bertino, J.-W. Byun, and N. Li

Suppose Alice issues a query:

SELECT name, age, income FROM Employee (Q1)

Using the algorithm in [26], only the tuple about Alice is returned, because
neither V2 nor V3 includes all three attributes in the query. However, if Alice
issues two queries:

SELECT id, name, income FROM Employee (Q2)
SELECT id, name, age FROM Employee (Q3)

and does a natural join, then Alice would also be able to see Diane’s in-
formation. In other words, Diane’s information is indeed allowed by the views;
however, the query rewriting algorithm in [26] does not use this information.
Thus, the maximal property is violated.

In [17], an access control policy specifies which cells are allowed and which
cells are not, and the approach for enforcing such a policy is to effectively
replace each cell that is not allowed with the special value null. The soundness
property is however violated using the standard SQL approach for handling
null values; the standard SQL evaluates any operation involving a null as its
operand to false. For instance, suppose that Alice issues a query:

SELECT name FROM Employee WHERE age < 25 (Q4).
Observe that Q4 is equivalent to the following query

(SELECT name FROM Employee) EXCEPT
(SELECT name FROM Employee WHERE age ≥ 25) (Q5)

However, using the algorithm in [17], Q3 returns {Alice} while Q4 returns
{Alice, Bob, Carl}.

Although our correctness criteria seems trivial, to the best of our knowledge,
no fine-grained access control algorithm exists that is correct with respect to our
definition. Also, devising a “correct” algorithm is not trivial. It seems that this
problem of fine-grained access control still remains open.

6 Concluding Remarks

In this paper we have discussed some important requirements towards the devel-
opment of privacy-preserving DBMS and we have identified initial approaches
to address some of these requirements. In particular, we have presented two ap-
proaches dealing with purpose meta-data and their use in access control. These
approaches represent initial solutions, that need to be extended in various di-
rections. Relevant extensions are represented by efficient storage techniques and
the introduction of obligations. We have also discussed current approaches to
fine-grained access control and we have outlined the major drawbacks of these
approaches. We have also identified three important properties that fine-grained
access control models should satisfy. To date, however, no such model exist and
its development is an important challenge.

Privacy-Preserving Database Systems 205

Acknowledgement

The work reported in this paper has been partially supported by NSF under the
project “Collaborative Research: A Comprehensive Policy-Driven Framework
for Online Privacy Protection: Integrating IT, Human, Legal and Economic Per-
spectives”.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In The
28th International Conference on Very Large Databases (VLDB), 2002.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An XPath-based preference lan-
guage for P3P. In Proceedings of the Twelfth International World Wide Web Con-
ference (WWW2003), pages 629–639. ACM Press, May 2003.

3. A. I. Anton, E. Bertino, N. Li, and T. Yu. A roadmap for comprehensive online
privacy policy. Technical Report TR 2004-47, Purdue University, 2004.

4. E. Bertino, E. Ferari, and A. Squicciarini. Trust negotation: Concepts, systems and
languages. IEEE Computing in Science and Engineering, 6(4):27–34, Jul 2004.

5. J. Byun, E. Bertino, and N. Li. Purpose based access control for privacy protection
in relational database systems. Technical Report 2004-52, Purdue University, 2004.

6. J. Byun, E. Bertino, and N. Li. Purpose based access control of complex data
for privacy protection. In Symposium on Access Control Model And Technologies
(SACMAT), 2005. To appear.

7. C. Clifton. Using sample size to limit exposure to data mining. Journal of Computer
Security, 8(4):281–308, 2000.

8. C. Clifton and J. Vaidya. Privacy-preserving data mining: Why, how, and when.
IEEE Security and Privacy, 2(6):19–27, Nov 2004.

9. L. Cranor. P3P user agent guidlines, May 2003. P3P User Agent Task Force
Report 23.

10. L. F. Cranor. Personal communication.
11. L. F. Cranor and J. R. Reidenberg. Can user agents acurately represent privacy

notices?, Aug. 2002. Discussion draft 1.0.
12. M. M. et al. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, Apr.

2002. W3C Recommendation.
13. G. Hogben. A technical analysis of problems with P3P v1.0 and possible solutions,

Nov. 2002. Position paper for W3C Workshop on the Future of P3P. Available at
http://www.w3.org/2002/p3p-ws/pp/jrc.html.

14. G. Hogben. Suggestions for long term changes to P3P, June 2003. Posi-
tion paper for W3C Workshop on the Long Term Future of P3P. Available at
http://www.w3.org/2003/p3p-ws/pp/jrc.pdf.

15. G. Hogben, T. Jackson, and M. Wilikens. A fully compliant research implementa-
tion of the P3P standard for privacy protection: Experiences and recommendations.
In Proceedings of the 7th European Symposium on Research in Computer Security
(ESORICS 2002), volume 2502 of LNCS, pages 104–125. Springer, Oct. 2002.

16. M. Langheinrich. A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C
Working Draft, Apr. 2002.

17. K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting disclosure in hippocratic databases, Aug. 2004. In 30th International
Conference on Very Large Data Bases (VLDB), Toronto, Canada.

206 E. Bertino, J.-W. Byun, and N. Li

18. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

19. N. Li, T. Yu, and A. I. Antón. A semantics-based approach to privacy languages.
Technical Report TR 2003-28, CERIAS, Nov. 2003.

20. N. McDonald, M. Stonbraker, and E. Wong. Preliminary specification of ingres.
Technical Report 435-436, University of California, Berkeley, May 1974.

21. A. Motro. An access authorization model for relational databases based on alge-
braic manipulation of view definitions. In The Fifth International Conference on
Data Engineering (ICDE), pages 339–347, Feb. 1989.

22. Oracle Coperation. Oracle Database: Security Guide, December 2003. Available
at www.oracle.com.

23. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting tech-
niques for fine-grained access control. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 551–562, Paris, France,
2004. ACM Press.

24. M. Schunter, E. V. Herreweghen, and M. Waidner. Expressive privacy promises
— how to improve the platform for privacy preferences (P3P). Position paper for
W3C Workshop on the Future of P3P. Available at http://www.w3.org/2002/p3p-
ws/pp/ibm-zuerich.pdf.

25. D. M. Schutzer. Citigroup P3P position paper. Position paper for W3C Work-
shop on the Future of P3P. Available at http://www.w3.org/2002/p3p-ws/pp/ibm-
zuerich.pdf.

26. M. Stonebraker and E. Wong. Access control in a relational database manage-
ment system by query modification. In Proceedings of the 1974 Annual Conference
(ACM/CSC-ER), pages 180–186. ACM Press, 1974.

27. L. Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. In International Journal on Uncertainty, Fuzziness and Knowledge-
based Systems, 2002.

28. L. Sweeney. K-anonymity: A model for protecting privacy. In International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 2002.

29. W3C. Platform for privacy preferences (P3P) project. http://www.w3.org/P3P/.
30. R. Wenning. Minutes of the P3P 2.0 workshop, July 2003. Available at

http://www.w3.org/2003/p3p-ws/minutes.html.

	Introduction
	Platform for Privacy Preferences (P3P)
	Overview of P3P
	Issues in P3P
	An Overview of APPEL
	Issues in EPPAL

	Requirements Towards the Development of Privacy-Preserving DBMS
	Purpose Management and Access Control
	Purpose Based Access Control
	Limiting Disclosure in Hippocratic Databases

	Generalized Fine-Grained Access Control Models for Database Systems
	View-Based Approach
	Virtual Private Database (VPD) in Oracle
	Truman Model vs. Non-Truman Model
	Challenges in Fine-Grained Access Control

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

