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Abstract
Recent studies have shown that cache-conscious indexes such as
the CSB+-tree outperform conventional main memory indexes
such as the T-tree. The key idea of these cache-conscious indexes
is to eliminate most of child pointers from a node to increase the
fanout of the tree. When the node size is chosen in the order of the
cache block size, this pointer elimination effectively reduces the
tree height, and thus improves the cache behavior of the index.
However, the pointer elimination cannot be directly applied to
multidimensional index structures such as the R-tree, where the
size of a key, typically, an MBR (minimum bounding rectangle),
is much larger than that of a pointer. Simple elimination of four-
byte pointers does not help much to pack more entries in a node.

This paper proposes a cache-conscious version of the R-tree
called the CR-tree. To pack more entries in a node, the CR-tree
compresses MBR keys, which occupy almost 80% of index data
in the two-dimensional case. It first represents the coordinates of
an MBR key relatively to the lower left corner of its parent MBR
to eliminate the leading 0’s from the relative coordinate
representation. Then, it quantizes the relative coordinates with a
fixed number of bits to further cut off the trailing less significant
bits. Consequently, the CR-tree becomes significantly wider and
smaller than the ordinary R-tree. Our experimental and analytical
study shows that the two-dimensional CR-tree performs search up
to 2.5 times faster than the ordinary R-tree while maintaining
similar update performance and consuming about 60% less
memory space.

1. Introduction
As the price of memory continues to drop below $1,000/GB, it is
now feasible to place many of the database tables and indexes in
main memory. With such memory-resident tables and indexes, the
traditional bottleneck of disk access almost disappears, especially
for search transactions. Instead, memory access becomes a new
bottleneck [1]. A recent study with commercial DBMSs has
shown that half the execution time is spent on memory access
when the whole database fits in memory [2]. Since the speed in
DRAM chips has been traded off for the capacity, the gap
between the CPU speed and the DRAM speed has grown

significantly during the past decade [3]. In today’s computer
systems, each memory access costs tens of processor cycles. To
overcome this gap, modern processors adopt up to several
megabytes of SRAM as the cache, which can be accessed in just
one or two processor cycles.

Recognizing the widening gap between the CPU speed and the
DRAM speed, Rao and Ross recently addressed the importance of
the cache behavior in the design of main memory indexes and
showed that the cache-conscious search tree (CSS-tree) performs
lookups much faster than the binary search tree and the T-tree in
the read-only OLAP environment [4]. They also observed the
reasonably good cache behavior of the B+-tree and proposed its
cache sensitive variants [5]. Called CSB+-tree, these B+-tree
variants store child nodes contiguously in memory to eliminate
most child pointers except the first one. The location of the i-th
child node is computed from that of the first child. Providing more
room for keys in the node, this pointer elimination approach
effectively doubles the fanout of the B+-tree. Given the node size
in the order of the cache block size, the fanout doubling reduces
the height of B+-tree, and thus incurs less cache misses during the
tree traversal than the B+-tree. Note that such a pointer
elimination technique does not provide much benefit in disk-
resident indexes where the fanout is typically a few hundreds and
doubling the fanout does not lead to the immediate reduction in

the tree height (e.g.,  6
200 10log =  6

400 10log =3).

The pointer elimination technique cannot be directly applied to
multidimensional index structures such as the R-tree [6], because
multidimensional keys, typically, MBRs (minimum bounding
rectangles), are much larger than pointers. Thus, pointer
elimination alone cannot widen the index tree significantly. For
example, when the 16-byte MBR is used for the two-dimensional
key, the simple elimination of a 4-byte pointer provides at most
25% more room for the keys, and this increase is not big enough
to make significant difference in the tree height for the improved
cache behavior.

Recognizing that MBR keys occupy most of index data in the
multidimensional index, for example, almost 80% for the 2D R-
tree, this paper focuses on inexpensive compression of MBR keys
to improve the index cache behavior. Called CR-Tree (Cache-
conscious R-Tree), it takes advantage of the fact that the child
nodes are grouped into a parent node such that each node occupies
a small portion of the data space of its parent node [6][7][8]. Thus,
if we represent an MBR relatively to its parent MBR, the
coordinates of the resultant relative MBR have a fewer number of
significant bits with many leading 0’s. To further reduce the
number of bits per MBR, the CR-tree cuts off trailing insignificant
bits by quantization. Our analysis and experiment show that this
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compression technique can reduce the MBR size to less than a
fourth, thereby increasing the fanout by more than 150%. A
potential problem with the proposed technique is that the
information loss by quantization may increase false hits, which
have to be filtered out through a subsequent refinement step in
most multidimensional indexes [9]. However, we can keep the
number of false hits negligibly small by the proper choice of the
quantization level so that the cost of filtering out false hits can be
paid off by the significant savings in cache misses.

This paper also explores several options in the design of CR-
tree including whether to use the pointer elimination technique of
the CSB+-tree, whether to apply the proposed compression
technique to leaf nodes or not, the choice of quantization levels,
and the choice of node size. Our experimental study shows that all
the resultant CR-tree variants significantly outperform the R-tree
in terms of the search performance and the space requirement.
The basic CR-tree that uses only the proposed technique performs
search operations up to 2.5 times faster than the R-tree while
performing update operations similarly to the R-tree and using
about 54% less memory space. Compared with the basic CR-tree,
most of CR-tree variants use less memory with algorithmic
overhead. Our analysis of the proposed technique and various
indexes used in our experiment coincides with the experimental
result.

This paper is organized as follows. Section 2 presents the basic
idea of this paper and formulates our problem. Section 3 presents
the proposed MBR compression scheme, and the section 4
describes the proposed CR-tree. Section 5 analytically compares
the CR-tree with the ordinary R-tree, and section 6 presents the
result of the experiment conducted to compare the CR-tree with

the R-tree. Section 7 finally concludes this paper.

2. Motivation
2.1 Memory Hierarchy
Table 1 summarizes the properties of the memory hierarchy
observed in Sun UltraSPARC II and Intel Xeon platforms. In
UltraSPARC II, the block size is 32 bytes for the L1 cache and 64
bytes for the L2 cache [10]. Typically, the L1 cache can be
accessed in one clock cycle, and the L2 cache can be accessed in
two clock cycles. The memory access time depends on the DRAM
type. When EDO DRAM is used, each memory access takes 50 ns
on average. When a cache miss occurs in the L1 cache and the L2
cache, a victim is selected. The miss penalty is the cost of
selecting a victim and accessing the backing store. In
UltraSPARC II, each L1 cache miss incurs two accesses to the L2
cache, and each L2 cache miss incurs four accesses to main
memory.

2.2 Basic Idea
The idea in this paper is to make the R-tree cache-conscious by
compressing MBRs. Figure 1 illustrates the compression scheme
used in this paper. Figure 1(a) shows the absolute coordinates of
R0~R3. Figure 1(b) shows the coordinates of R1~R3 represented
relatively to the lower left corner of R0. These relative coordinates
have a less number of significant bits than absolute coordinates.
Figure 1(c) shows the coordinates of R1~R3 quantized into 16
levels or four bits by cutting off trailing insignificant bits. We call
the resultant MBR QRMBR (quantized relative representation of
MBR). Note that QRMBRs can be slightly bigger than original
MBRs.

The CR-tree is a cache-conscious R-tree that uses QRMBRs as
index keys. For the sake of simplicity, the quantization levels are
made the same for all nodes. Figure 2 shows the structure of a
CR-tree node that can contain up to M entries. It keeps a flag
indicating whether it is a leaf or not, the number of stored entries,
and the reference MBR that tightly encloses its entire child MBRs.
The reference MBR is used to calculate the QRMBRs stored in
the node. Internal nodes store entries of the form (QRMBR, ptr),
where ptr is the address of a child node and QRMBR is a
quantized relative representation of the child node MBR. Leaf
nodes store entries of the form (QRMBR, ptr), where ptr refers to
an object and QRMBR is a quantized relative representation of the
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(a) Absolute coordinates of R0~R3
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to the lower left corner of R0

(c) Quantized relative coordinates

43150, 27080

1,3

5, 8

8, 2

10, 6

8, 11

14, 15
43182, 27112

R0

R1

R3

R2

Figure 1: QRMBR Technique

L1 Cache L2 Cache Memory

Block size 16~32B 32~64B 4~16KB

Size 16~64KB 256KB~8MB ~32GB

Hit time 1 clock cycle 1~4 clock cycles
10~40 clock

cycles

Backing store L2 cache Memory Disks

Miss penalty
4~20 clock

cycles
40~200 clock

cycles
~6M clock

cycles

Table 1: Summary of Current Memory Hierarchy
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object MBR. In most of our experiments, we quantize each of x
and y coordinates into 256 levels or one byte.

2.3 Problem Formulation
Our goal is to reduce the multidimensional index search time in
main memory databases.

Observation 1. Let c be the node size in the number of cache
blocks, and Nnode access be the number of nodes accessed during
search. The main memory indexes need to be designed to
minimize c · Nnode access .

In main memory, the index search time mainly consists of the
key comparison time and the memory access time incurred by
cache misses. If a cache miss occurs, the CPU has to wait until the
missing data are cached. A cache miss can occur for three reasons:
missing data, missing instructions, and missing TLB (table look-
aside buffer) entries. Therefore, we can roughly express our goal
as minimizing

Tindex search ≅ Tkey compare + Tdata cache + TTLB cache

where Tkey compare is the time spent comparing cached keys, Tdata

cache is the time spent caching data, and TTLB cache is the time spent
caching TLB entries. For simplicity, we omit the time for caching
missing instructions because the number of instruction misses
mostly depends on the compiler and we can hardly control it.

Let Ckey compare be the key comparison cost per cache block,
Ccache miss be the cost of handling a single cache miss, and CTLB miss

be the cost of handling a single TLB miss. When the node size is
smaller than that of a memory page, each access to a node incurs
at most one TLB miss. For simplicity, we assume that nodes have
been allocated randomly and that no node and no TLB entry are
cached initially. Then,

Tindex search = c · Ckey compare · Nnode access

+ c · Ccache miss · Nnode access

+ CTLB miss · Nnode access

= c · Nnode access · (Ckey compare + Ccache miss + CTLB miss / c)

Since Ccache miss and CTLB miss are constant for a given platform,
we can control three parameters: c, Ckey compare, and Nnode access.
Among them, we cannot expect to reduce Ckey compare noticeably
because the key comparison is generally very simple. In addition,
CTLB miss and Ccache miss typically have similar values. Therefore, the
index search time mostly depends on c · Nnode access.

Observation 2. The amount of accessed index data can be best
reduced by compressing index entries.

The term c · Nnode access can be minimized in three ways:
changing the node size such that c · Nnode access becomes minimal,
packing more entries into a fixed-size node, and clustering index
entries into nodes efficiently. The second is often termed as
compression and the third as clustering [11].

The optimal node size is equal to the cache block size in one-
dimensional case. In one-dimensional trees such as the B+-tree,
since exactly one internal node is accessed for each level, the
number of visited internal nodes decreases logarithmically the
node size. On the other hand, the number of visited leaf nodes
decreases linearly with the node size, and c increases linearly with
the node size. Therefore, c · Nnode access increases with the node size,
and thus it is minimal when c is one.

In multidimensional indexes, more than one internal nodes of
the same level can be accessed even for the exact match query,
and the number of accessed nodes of the same level decreases as
the node size increases. Since this decrease is combined with the
log scale decrease of tree height, there is a possibility that the
combined decrease rate of node accesses exceeds the linear
increase rate of c. We will show analytically in section 5.2 that the
optimal node size depends on several factors like the query
selectivity and the cardinality.

Compressing index entries is equivalent to increasing the node
size without increasing c. In other words, it reduces Nnode access

while keeping c fixed. Thus, it is highly desirable. Compression
has been addressed frequently in disk-based indexes because it
can reduce the tree height, but there is little dedicated work,
especially in multidimensional indexes. The following simple
analysis shows that why the compression in disk-resident indexes
does not provide as significant gain as in main memory indexes.

Suppose that the tree A can pack f entries on average in a node
and the tree B can pack 2f entries in a node using a good
compression scheme. Then, their expected height is logf N and
log2f N, respectively. Thus, the height of B is 1/log2f +1 (= logf N /
log2f N) times smaller than that of A. In disk-based indexes, the
typical node size varies from 4KB to 64KB. Assuming that the
node size is 8KB and nodes are 70% full, f is 716 (≅ 8192×0.7/8)
for a B+-tree index and about 286 (≅ 8192×0.7/20) for a two-
dimensional R-tree. Thus, 1/log2f is typically around 0.1. On the
other hand, the node size is small in main memory indexes [4].
With a node occupying two cache blocks or 128B, f is about 11
for a B+-tree and about 4 for a two-dimensional R-tree. Thus,
1/log2f is 0.29 for the B+-tree and 0.5 for the R-tree. In summary,
node compression can reduce the height of main memory indexes
significantly because the size of nodes is small.

# entries

Leaf or Nonleaf

(b) Internal node entry (c) Leaf node entry

(a) Node

Reference MBR Entry 1 Entry M...

pointer to a data object
Object's
QRMBRpointer to a child node

Child's
QRMBR ptr ptr

Figure 2: Data Structure of the CR-tree
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Clustering has been studied extensively in disk-based index
structures. In terms of clustering, the B+-tree is optimal in one-
dimensional space, but no optimal clustering scheme is known for
the multidimensional case. Instead, many heuristic schemes have
been studied in various multidimensional index structures [6] [7]
[12][13][14]. Our work can be used with most of these clustering
schemes.

3. MBR Compression
Here are two desirable properties of the MBR compression
scheme that we seek.

Overlap Check Without Decompression: A basic R-tree operation
is to check whether each MBR in a node overlaps a given query
rectangle. Checking the overlap of two MBRs should be done
directly with the compressed MBRs stored in the nodes, without
decompressing them. This property enables the basic R-tree
operation to be processed with the one-time compression of the
query rectangle instead of the decompression of all the
compressed MBRs in the encountered nodes.

Simplicity: Compression and decompression should be
computationally simple and can be performed only with already
cached data. Conventional lossless compression algorithms such
as the one used in the GNU gzip program are expensive in terms
of both computation and memory access because most of them
maintain an entropy-based mapping table and look up the table for
compression and decompression [15]. Thus, although they may be
useful for disk-resident indexes, they are not adequate for main
memory indexes.

3.1 RMBR
An obvious compression scheme is to represent keys relatively
within a node [16]. If we represent the coordinates of an MBR
relatively to the lower left corner of its parent MBR, the resultant
relative coordinates have many leading 0’s. By cutting off these
leading 0’s and recording the number of bits cut off, we can
effectively reduce the size of an MBR.

Definition 1. (Relative Representation of MBR or RMBR) Let
P and C be MBRs, that are represented by their lower left and
upper right coordinates (xl, yl, xh, yh), and let P enclose C. Then,
the relative representation of C with respect to P has the
coordinates relative to the lower left corner of P.

RMBRP(C) = (C.xl – P.xl, C.yl – P.yl, C.xh – P.xl, C.yh – P.yl)

However, the following simple analysis shows that the RMBR
technique can save only about 32 bits per MBR. For simplicity,
we assume that the coordinates of MBR are uniformly distributed
in their domain and that R-tree nodes of the same height have
square-like MBRs roughly of the same size [8]. Without loss of
generality, we assume that the domain of x coordinates has the
unit length and consists of 232 different values equally spaced. Let
f be the average fanout of leaf nodes, and let N be the total number
of data objects. Then, there are roughly N/f leaf nodes, whose

MBRs have the area of f/N and the side length of Nf / along

each axis. Since there are 232 different values in the unit interval

along each axis, there are 232 Nf / different values in the

interval with the length of Nf / . Therefore, we can save 32–

log2 (232 Nf / ) bits or fN /log2 bits for each x coordinate

value. When N is one million and f is 11, about 8.2 bits are saved.
By multiplying 4, we can save about 32 bits per MBR. Note that
the number of saved bits does not depend on the original number
of bits as long as the former is smaller than the latter.

We can easily extend this analysis result such that the number
of bits saved is parameterized further by the dimensionality. The

extended result is d fN /log2 or

( ) dfN /loglog 22 − (1)

The formula (1) increases logarithmically with N, decreases
logarithmically with f, but decreases linearly with d. Therefore,
the number of saved bits mainly depends on the dimensionality. In
one-dimensional space, the relative representation technique can
save almost 16 bits for each scalar, but it becomes useless as the
dimensionality increases.

3.2 QRMBR
Since we cannot obtain a sufficient compression ratio from the
RMBR technique alone, we introduce the additional quantization
step. This step cuts off trailing insignificant bits from an RMBR
while the RMBR technique cuts off leading non-discriminating
bits from an MBR. After defining QRMBR, we show that
quantizing an RMBR does not harm the correctness of index
search and its small overhead by quantization is paid off by the
significant savings in cache misses.

Definition 2. (Quantized Relative Representation of MBR or
QRMBR) Let I be the reference MBR, and let l be the desired
quantization level. Then, the corresponding quantized relative
representation of an MBR C is defined as

)).(,).(,).(,).((

)(

,.,.,.,.,.,.,.,.

,

yhCxhCylCxlC

CQRMBR

lyhIylIlxhIxlIlyhIylIlxhIxlI

lI

ΦΦ
=

φφ
where }1...,0,{:,, −→ lRlbaφ and }...,,1{:,, lRlba →Φ are

  otherwise,

if,

if,

)/()(

1

0

)(,, br

ar

abarl

lrlba ≥
≤









−−
−=φ

  otherwise,

if,

if,

)/()(

1

)(,, br

ar

abarl

lrlba ≥
≤









−−
=Φ

Computational Cost. Lemma 1 says that QRMBR satisfies the
first of two desirable properties mentioned at the beginning of this
section. Therefore, the computational overhead of QRMBR
technique is the cost of compressing the query rectangle into a
QRMBR for each visited node. In our implementation,
compressing an MBR into a QRMBR consumes at most about 60
instructions, which corresponds to less than 120 ns on a 400 MHz
processor because of pipelining. In addition, it incurs no memory
access as long as the query MBR and the MBR of the node on
immediate access are cached.

Lemma 1. Let A and B be MBRs. For any MBR I and integer l, it
holds that if QRMBRI,l(A) and QRMBRI,l(B) do not overlap, A
and B also do not overlap.

Proof. See Appendix A. ■
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Correctness. Since it is generally not possible to recover the
original coordinates of an MBR from its QRMBR, there is the
possibility of incorrectly determining the overlap relationship
between two MBRs. Lemma 1 guarantees that there is no
possibility of saying two actually overlapping MBRs do not
overlap. Thus, the QRMBR technique does not miss an object that
satisfies a query.

However, there is the possibility of concluding that two actually
non-overlapping MBRs overlap. This means that the result of
index search may contain false hits that have to be filtered out
through a subsequent refinement step. However, this refinement
step is needed for most multidimensional index structures because
MBRs are typically approximations of objects [9]. Thus, requiring
the refinement step itself is not an overhead, but the number of
false hits can be. Section 5.3 shows that the number of false hits
can be made negligibly small, typically fewer than one, by
choosing the quantization level properly.

4. CR-tree
4.1 Algorithms

4.1.1 Searching
The search algorithm is similar to the one used in other R-tree
variants. The only difference is that the CR-tree compares a query
rectangle with QRMBRs. Instead of recovering MBRs from
QRMBRs, the CR-tree transforms the query rectangle into the
corresponding QRMBR using the MBR of each node as the
reference MBR. Then, it compares two QRMBRs to determine
whether they overlap.

Algorithm Search. Given a CR-tree and a query rectangle Q, find
all index records whose QRMBRs overlap Q.

1. Push the root node to the initially empty stack
S

2. If S is empty, stop
3. Pop a node N from S and set R to be

QRMBRN.MBR,l(Q)
4. If N is not a leaf, check each entry E to

determine whether E.QRMBR overlaps R. If so,
push E.ptr to S

5. If N is a leaf, check each entry E to determine
whether E.QRMBR overlaps R. If so, add E.ptr to
the result set

6. Repeat from step 2

4.1.2 Insertion
To insert a new object, the CR-tree traverses down from the root
choosing the child node that needs the least enlargement to
enclose the object MBR. When visiting an internal node to choose
one of its children, the object MBR is first transformed into the
QRMBR using the reference MBR. Then, the enlargement is
calculated between a pair of QRMBRs. When a leaf node is
reached, the node MBR is first adjusted such that it encloses the
object MBR. Then, an index entry for the object is created in the
node. If the node MBR has been adjusted, the QRMBRs in the
node are recalculated because their reference MBR has been
changed. If the node overflows, it is split and the split propagates
up the tree.

Algorithm Insert. Insert a new object O whose MBR is C into a
CR-tree by invoking ChooseLeaf and Install. The algorithms

SplitNode and AdjustTree can also be invoked if needed. This
algorithm is same as that of other R-tree variants.

Algorithm ChooseLeaf. Select a leaf node to insert a new MBR
C, descending a CR-tree from the root. This algorithm is same as
that of other R-tree variants.

Algorithm Install. Install a pair of an MBR C and an object
pointer p in a node N.

1. Enlarge N.MBR such that it encloses C
2. Make an entry of (QRMBRN.MBR,l(C), p) and append

it to N
3. If N.MBR has been enlarged, recalculate all the

QRMBRs in N by accessing their actual MBRs and
invoke AdjustTree passing N

Algorithm SplitNode. The CR-tree can use the split algorithms
used in other R-tree variants including the R-tree and the R*-tree
[6][7]. In our experiment, the linear-cost split algorithm of the
original R-tree was used. After splitting a node into two, the
QRMBRs in the nodes are recalculated according to their MBR.

Algorithm AdjustTree. Ascend from a leaf node L up to the root,
adjusting MBRs of nodes and propagating node splits as
necessary. When a node MBR has been adjusted, recalculate the
QRMBRs in the node.

4.1.3 Deletion
Algorithm Delete. Remove index record E from a CR-tree. The
CR-tree can use any of the deletion algorithms used in the R-tree
and the R*-tree. However, the CondenseTree algorithm invoked
by the Delete algorithm needs a slight modification.

Algorithm CondenseTree. Given a leaf node L from which an
entry has been deleted, eliminate the node if it has too few entries
and relocate its entries. Propagate node elimination upward as
necessary. Adjust all MBRs of the nodes on the path to the root,
making them smaller if possible. When a node’s MBR has been
adjusted, recalculate the QRMBRs in the node. This last step is
what is different from other R-tree variants.

4.1.4 Bulk Loading
Bulk loading into a CR-tree is not different from that into other R-
tree variants. As long as QRMBRs are correctly maintained,
existing bottom-up loading algorithms can be used directly
[17][18].

4.2 Variants and Space Comparison
This paper also considers three variants of the CR-tree: PE
(pointer-eliminated) CR-tree, SE (space-efficient) CR-tree, and FF
(false-hit free) CR-tree.

The PE CR-tree eliminates most pointers to child nodes from
internal nodes as in the CSB+-tree. This extension can widen the
CR-tree significantly because the key size of the CR-tree is now
small unlike the R-tree. For example, when the size of QRMBR is
four bytes, this pointer elimination doubles the fanout of internal
nodes. However, it is just a minor improvement in most cases
because pointers to data objects stored in leaf nodes can rarely be
eliminated. When the average fanout of both internal and leaf
nodes is 10, the number of internal nodes is about a ninth of that
of leaf nodes. Therefore, the overall increase of fanout is only
about 10%. On the other hand, as in the CSB+-tree, node split
becomes expensive. The new node created by a split has to be
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stored consecutively with its siblings, and this often requires
allocating a new space and moving the siblings.

The SE CR-tree removes the reference MBR from nodes of the
PE CR-tree. This is possible because the reference MBR of a node
can be obtained from the matching entry in its parent node. This
extension increases the fanout of internal nodes by four and that
of leaf nodes by two when the MBR size is 16 bytes and the
QRMBR size is 4 bytes. This increase can be larger than the
increase obtained in the PE CR-tree when the node size is as small
as one or two cache blocks.

While the above two extensions increase the fanout, the third
extension to the CR-tree decreases the fanout of leaf nodes. Since
the QRMBR technique is a lossy compression scheme, the search
result can be a superset of the actual answer for a given query.
This can be avoided if we apply the QRMBR technique only to
internal nodes and store actual MBRs in leaf nodes. Called the FF
CR-tree, this extension is useful when the subsequent refinement
step is extremely expensive.

Table 2 shows the space requirements of the various index
structures used in this paper, assuming all the nodes are 70% full.
We assume that the size of MBR is 16 bytes, the size of QRMBR
is 4 bytes, and the size of pointer is 4 bytes. The internal node
space is calculated by dividing the leaf space by the average
fanout of internal nodes minus one. This analysis shows that the
PE CR-tree is not so different from the CR-tree in terms of the
space requirement and the PE R-tree is no different from the R-
tree.

5. Analysis
Without loss of generality, we assume the data domain of unit
hyper-square. For simplicity, we assume that data objects are
uniformly distributed in the domain, and the query MBRs are
hyper-squares. We further assume that the R-tree nodes of the
same height have square-like MBRs roughly of the same size as in
other analytical work [8][17].

5.1 Number of Accessed Nodes
Let h denote the height or level of a node assuming that the height
of leaf nodes is one. Let Mh denote the number of nodes at the
height of h. Then, from the above assumption,
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The CR-tree accesses slightly more nodes than the R-tree
because the QRMBR is bigger than the original MBR by the
quantization error.

Let l denote the quantization level. Then, each node has ld

quantization cells, and the side length of each cell is lad
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child node is determined by comparing the QRMBR of the query
rectangle and the stored QRMBR of the child node, the
probability to visit a child node is

dd
h
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d laalas )//( 1 +++ − . By multiplying by Mh and

summing from the leaf to the root, the total number of node
accesses in CR-trees is
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Figure 3 compares equations (2) and (3) when the cardinality is
one million and the query selectivity is 0.01%. Here, we assumed
that the pointer size is 4 bytes and that each node is 70% full. The
MBR size is 16 bytes in 2D and increases linearly with
dimensions. The QRMBR size is a one-fourth of the MBR size. In
this figure, the number of node accesses decreases with the node
size. The decrease rate is initially large, but it becomes smaller as
the node size increases. For all the node sizes and all the three

Maximum fanout Node space

Internal Leaf Internal Leaf

Typical

index size

R-tree m m NS/0.7m(0.7m-1) NS/0.7m 38.15 MB

PE R-tree 1.25m m NS/0.7m(0.875m-1) NS/0.7m 35.90 MB

CR-tree 2.5m-4 2.5m-4 NS/(1.75m-2.8)(1.75m-1.8) NS/(1.75m-2.8) 17.68 MB

PE CR-tree 5m-5 2.5m-4 NS/(1.75m-2.8)(3.5m-2.5) NS/(1.75m-2.8) 16.71 MB

SE CR-tree 5m-1 2.5m-2 NS/1.75m(3.5m-0.7) NS/(1.75m-1.4) 14.07 MB

FF CR-tree 2.5m-4 m NS/0.7m(1.75m–2.8) NS/0.7m 32.84 MB

Table 2: Space Analysis (N: the number of leaf node entries, S: the node size in bytes; typical sizes are given when N=1,000,000
and S=128)
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dimensionalities, the CR-tree surpasses the R-tree by more than
twice.

5.2 Number of Cache Misses
The number of cache misses can be easily obtained by multiplying
equations (2) and (3) by the number of cache misses that one node
access incurs. Figure 4 shows the analyzed number of cache
misses. It shows that as the node size grows, the number of cache
misses approaches quickly to the minimum, and then increases
slowly. In terms of cache misses, the CR-tree outperforms the R-
tree significantly, by up to 4.3 times. To obtain this figure, the
equations (2) and (3) were multiplied by S/64, where S is the node
size in bytes and 64 is the L2 cache block size.

Figure 4(a) shows a saw-like pattern that the number of cache
misses decreases abruptly at certain node sizes while generally
increasing with the node size. Such bumps occur when the height
of tree becomes smaller. For example, the 4D R-tree has the
height of 7 when the node size is 448 or 512 bytes, but its height
becomes 6 when the node size is 576 bytes. In other words, such
bumps occur when the gain by the decrease of height surpasses
the overhead associated with the increase of node size.

Although the optimal one-dimensional node size in terms of the
number of cache misses is shown to be the cache block size in
section 2.3, Figure 4 shows that this choice of node size is not
optimal in multidimensional cases as discussed in section 2.3.
Figure 5 shows the number of cache misses computed changing
the query selectivity. The observation on this figure is that the
optimal node size increases with the query selectivity in both the
R-tree and the CR-tree. Figure 5(a) shows that the optimal node
size increases in the order of 128, 192, 320, 640, and 960 bytes as
the selectivity increases. Figure 5(b) shows that the optimal node
size increases in the order of 64, 128, 192, 256, and 320 bytes as
the selectivity increases. Although we do not visualize because of
the space limitation, the optimal node size increases in the same
way as the cardinality and the dimensionality increase.

5.3 Ratio of False Hits By Quantization
Following the same steps as in section 5.1, each quantization cell

of a leaf node has the area of Nlf d/ and the side length of

d d Nlf / along each axis, and the probability that the QRMBRs
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of the query MBR and the object MBR overlap

is
d

d ddd Nlfas 





 ++ /2 .

Therefore, the probability that a false hit occurs is
d

d ddd Nlfas 





 ++ /2 - ( )ddd as + . Dividing by ( )ddd as + ,

the ratio of false hits incurred by quantization to actual answers is

( ) 1//21 −





 ++

d
ddd d asNlf . (4)

Figure 6 shows the ratio when the cardinality is one million and
the query selectivity is 0.01%. Here, we assume that the pointer
size is 4 bytes and that each node is 70% full. Figure 6(a) shows
the false hit ratio in the 2D CR-tree for three different QRMBR
sizes: 2 bytes, 4 bytes, and 8 bytes, and Figure 6(b) shows the
false hit ratio for three different dimensionality. The false hit ratio
increases with both the node size and the dimensionality. Using
QRMBRs of 4 bytes incurs around one false hit in this
configuration, but it saves tens or hundreds of cache misses as
shown in Figure 4.

6. Experimental Evaluation
To assess the merit of the proposed CR-tree and its variants, we
conducted a series of experiments on a SUN UltraSPARC
platform (400MHz CPU with 8MB L2 cache) running Solaris 2.7.

We implemented six index structures on 2D: the ordinary R-
tree, the PE R-tree, the CR-tree, the PE CR-tree, the SE CR-tree,
and the FF CR-tree. We also implemented a bulk-loading
algorithm [17]. We changed the size of nodes from 64 bytes to
1024 bytes for the implemented index structures. We used 16-byte
MBRs and changed the size of QRMBRs from 2 bytes to 8 bytes.
If not specified, the default size of QRMBRs is 4 bytes, and the
nodes are 70% full.

We generated two synthetic data sets consisting of one million
small rectangles located in the unit square. One is uniformly
distributed in the unit square and the other has the Gaussian
distribution around the center point (0.5, 0.5) with the standard
deviation of 0.25. We set the average side length of rectangles to
be 0.001.
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6.1 Search Performance
In the first experiment, we compare the search performance of
various indexes in terms of the wall-clock time spent processing a
two-dimensional region query. We generated 10,000 different
query rectangles of the same size, whose center points are
uniformly distributed. We changed the size of query rectangles
from 0.01% of the data space to 1%. Since the data space is the
unit square, the query selectivity is roughly same as the size of a
query rectangle.

Figure 7 shows the elapsed time spent searching various
indexes bulk-loaded with the uniform data set such that each node
is 70% full. The observations on this figure are:

• As the node size grows, the search time approaches quickly to
the minimum, and then increases slowly. The minimum shifts
to the right as the selectivity increases. This trend holds for all
the six trees, and it coincides with the analytical results

presented in section 5.1.

• The CR-tree, the PE CR-tree, and the SE CR-tree form the
fastest group. The R-tree and the PE R-tree form the slowest
group. The FF CR-tree lies between the two groups.

• Although the SE CR-tree is wider than both the CR-tree and
the PE CR-tree, it performs worse. This is because the SE CR-
tree calculates the reference MBR of a node from the
matching entry in its parent node. In our implementation, this
calculation involves about 40 instructions and 16 bytes of
memory write.

We conducted the same experiment for the skewed data set. We
could not find any noticeable difference from Figure 7. In other
words, all the six trees are robust to the skew for any node size.
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6.2 Update Performance
To measure the update performance, we inserted 100,000 objects
into indexes bulk-loaded with the one million uniform data set,
then removed 100,000 randomly selected objects from the indexes.

Figure 8(a) and (b) show the measured elapsed time per
insertion and deletion, respectively. For a given node size, the
CR-tree consumes about 15% more time than the R-tree for
insertion. However, when the fanout is same (for example, the
CR-tree with the node size of 256 bytes and the R-tree with the
node size of 640 bytes), the CR-tree performs similarly to or
better than the R-tree. This can be explained in the following way.

When descending a tree for insertion, the child node that needs
to be enlarged least is selected. Since the enlargement calculation
consumes about 30 instructions in our implementation, it becomes
more expensive than the cache miss in the CR-tree and its variants.
Since a single cache block contains about 5.6 QRMBRs in the
CR-tree, the enlargement calculation cost is about 168 instructions
per cache block, but a cache miss consumes about 80~100
processor cycles on 400MHz UltraSPARC II. On the other hand,
since insertion accesses only one node for each height, the number
of accessed nodes decreases logarithmically with the fanout, but
the number of enlargement calculations for each node increases

linearly with the fanout. Thus, the total number of enlargement
calculations increases with the fanout.

The PE R-tree performs slightly worse than the R-tree because
it increases the fanout by less than 25%. Since the fanout of the
CR-tree is about 150% larger than that of the R-tree, it performs
worse than the R-tree for a given node size. Since the fanout of
the PE CR-tree is about 400% larger than that of the R-tree, it
performs significantly worse than the R-tree for a given node size.
On the other hand, when the fanout is same, the ranking of the
CR-tree is determined by the saving in cache misses and the
overhead of updating QRMBRs when the node MBR grows or
shrinks.

Figure 8(b) shows that the rankings for deletion are slightly
different from those for insertion. Deletion is a combination of
highly selective search and node update. As you can expect from
Figure 7, the CR-tree performs similarly to the R-tree as the
selectivity decreases. On the other hand, node update becomes
more expensive as the node size increases because the cost of
updating QRMBRs increases. Therefore, the CR-tree outperforms
the R-tree when the node size is small, but they cross over as the
node size increases.

0

5

10

15

20

25

30

0 256 512 768 1024

Node size (bytes)
(a) Selectivity = 0.01%

R
at

io
of

fa
ls

e
hi

ts
(%

)

0

1

2

3

4

5

6

0 256 512 768 1024

Node size (bytes)
(b) Selectivity = 0.25%

R
at

io
of

fa
ls

e
hi

ts
(%

)

0

0.5

1

1.5

2

2.5

3

0 256 512 768 1024

Node size (bytes)
(c) Selectivity = 1.00%

R
at

io
of

fa
ls

e
hi

ts
(%

)

CR-tree (2byte)

CR-tree (4byte)

CR-tree (8byte)

Figure 9: Ratio of False Hits Incurred by Quantization

0

10

20

30

40

50

60

70

80

90

0 256 512 768 1024

Node size (bytes)
(a) Selectivity = 0.01%

S
ea

rc
h

tim
e

(u
s)

0

200

400

600

800

1000

1200

1400

0 256 512 768 1024

Node size (bytes)
(b) Selectivity = 0.25%

S
ea

rc
h

tim
e

(u
s)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 256 512 768 1024

Node size (bytes)
(c) Selectivity = 1.00%

S
ea

rc
h

tim
e

(u
s)

CR-tree (2byte)

CR-tree (4byte)

CR-tree (8byte)

Figure 10: Search Time with Varying Quantization Levels

148



6.3 Impact of Quantization Levels
To assess the impact of quantization levels, we measured the ratio
of false hits incurred by quantization and the search time for three
different quantization levels, 24, 28, and 216. These correspond to
QRMBRs of 2 bytes, 4 bytes, and 8 bytes, respectively. In this
experiment, we used the trees bulk-loaded with the 1M uniform
data set.

Figure 9 shows the ratio of false hits measured varying the
quantization level. In section 5.3, we have shown that the ratio of

false hits can be estimated by ( ) 1//21
2

2 −





 ++ asNlf .

This ratio increases with the fanout or the node size, and
decreases with the increasing quantization level and selectivity.
Figure 9 is consistent with the analytical result. With the 16-bit
quantization, the result of the CR-tree search is almost the same as
that of the R-tree search. With the 8-bit quantization, the CR-tree
search result contains at most 1% more objects than the R-tree
result. With the 4-bit quantization, the ratio of the false hits
increases steadily with the node size, up to 26% when the node
size is 1024 bytes and the selectivity is 0.01%. When the
selectivity is high, the graph shows a similar slope with respect to
the selectivity but the ratio of the false hits is contained within a
few percents. So the 4-bit quantization becomes useful as the
selectivity increases.

Figure 10 shows the effect of the quantization on the search
time. The time for filtering out the false hits is not counted. The
figure shows that the 8-bit quantization performs the best when
the selectivity is 0.01%. The 4-bit quantization with 0.01%
selectivity performs well when the node size is small but becomes
the worst as the node size grows. However, the 4-bit quantization
performs the best regardless of the node size when the selectivity
is high. This is because the number of false hits becomes
relatively insignificant as the node size grows.

6.4 Breakdown of Search Performance
To better understand the search performance of the indexes used
in our experiment, we measured the amount of accessed index

data, the number of L2 cache misses, and the number of key
comparisons for the experiment reported in Figure 7.

Figure 11(a) shows the amount of accessed index data, which is
the number of L2 cache misses when no index data is cached
initially or the worst-case cache misses. In terms of the worst-case
cache misses, the six trees are clearly ranked by their fanout or in
the order of the SE CR-tree, the PE CR-tree, the CR-tree, the FF
CR-tree, the PE R-tree, and the R-tree, from the best to the worst.
The first three form one group, and the last two form another
group as in Figure 7. This result coincides with Figure 4.

Figure 11(b) shows the measured number of L2 cache misses
using the Perfmon tool [20]. The UltraSPARC processors provide
two registers for measuring processor events. We used the
Perfmon tool to make these registers count L2 cache misses and to
read the values stored in them. The number of L2 cache misses is
slightly different from the amount of accessed index data because
of cache hits and missing instructions. Instruction cache misses
explains why the number of measured cache misses can be larger
than that of the worst-case cache misses in Figure 11(a) when
both the node size and the selectivity are small.

Another observation on Figure 11(b) is that the cache hit ratio
increases with the node size. This has to do with the typical cache
replacement policy based on the circular mapping of memory
blocks to cache blocks. Namely, the memory block with the
address A is cached into the cache block whose address is
determined by the cache size modulo of A. With this policy, a
node consuming multiple memory blocks is placed consecutively
in the cache. As the node size increases, the probability that the
concurrently needed memory blocks are mapped to the conflicting
location of the cache decreases.

Figure 11(c) shows that the QRMBR technique increases the
number of key comparisons slightly. Since the overlap test
between two MBRs consumes less than 10 instructions on average
in our implementation, saving an L2 cache miss is worth saving at
least 10 overlap tests. The R-tree and the PE R-tree have similar
fanouts and form one group. The PE CR-tree and the SE CR-tree
also have similar fanouts and form another group.
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7. Conclusion
There has been much research on multidimensional indexes. This
paper addressed the problem of optimizing the cache behavior of
multidimensional indexes for use in the main memory database
environment. To pack more entries in the node whose size is
given in multiples of cache blocks, we have proposed an efficient
MBR compression scheme called the quantized relative
representation of MBR or QRMBR which represents the
coordinates of child nodes relatively to the MBR of the parent
node and quantizes the resultant relative MBR using a fixed
number of bits. The CR-tree based on QRMBR effectively
increases the fanout of the R-tree and decreases the index size for
the improved cache behavior.

Our extensive experimental study combined with analytical one
shows that the 2D CR-tree and its three variants outperform the
ordinary R-tree up to 2.5 times in the search time and use about
60% less memory space. To see the practical impact of the CR-
tree, we are currently integrating the CR-tree into P*TIME, a
prototype transact in memory engine under development.
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Appendix A. Proof of Lemma 1.
We prove the contrapositive that if A and B overlap, QRMBRI,l(A)
and QRMBRI,l(B) overlap. By definition, two rectangles overlap if
and only if they share at least one point. Thus, A and B share at
least one point. Let (x, y) denote this point. Then, the following
holds.
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For simplicity, we omit the subscripts a, b, and l from the
quantization functions φ and Φ. Since, φ and Φ are monotonically
non-decreasing functions and )()( rr Φ≤φ for any Rr ∈ ,
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Therefore, QRMBRI,l(A) and QRMBRI,l(B) share at least the
point (φ(x), φ(y)). Thus, they overlap and this completes the
proof.■
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