MINING LONG SHARABLE PATTERNS IN TRAJECTORIES OF MOVING OBJECTS

BY

GYŐZŐ GIDOFALVI AND TORBEN BACH PEDERSEN

Presented by Stig Jørgensen
Publication information

- Journal: GeoInformatica
- Published by Springer Netherlands
- Published online – December 2007
- Two-versions
Outline

- What is a Long, Sharable pattern?
- Identification of trips
- Frequent Itemset Mining
- Approach(es)
- INFATI dataset and discoveries
- Performance
- Related work
- Relation to our project
- Comments
What is a long, sharable pattern?

- Similarities
 - Time
 - Location

- Example
 - Carpooling
Identification of patterns

Identify trips

- Filtering out non-trips
- A trip must be longer than a displacement
Identification of patterns

Projection of temporal dimension

- Map date time to recurring events:
 - Time-of-day
 - Day-of-month
 - Day-of-week
Identification of patterns

Substitute noisy GPS readings

- Road network based generalization
- Region-based generalization
Frequent Itemset Mining

- Has to be modified to support Carpooling:
 - A frequent item set has to be long
 - A frequent item set has to be shared by an amount of travelers.
- Our data can be converted to a format <oid, tid, s>, that is required for Frequent Itemset Mining
Naïve approach
- Finding sub-trajectories through k-way self-joins.
- Iterative manner
- Running time
 - Worst case: Exponential
Projection-based LSP mining

- Temporal dimension: 5 Minutes
- Spatial dimension: Square cells
- 5 step iterative approach
Step 1 - Filter infrequent items

- An item is frequent if:
 - The amount of transactions that contain an item is ≥ 4
 - The amount of unique objects associated with those transactions is ≥ 2
Step 2 – Filter short transactions

- A trajectories is short:
 - If the length of the trajectories ≥ 4
Step 3 & 4 – Project and select

- Takes one out one element and projects it to another DB.
- Selects the most frequent itemset
Step 5 - Deletion

- Deletes unnecessary items from predecessor DB.
Pattern discovery and deletion phase

- Iterative process over step 3 to 5.
INFATI dataset

- Real dataset from Aalborg
- 20 unique test cars
- Transformation from noisy readings into 100 *100 m 5 minute spatio-temporal regions.
- ~ 200,000 unique items in 3,699 transactions
LSP Discovery in INFATI
Alternative modeling

- Macro patterns
 - Works on origin and destination.
 - Requires modification to the Distance concept.
- Hybrid model using both Macro and Micro-Patterns
 - Scales better
 - Does not find all local LSPs
Performance – minLength

- Running time and space increase exponentially as minLength decrease.
- Average running time decrease lineary as minLength decrease.

(a) Absolute time and space
(b) Number of patterns
(c) Relative time and space
Performance - minSupp

- Running time and space increase exponentially as minLength decrease.
- Average running time decrease linearly as minLength decrease.

(a) Absolute time and space (b) Number of patterns (c) Relative time and space
Performance - scalability

- As the patterns increase linearly the amount of patterns increase sub-exponentially.
- Amount of time/space required per pattern decrease to a constant.

(a) Absolute time and space (b) Number of patterns (c) Relative time and space
Summary

- LSP mining method is effective and robust
- Scale up test
 - Running time and space required scales exponentially with input size.
- Macro modeling
 - Effective, yet insensitive to user–defined parameter settings.
- Hybrid model
 - Able to find most local LSPs effectively.
Related work

- Frequent Itemset Mining
- All frequent item sets are too large
 - Closed Frequent Itemsets (CFI)
 - Compression
Relation to our project

- Article picked on interest.
- Product status
 - Airport Case
- Flow analysis
 - Convert our data into FIM accepted data
 - <Signal strength, time>
 - <oid, tid, s>
Comments about article

- Reads good
 - Covers a lot of areas with various detail level.

- Ordering of article
 - Introduction of micro LSP mining method before introducing macro and hybrid model.

- Scope of the article
 - More focus on hybrid model.
Thank you for listening

- Questions?
- Comments?